362 research outputs found

    Analysis and geological interpretation of gravity data from GEOS-3 altimeter

    Get PDF
    A number of detailed gravimetric geoids of portions of the world's oceans from marine gravity measurements were constructed. The geoids were constructed by computing 1 x 1 deg or 10 x 10 deg averages of free-air anomaly data and subtracting these values from currently used satellite derived Earth models. The resulting difference gravity anomalies are then integrated over a sphere using a simplified form of Stoke's equation to obtain a difference geoid. This difference geoid is added to the satellite derived model to obtain a 1 x 1 deg or 10 x 10 deg total gravimetric geoid. The geoid undulations are studied by comparison of the altimeter measurements with the morphology of the ocean floor. Utilizing a combination of altimetry data, gravity and seismic reflection data, geophysical models of the earth can be constructed

    Shape of the ocean surface and implications for the Earth's interior: GEOS-3 results

    Get PDF
    A new set of 1 deg x 1 deg mean free air anomalies was used to construct a gravimetric geoid by Stokes' formula for the Indian Ocean. Utilizing such 1 deg x 1 deg geoid comparisons were made with GEOS-3 radar altimeter estimates of geoid height. Most commonly there were constant offsets and long wavelength discrepancies between the two data sets; there were many probable causes including radial orbit error, scale errors in the geoid, or bias errors in altitude determination. Across the Aleutian Trench the 1 deg x 1 deg gravimetric geoids did not measure the entire depth of the geoid anomaly due to averaging over 1 deg squares and subsequent aliasing of the data. After adjustment of GEOS-3 data to eliminate long wavelength discrepancies, agreement between the altimeter geoid and gravimetric geoid was between 1.7 and 2.7 meters in rms errors. For purposes of geological interpretation, techniques were developed to directly compute the geoid anomaly over models of density within the Earth. In observing the results from satellite altimetry it was possible to identify geoid anomalies over different geologic features in the ocean. Examples and significant results are reported

    Can the South Atlantic Opening Model be Applied to the India Margins?

    Get PDF
    The presence of SDRs (seawrd dipping reflectors) on the regional lines around the Indian continent strongly suggest the breakup of the lithosphere and the onset of the sea-floor spreading were similar to those proposed and described for the South Atlantic, which, in fact, is quite similar to the opening of the North Atlantic

    Can the South Atlantic Opening Model be Applied to the India Margins?

    Get PDF
    The presence of SDRs (seawrd dipping reflectors) on the regional lines around the Indian continent strongly suggest the breakup of the lithosphere and the onset of the sea-floor spreading were similar to those proposed and described for the South Atlantic, which, in fact, is quite similar to the opening of the North Atlantic

    Report on Elgin-area earthquakes

    Get PDF
    This explains why earhquakes are happening around Elgin, S.C

    Upper crustal evolution across the Juan de Fuca ridge flanks

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09006, doi:10.1029/2008GC002085.Recent P wave velocity compilations of the oceanic crust indicate that the velocity of the uppermost layer 2A doubles or reaches ∼4.3 km/s found in mature crust in <10 Ma after crustal formation. This velocity change is commonly attributed to precipitation of low-temperature alteration minerals within the extrusive rocks associated with ridge-flank hydrothermal circulation. Sediment blanketing, acting as a thermal insulator, has been proposed to further accelerate layer 2A evolution by enhancing mineral precipitation. We carried out 1-D traveltime modeling on common midpoint supergathers from our 2002 Juan de Fuca ridge multichannel seismic data to determine upper crustal structure at ∼3 km intervals along 300 km long transects crossing the Endeavor, Northern Symmetric, and Cleft ridge segments. Our results show a regional correlation between upper crustal velocity and crustal age. The measured velocity increase with crustal age is not uniform across the investigated ridge flanks. For the ridge flanks blanketed with a sealing sedimentary cover, the velocity increase is double that observed on the sparsely and discontinuously sedimented flanks (∼60% increase versus ∼28%) over the same crustal age range of 5–9 Ma. Extrapolation of velocity-age gradients indicates that layer 2A velocity reaches 4.3 km/s by ∼8 Ma on the sediment blanketed flanks compared to ∼16 Ma on the flanks with thin and discontinuous sediment cover. The computed thickness gradients show that layer 2A does not thin and disappear in the Juan de Fuca region with increasing crustal age or sediment blanketing but persists as a relatively low seismic velocity layer capping the deeper oceanic crust. However, layer 2A on the fully sedimented ridge-flank sections is on average thinner than on the sparsely and discontinuously sedimented flanks (330 ± 80 versus 430 ± 80 m). The change in thickness occurs over a 10–20 km distance coincident with the onset of sediment burial. Our results also suggest that propagator wakes can have atypical layer 2A thickness and velocity. Impact of propagator wakes is evident in the chemical signature of the fluids sampled by ODP drill holes along the east Endeavor transect, providing further indication that these crustal discontinuities may be sites of localized fluid flow and alteration.This research was supported by National Science Foundation grants OCE-00-02488, OCE-00-02551, and OCE-00- 02600

    Gravity and seismic study of crustal structure along the Juan de Fuca Ridge axis and across pseudofaults on the ridge flanks

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q05008, doi:10.1029/2010GC003439.Variations in topography and seismic structure are observed along the Juan de Fuca (JdF) Ridge axis and in the vicinity of pseudofaults on the ridge flanks left by former episodes of ridge propagation. Here we analyze gravity data coregistered with multichannel seismic data from the JdF Ridge and flanks in order to better understand the origin of crustal structure variations in this area. The data were collected along the ridge axis and along three ridge-perpendicular transects at the Endeavor, Northern Symmetric, and Cleft segments. Negative Mantle Bouguer anomalies of −21 to −28 mGal are observed at the axis of the three segments. Thicker crust at the Endeavor and Cleft segments is inferred from seismic data and can account for the small differences in axial gravity anomalies (3–7 mGal). Additional low densities/elevated temperatures within and/or below the axial crust are required to explain the remaining axial MBA low at all segments. Gravity models indicate that the region of low densities is wider beneath the Cleft segment. Gravity models for pseudofaults crossed along the three transects support the presence of thinner and denser crust within the pseudofault zones that we attribute to iron-enriched crust. On the young crust side of the pseudofaults, a 10–20 km wide zone of thicker crust is found. Reflection events interpreted as subcrustal sills underlie the zones of thicker crust and are the presumed source for the iron enrichment.This work was supported by the National Science Foundation grants OCE‐0648303 to Lamont‐Doherty Earth Observatory, OCE‐0648923 to Woods Hole Oceanographic Institution
    corecore