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INTRODUCTION

An ancient problem which has intrigued mankind concerns the shape
of the planet on which men reside. How big is the Earth and what shape
does it have? To answer this question people developed the science of
geodesy, the study of the shape and size of the Earth. Traditionally
this field has often been isolated from other branches of Earth science,
its goal being narrowly defined as the precise determination of the
figure of the Earth and distances thereon. As the general shape has
been known for quite some time, this principal question has been repea-
tedly answered with successively better accuracy. At this time however,
geodetic research is undergoing a transition towards greater intaraction
with other Earth sciences such as geophysics and physical oceanography.
This change .5 due to new advances in technology, specifically to the
development of radar altimeters mounted on board Earth orbiting satel- .
lites. Thece instruments are capable of mapping the shape of the ocean
surface and providing accurate estimates of the geoid height. Such an
advance promises to yield new and exciting information about the Earth.
As always though in any new field of research there are basic problems
and questions prior to any new discoveries. In this thesis such fun-
damental questions are first addressed, and then this informaticn on the
shape of the ocean surface is utilized to make new inferences about the
internal structure of the Earth.

For centuries mathematical geodesists have been able to calculate
the shape of the Earth. If the internal density distribution is known
then an appropriate differential equation can be solved for the ellip-
ticity of the Earth. Alternatively after measurement of the gravity
field on the surface of the Earth, Stokes' formula can be utilized to

calculate the geoid. The geoid is defined as a gravitational equipotential
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surface which most nearly coincides with mean sea level. Quite often
it is termed the shape of the Earth.

Rather than calculation of this shape, an alternate approach is the
direct measurement of the shape of the Earth. To a good approximation
this is possible when utilizing radar altimeters mounted on board
orbiting space craft. Such an instrument determines the height of the
satellite above the instantaneous ocean surface. After combination with
accurate orbital tracking of the satellite motion the height of the
ocean surface relative to the Earth's ellipsoid is determined. Tech-
nically the instantaneous sea surface height departs from the geoid by
up to approximately 1 meter in the deep sea due to oceanographic effects
such as tides and currents. Since the geoid signal s much larger than
this, up to 100 meters, these oceanographic influences can be termed
noise. Thus satellite altimeters determine the height of the marine
geoid in the presence of oceanographic noise. For most geophysical
purposes this is a suitable approximation.

In April, 1975 an Earth orbiting satellite was launched by NASA. It
was called GEOS-3, and its mission dedicated to the mapping of the shape
of the ocean surface. This satellite has provided a wealth of new
information about the Earth, specifically more than 20 million kilometers
of measurements of the marine geoid. In order to use this information
to study the interior of the Earth there are basic questions to be
answered. Does this instrument really determine the marine geoid, and
how well does it function? To partially answer this question it is
possible to calculate the marine geoid from ship gravity data and make
comparisons with the satellite altimeter data. This is accomplished in
chapters 1 and 2. Given measurements of the geoid, what are the

techniques necessary to interpret the data and make inferences about
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internal densities which cause the anomalies? In chapter 2 such methods of
interpretation are developed. What are the basic results of satellite
altimetry, what types of geoid anomalfes have been detected? A basic survey
of the various types of geoid anomalies is presented in chapter 4. In
utilizing geoid data to study the Earth, 1t is best applied in combination
with marine gravity data. But in utilizing gravity measurements at sea,
what corrections are necessary 'ecause they were made on the undulating
geoid? The need for geoid corrections in marine gravity is demonstrated

in chapter 5. Lastly the question is asked, what new information about the
Earth has been learned from the GEOS-3 satellite. In the final chapter a
study of geoid anomalies over deep sea trenches demonstrates the power of
marine geodesy and marine gravity in studying the interior of the Earth.

In order to determine how well the GEOS-3 radar altimeter maps the
geoid, it is possible to make comparisons with an independently determined
geoid. In the first chapter this procedure is described for the region of
the Indian ocean. To caiculate the geoid height, a technique using
differences in gravity and geoid values is utilized. Initially average values
of free air gravity are obtained for 1° x 1° squares in the region. Then
values of gravity calculated from the GEM-6 gravitational field model are
subtracted from the average values to obtain difference gravity data.
Integration of this difference gravity using Stokes' formula results in the
calculation of the difference genid; this is added to the GEM-6 theoretical
geoid heights to obtain the total Indian Ocean 1° x 1° gravimetric geoid.
This regional geoid has features such as the Indian Ocean low of -130 m as
well as a regional high in the Southwest Indian Ocean.

Utilizing the Indian Ocean geoid as well as gravimetric geoids from

the North Atlantic and Northwest Pacific Ocean extensive comparisons have
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been made with GEOS-3 radar altimeter estimates of geoid height, this is
described in chapter 2. A most obvious conclusion from such comparisons
is the constant offsets between the two data sets. These errors may be
due to scale errors in the reference ellipsoids, lack of atmospheric
corrections for the gravimetric geoid, errors in calculation of the
orbit in the radial direction, or altimeter bias errors. Another observatior
is that altimeter data collected with the intensive mode instrument is less
noisy than global mode measurements. Even after elimination of long wavelength
errors, there are still discrepancies between the two data sets. In some
cases this is due to the averaging procedure of the gravimetric geoid con-
struction. It appears though that after correcting for 2rrors in orbital
determination and other long wavelength errors, the satellite radar altimeter
can be utilized for a global mapping of the marine geoid, with resolutions
greater than are easily achieved with gravimetric geoids.

After establishing the validity of the radar altimeter measurements,
it 1s necessary to develop new techniques to interpret marine geoid data.
This is accomplished in chapter 3. To demonstrate various properties, ideal
bodies of constant density are first utiiized to caiculate the geoid anomaly.
While such an approach has a certain initial utility, more realistic direct
methods require the computation of the geoid anomaly due to arbitrary two
and three dimensional bodies. In developing the formula for a two dimensional
polygon, the surface integral expression for geoid height is changed to a
line integral formula via Stokes' theorem and then integrated. For a three
dimensional polyhedron the volume integral expression for geoid height is
first converted to a surface integral by using the divergence theorem and
then to a2 line integral with Stokes' theorem. To better understand the

geoid anomaly, the reiationship in the wavenumber domain between gravity and




geoid is developed. This fndicates that the geoid has the same phase
spectrum as the gravity anomaly but the amplitude spectrum is amplified at
Tong wavelengths,

A basic need in the study of marine geodesy is to characterize the
types of geoid anomalies which occur over geological structures. Such
results in satellite altimetry are {llustrated in chapter 4. Over continental
margins the geoid increases by a 5 or 6 meter step at the shelf break. At
deep sea trenches there is a 10 to 20 meter low which is 100 to 200 k{lometers
in width. Over the Bismarck sea region there is a 7 meter high geoid anomaly
500 km in width. At the Southwest Indian ridge there is a broad geoid high
at least 500 to 700 km wide and 6 meters in amplitude. Above the Caroline
Islands the ocean surface has a 5 meter positive anomaly, while at the
Romanche fracture zone the geoid has a 5 meter step similar in shape to the
bathymetry.

When measureqents of gravity are made at sea they obviously are made
o;'the gebid. However due to undulations of the geoid the free air gravity
anomaly is not directly proportional to the gravitational attraction of the
mess aromalies. If however a correction is first made for the varying
distance from the center of the Earth and for the gravitational effect of
mass between the geoid and ellipsoid, then the gravitational attraction of
the mass anomalies is obtained. This geoid correction becomes necessary when
studying the medium and long wavelength gravitational anomalies associated
with the densities inside the mantle. This process for correcting the free air
anomaly is discussed in chapter 5.

Finally in the last chapter geoid anomalies over deep sea trenches
are discussed. Over all active subduction regions in the Pacific and Indian

Ocean the geoid has a churacteristic shape, thousands of kilometers in width.




Over the Aleutian Trench beginning about 2000 kilometers seaward of the
trench axis, the geoid has a constant increase in height as the axis

is approached. This slope is approximately a 20 meter rise over a
distance of 1800 kilometers. Over the trench itself there {5 an approx-
imate 13 meter decrease to form a 150 kilometer wide minimum. Immed-
fately landward of the axis there is an 18 meter increase until a
maximum {s reached over the island arc. Behind the arc the geoid

height gradually decreases by about 10 meters over a 1000 kilometer
interval. In the vicinity of all major deep-sea trenches certain features
form the characteristic geoid anomaly; a gradual long increase as the
trench is approached from the ocean basin, a narrow low over the trench
axis and a geoid high but with variable slope landward of the trench.

For the Tonga-Kermadec region a modeling study was undertaken to
detenmine the dehs%ty structure necegéary to produce calculated values
similar to the observed geoid and gravity anomaly. From this work several
conclusions are possible. Shallower depths landward of the trench repre-
sent a mass excess which must be mostly compensated. Compensation must
occur by the presence of a mass deficit somewhere in the underlying mantle.
In our medel a thinner uppermost mantle body provides the compensating
mechanism. This separation of the mass excess and the underlying mass
deficit is the primary cause of the char cteristic geoid anomaly. Presence
of the descending 1ithosphere is only of secondary impcrtance in explaining
the geoid anomaly. For the Kermadec Trench the density contrast of the
slab with the surrounding mantle is approximately .02 gm/cm3. Further
studies are necessary for the other trench regions to determine if

similar principles can be used to model the characteristic geoid anomaly.




Chapte>- I

Detailed 1° x 1° Gravimetric Ocean Geoid
and

Comparison with GE0S-3 Radar Altimeter Geoid Profiles



Introduction

A comprehensive set of data on the variation of the sea surface
height has been obtained in the past three years by means of the GE0S-3
satellite carrying a radar altimeter. With knowledge of the satellite’s
position and after corrections for oceanographic effects, one obtains
along-track variations of the geoidal height over the world's oceans.
These measured undulations of the geoid are extremely valuable for
geophysical interpretations because they provide, in part, information
about density inhomogeneities in the earth's upper mantle. The aistribution
of the density inhomogeneities reflected in the geoid will hopefully
provide information on convection within the mantle or on other possible
driving forces of the earth's lithospheric plates.

Consequently, it is of special interest to determine and study the
geoid on a worldwide scale. In the past, the only way to compute the
geoid over oceanic areas was to apply Stok;s‘ integral to the gravity
anomalies observed over the earth's surface. Gravimetric geoids over
oceanic areas have been computed in this way in the western North Atlantic
(TALWANI, POPPE and RABINOWITZ, 1972), in the Indian Ocean (KAHLE and
TALWANI, 1973) and in the Northwest Pacific (WATTS and LEEDS, 1977).

The knowledge of the geoid derived from surface gravity is essential
in order to calibrate the radar altimeter, test its performance and
possibly suggest optimum locations at which the altimeter measurements
should be performed. Eventually, it will be desirable to compute a
gravimetric geoid independent of satellite altimetry in order to obtain
the dynamic sea surface height, the slignt discrepar~; between the geoid

and sea surface being important in ocean dynamics.




In turn, there are techniques to recover gravity anomalies from
GEOS-3 measurements of the sea surface height (e.g. KAHN, SIREY, BROWN
and AGRAWAL, 1976). The method for obtaining gravity anomalies on the
basis of satellite radar altimetry can be very useful for determining
the gravity field in remote creas such as in the southern hemisphere
where ship measurements are scarce. In order to test this method and
define its accuracy it {s necessary to compare the results with independently
obtained gravity values from surface ship gravity measurements in surveyed
regions.

It is the purpose of this paper to compile a new set of 1° x 1°
mean free-air gravity anomalies in the Indian Ocean by using all the
gravity data available up to 1976, compute the corresponding gravimetric
geoid and compare the results with GEOS-3 altimeter derived geoid profiles
(in the Southwest and Northeast Indian Ocean).

Sea Gravity Data in the Indian Qcean

Fig. 1 shows the location of the submarine pendulum observations
(VENING MEINESZ, 1948; GIRDLER and HARRISON, 1957; TALWANI, 1962) as
well as the ship's tracks along which continuous gravity measurements
were obtained.

At present, there are about 100,000 gravity data available in the
Indian Ocean.

The data used in this study were obtained by

a) Lamont-Doherty Geological Observatory of Columbia University

during VEMA cruises 18, 19, 20, 22, 24, 29 and 33 and during
CONRAC cruises 8, 9, 11, 12, 14 and 17.

o
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b) Institute of Geophysics and Planetary Physics of the University

of California at Los Angeles and Scripps Institution of Oceanography,
San Diego, during ARGO cruises "Monsoon" and "Lusiad" (HELFER,
CAPUTO and HARRISON, 1963; CAPUTO, MASADA, HELFER and HAGER,
1964).

¢) Department of Geodesy and Geophysics, Cambridge University,
during OWEN cruises 611 through 619, 621 through 626, 110, 111
and during DISCOVERY cruises 671 and 672 (HYDROGRAPHIC DEPARTMENT,
1963, 1966; WILLIAMS, 1968).

d) ESSA (now NOAA) during PIONEER and OCEANOGRAPHER Cruises (U.S.
DEPARTMENT OF COMMERCE, 1969, 1970).

e) Bundesanstalt flir Bodenforschung, Hannover, West Germany, during
METEOR cruise (PLAUMANN, 1965, personal communication).

f) Woods Hole Oceanographic Institution, U.S.A., during CHAIN
cruise 100 (BOWIN, 1973, and BOWIN, personal communication).

The data obtained prior to 1971 are included in the gravity maps
(TALWANI and KAHLE, 197%) of the International Indian Ocean Expedition
(IIOE) Atlas of Geology and Geophysics (UDINTSEV, 1975) as well as in
the previous Indian Ocean geoid paper (KAHLE and TALWANI, 1973). During
recent Lamont cruises (1974, 1977) a considerable amount of data of
greater accuracy have been accumulated which made it desirable to recompile
the entire set of 1° x 1° mean gravity data. The main areas of substantial
improvements in the surface gravity field of the Indian Ocean are the
Central Indian Basin including the prominent Indian Ocean gravity low as

well as the South-West Indian Ocean cove:ing the pronounced South-West

Indian Ocean gravity high. In the West Pacific we incorporated 1° x 1°




mean free-air anomalies compiled by WATTS and LEEDS (1977). For the
Indian peninsul. we used a set of 1° x 1° anomalies by WOOLARD (1970)
and values for Madagascar were provided by the International Gravity
Bureau, Paris (CORON, 1972, personal communication).

The new set of 1° x 1° free-air anomalies for the Indian Ocean is
listed in Table 1. The gravity values are referred tc the International
Reference Ellipsoid (f = 1/297).

The 12 x1° averages were obtained from revised free-air anomaly

° square into nine smaller squares.

contour maps by dividing each 19 x 1
The values at the centers of these smaller squares were visually inter-
polated and averaged to give a value for the 19 x 19 square. In areas
such as the southwest Indian Ocean the 1° x 1° values were determined by

averaging {ndividual measurements.

Method of Geoid Computation

The following method - proposed and used by many authcrs including
STRANGE, VINCENT, BERRY and MARSH (1972) and TALWANI, POPPE, and RABINOWITZ
(1972) - has been adopted in computing the gravimetric geoid for the
Indian Ocean:

1) Calculation of the free-air anomalies based primarily on the satellite
derived gravity field, in this case the GEM-6 potential field model
which includes harmonics up to n = 16 (LERCH et al., 1974; SMITH et
al., 1976).

2) Subtraction of the GEM-6 free-air anomalies from the new set of
12 x 1° mean gravity data (: Difference anomalies 6ag).

3) Computation of the difference geoid aN (Fig. 2) by applying Stokes'
integral to the difference anomalies §ag.

4) Summation of the GEM-6 geoid NGEM-G (Fig. 3) and the difference

geoid aN (: Gravimetric geoid N = NGEM-G + AN) (Fig. 4).

12
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The advantage of this procedure is that Stokes' integration (HEISKANEN
and MORITZ, 1967)

aN= S (v) sag da (1)

4ngR

has to be carried out only over the Indian Ocean because outside this
area the difference anomalies 5Ag are assumed to be zero.

We recognize that we are ig:oring the difference anomalies outside
the Indian Ocean, which will give rise to some errors particularly near
the boundaries of our area of integration. These errors however are

less than 1 meter (STRANGE et al., 1972). In parts of the Indian Ocean,

wiere gravity averages could not be obtained by the procedure described
above - because of scarcity of data - we assumed the difference anomaly
é4g to be zero. As we shall see in a later section, this gives rise to
errors in regions of no ship gravity measurements. This procedure is
still superior to methods in which gravity values are truncated after a
certain radius.

In Equation (1)aN = Difference geoid, R = mean earth's radius, ¢ =
mean earth's gravity, y = angular distance between the element of area
da (at which 84ag is given) and the point of calculation, S(y) = Stokes'
function. Stokes' function S(v) s defined as

2
S(v) ® —————  F(y) (2)
siny
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where F(y) = cos%w + %sinw(I-S cosy - 6 sin%y -3 cosw1n(sin%v + sin’%¢))

Since S (v) changes strongly near y=0° the effect of a square very close
to the computation point cannot be calculated by simply using S(y) with
v being the distance to the center of the square. For this reason the
squares close to the computation points were subdivided into smaller
squares in such a way that the percentage error in calculating S(v) is

below 1% (TALWANI et al., 1972).

The GEM-6 Geoid, Difference Geoid and 1° x 1° Gravimetric Geoid

In subtracting the GEM-6 free-air anomalies (n=16) from the 1° x 1°
surface data and applying Stokes' integral to the difference anomalies,
a difference geoid is obtained which reflects mainly the contributions
of harmonics 16 < n < 180. The order n=180 corresponds to a wavelength
of 2 degrees which is approximately represented by the 1° x 1° mean
free-air anomalies. As such, the difference geoid containing wavelengths
between about 220 km and 2500 km, can be interpreted as a filtered version
of the total geoid. This range is of special fnterest for geophysicists
because mass inhomogeneities associated with sea-floor spreading and
1ithospheric motions may produce geoid anomalies of such wavelengths.
Fig. 2 shows the computed difference geoid.

The areal average of the difference gravity anomalies é&ag fis
-.54 mgal and that of the difference geoid aN is -.47m., Thus, the
systematic error in geoid height corresponding to this difference is
negligible and may not be considered further. The general pattern of
the difference geoid can be characterized by the zero mete: contour

line, indicated by the heavy line on Fig. 2. The entire Northwest Indian
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Ocean including the major basins such as the Somali and Aratian Basins
are associated with a negative difference geoid reaching -13 m over the
Arabian Basin. Another large area with negative difference geoidal
undulaiion is the Northeast Indian Ocean covering the southern Central
Indian jasin, the West Australfan Basin and the Indonesian deep sea
trench with lowest values over the Sunda Trench (-22 m) and Timor
Trough (=30 m).

The northern Central Indian Basin, the major part of the Bay of
Bengal (Ganges Cone) and the entire Southwest Indian Ocean is characterized
by a pronounced difference geoid high with highest values over the
Madagascar Ridge (+20 m). While the major actively spreading - 2s are
not well expressed in the difference geoid, the triple junction of the
three Indian QOcean ridge branches at 25°S, 70°E clearly stands ou’ : 2
positive feature (+8 m). Also aseismic ridges including the Madagascar
Ridge, the Mascarene Plateau, the Ninetyeast Ridge (+14 m) and the
Afanasy Nikitin Seamount chain are associated with a positive difference
geoid.

The total 1° x 1° geoid obtained by adding the difference geoid to
the GEM-6 geoid (Fig. 3) is shown in Fig. 4. While the difference geoid

23




reflects wavelengths between 220 and 2500 km, the total geoid reveals

information with all wavelengths greater than 220 km. As might be
expected, the long wavelength features are still present in the total
geoid. The prominent Indian Ocean geoid low (-130 m) as well as the

geoid highs in the Southwest Indian Ocean and over the western Pacific

are clearly expressed in the 1° x 1° total gravimetric geoid. In addition
the short and intermediate wavelength features such as the Mozambique
Ridge and Basin, the Madagascar Ridge and Mascarene Plateau, the Triple
Junction, the Ninetyeast Ridge and the Sunda Yrench are evident by the
bending of contours around those structures. The minimum south of India
has shifted towards the northeast and has decreased in amplitude by 8 m.

The Somali Basin low appears to connect withi the Arabian Basin low.

GE0S-3 Profiles in the Indian Ocean

Classically the geoid height has been determined by *the Stokes'
integration of gravity values, as demonstrated in the previous section.
The altimeter in the GEQS-3 satellite now makes it possible to directly
measure the elevation of the satellite over the ocean surface. When
combined with precise orbital tracking one obtains the height of the
ocean surface relative to an earth ellipsoid. The sea surface is not at
a constant gravitational potential; nongravitational forces can cause
slight deviations between the geoid and sea surface. Dynamic topography
due to ocean currents can be 100 cm in amplitude (DEFANT, 1941), tidal
heights in the deep ocean can also be 50 cm in amplitude (SCHWIDERSKI,
1977). After correction for such deviations, measurements of the geoid

height may be obtained along the sub satellite track.
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While this procedure for obtaining geoid heights from altimeter

measurements is valid, it is subject to certain errors. An extensive
error analysis has been made for GEQS-3 measurements in the calibration
area between Florida and Bermuda (Martin and Butler, 1977). This showed
an average noise level of .72 m in the intensive mode and 1.81 m in the
global mode for cumulative altitudes every .1 seconds. Additionally,
bias values of -5.3 m (intensive mode) and -3.55 m (global mode) were
discovered for altitude determinations by the altimeter. Accuracy of
the sea surface height measurements is primarily limited by the orbit
computations. Long wavelength errors in orbital height can be between
1-2 m rms and 10 m rms depending upon the method of tracking (H.R.
Stanley, personal communication). A consistent set of altimeter data
can be constructed by analyzing measurement differences where two satel-
lite tracks cross. By least square reduction of such crossover errors
Rummel and Rapp (1977) were able to effectively eliminate any long wave-
length orbital discrepancy. In this paper we are primarily interested
in comparing original GE0S-3 data (from NASA Wallops Flight Center) with
a gravimetric geoid in the Indian Ocean to see the influence of such
errors. The orbit numbers and dates for the satellite tracks are
listed in Table 2.

Operation of the altimeter is conceptually simple. A radar pulse
is transmitted downward and the return pulse is received after reflection
from the sea surface. As there is a finite beam width, the instrument
measures the sea surface height over a limited area, with a 14.3 km
radius for global mode and 3.6 km radius for intensive mode. Operation
of the altimeter is in one of two modes; global mode or intensive mode
during which measurements are made every .01024 seconds. This is a sampling
rate of approximately every 65.5 meters. During data processing the sea

surface height measurements are averaged over a finite time.
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Table 2

ORBITS AND DATES FOR SATELLITE TRACKS

Track Orbit Day Year Altimeter Orbi tal
Designation Number Mode Accuracy
Go14 1194 184 1975 Global A
G0154 1237 187 1975 Intensive A
60192 1647 216 1975 Intensive J
G0193 1653 216 1975 Global D
G0195 1667 217 1975 Intensive D
G0212 2061 245 1975 Intensive D
60219 2104 248 1975 Intensive D
G0223 2189 254 1975 Intensive D
60224 2190 254 1975 Intensive D

A 10*m rms

D 3-10mrms

J 3mrms
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This is a low pass filtering operation. In this paper we only use time

averaged data usually over a 2.048 second interval. Consequently the
resultant datum is an average measurement of the sea surface height over
an area of 14.3 by 13.4 km (global mode) or 3.6 by 13.4 km (intensive
mode). Knowledge of the beam footprint and the altimeter accuracy is
necessary in understanding the utility and ultimate resolution of GEO0S-3
measurements.

The geoid measurements made by the radar altimeter are shown in
Figure 5 and 6. The sub satellite track is plotted on a Mercator projection,
the geoid height is plotted perpendicular to the track with positive
values on the north side. An arbitrary constant offset has been subtracted
from each profile because we are interested only in the relative changes
of the geoid. Figure 5 is the Indonesian Island arc region and Figure 6

is the Southwest Indian Ocean.

Three GEQS-3 tracks, all approximately perpendicular to the Java
Trench, are illustrated in Figure 5. Each profile shows a steep long
wavelength increase in the geoid height of 90 m over a distance of
approximately 2400 km, with highest values towards the northeast. Not
being symmetric about the trench axis, the geoid continues to increase
across the trench until leveling off in the Philippine Sea (Fig. 4).
Directly over the Java Trench the profiles indicate a geoid low of -10
m amplitude and 250 km wavelength. Analogous with the gravity low over
deep sea trenches (WATTS and TALWANI, 1974), this geoid low is primarily
caused by the bottom topography.

While the principal features of the Northeast Indian Ocean are deep

sea trenches and an island arc, the Southwest Indian Ocean is the location
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of a seismically active spreading center - the Southwest Indian Ridge.

Topographically high, it is associated with a 6 m positive geoid anomaly,
500 km wide (Figure 6 and 7, especially tracks G0219 and G0224). Add-
itionally a longer wavelength geoid gradient exists, increasing towards

the southeast and leveling off at the ridge axis (Figure 4 and 6).

Comparison of gravimetric geoid with GEOS-3 altimeter measurements

Being a new scientific instrument, the accuracy and precision of
the GEQS-3 altimeter must be determined. Obviously a useful test would
be the comparison of the gravimetric Indian Ocean geoid with geoid
heights measured directly by the GE0S-3 radar altimeter. In making the
comparison characteristics of each method must be understood. The
gravimetric geoid contains information from the GEM-6 gravity model up
to n = 16, the higher harmonics (to n = 180) being dependent upon the
accuracy and availability of ship gravity data. Resolution of features
with wavelengths less than about 200 km cannot be expected in the
gravimetric geoid due to our averaging procedure over 1° x 1° squares.
With the GE0S-3 altimeter sea surface features with wavelengths of 1.31
km can technically be resolved (with average values every 655 m), however
with the averaged data we utilized resolution is limited to 28 km. Also
inaccurate orbit determinations result in constant and very long wavelength
errors in the altimeter measurements. Consequently we only make comparisons
of geoid information with wavelengths shorter than several thousand km.
GE0S-3 measurements of geoid height are referred to an ellipsoid
with flattening f = 1/298.255 and semi-major axis a = 6378145 m, thus
the gravimetric geoid was converted to this ellipsoid prior to com-

parison. Linear interpolation of the gravimetric geoid with the nearest three

30




geoid values was used in order to compute the gravimetric geoid height
along the sub satellite track. Results of this comparison are in Figure
7, each track location is plotted in Figure 5 or 6 and the track designation
(e.g. GO195) is at the start of the pass (time = 0 seconds).

Obviously the radar altimeter cannot measure the geoid over land,
thus such measurements have been deleted (e.g. Madagascar). GE0S-3
measurements in Figure 7 are indicated by the thin 1ine and the gravimetric
geoid by the thick 1ine. An obvious feature of this comparison is the
offset values of up to 25 m, probably due to error in orbit determination.
These profiles indicate a great similarity (except for a constant shift)
between GE0S-3 data and the gravimetric geoid wherever good gravimetric
control exists (see e.g. G0242). In some areas (south of 39°S in SW
Indian Ocean) only few sea gravity measurements exist. Consequently, in
this area the gravimetric geoid contains 1ittle information for wavelengths
shorter than n = 16 (2500 km). This is seen in tracks G0224 and G0219
between 0 and 120 seconds over the Southwest Indian Ridge. The GEOS-3
data indicate a clear anomaly over the ridge while the gravimetric geoid
does not. As there is poor gravity control in this area and the anomaly
is seen on both tracks, we conclude the gravimetric geoid is incorrect
along this part of profiles G0224 and GO219, whereas GEOS-3 measures the
true geoid anomaly over the Southwest Indian Ridge.

In finer detail, the GE0S-3 altimeter has greater resolution than
the 1° X 1° gravimetric geoid (of this paper), due to a smaller sampling
interval for the altimeter. Over the Java Trench (tracks GO195, G0193
in Figure 7) the effect of the averaging procedure for the calculation
of the gravimetric geoid is clear: GE0S-3 data indicate a 250 km wide
Tow, 10 m deep. The gravimetric geoid barely defines the low. Due to
the information content in wavelengths shorter than about 200 km, it is
understandable that the GEQS-3 altimeter with a smaller sampling interval i

would measure the geoid more accurately in this region.
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Conclusions

On the basis of marine gravity measurements in the past three
decades, we have compiled and 1isted in Table 1 1° x 1° mean free-air
gravity anomalies for the Indian Ocean. These values are useful in
geoid computations and as a test for techniques of gravity recovery from
GEOS-3 geoid measurements. Utilizing these 1° x 1° averages we have
computed a difference and total gravimetric geoid for the region.

The difference gravimetric geoid contains information with wavelengths
between about 200 km and 2500 km, such wavelengths being determined by
lateral density inhomogeneities within the crust and upper mantle.
Anomalies of -18 m in the difference geoid exist over the Arabian Basin,
another large area with negative values is the Northeast Indian Ocean
with lowest values over Sunda Trench (-22 m) and Timor Trough (-30 m).
Over the Madagascar Ridge there is a 20 m difference geoid high, another
positive feature is the triple junction of the three Indian Ocean ridges,
+8 m amplitude. Aseismic ridges such as Madagascar Ridge, Ninetyeast Ridge
and Afanasy Nikitin seamount chain are also associated with a positive
difference geoid.

The total gravimetric geoid contains information on all wavelengths
down to about 200 km; thus it has both long and intermediate wavelength
features. Over the Central Indian basin is the most prominent long
wavelength feature, the -130 m Indian Ocean geoid low. Steep geoidal
gradients exist over the Indonesian Island Arc up to a flat region of
the geoid in the Phillipine Sea. Another level portion of the geoid
exists south of the Crozet Plateau. Intermediate wavelength anomalies

in the total geoid are over the same features as in the difference geoid.
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GEOS-3 profiles of geoid height show anomalies across topographic
features in the Indian Ocean. Over the Southwest Indian Ridge there is
a6mi;-itive geoid anomaly, 500 km wide. Across the Java Trench there
is a steep increase in the geoid of 90 m over a distance of 2400 km,
with highest values towards the northeast. Directly over the Java Trench
there is a -10 m geoid low, 250 km wide. If this relative low is removed,
an overall geoid high remains. This {is an interesting result because it
might shed some 1ight on the density inhomogeneities associated with the
descending Indian 1ithospheric plate. In part, this pronounced geoid
high - verified in the GE0S-3 profiles - can be explained by the positive
density contrast of the cold lithosphere with respect to the less dense
adjacent asthenosphere. On the basis of gravity data Watts and Talwani
(1974) concluded this effect is not the only component because unrealistically
high density values would have to be postulated to explain both the
"outer gravity high" and the overall high. It is further interesting to
note that in our GEOQS-3 profiles an "isolated" outer geoid high does not
exist. The increase in geoid height seaward of the Indonesian Trench
appears to be a portion of the overall long-wavelength high - only
interrupted by the relative small-wavelength low over the trench proper.
Another possible source for part of this long-wavelength geoid high may
be associated with the downwarped isotherms caused by the cold sinking
lithosphere. If the temperature is lowered at the Olivine-Spinel transition
zone (at depths between 300 and 400 km) this phase change migrates
upwards, thus providing a positive density contrast of about 0.2 gm/cm3
(BOTT, 1971; RINGWOOD, 1976). To explain this long wavelength geoid
anomaly at the Java Trench, a detailed modeling study should be undertaken;

only tnen will the cause of this anomaly be better defined.
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Comparisons of GEQS-3 data with the gravimetric geoid show a great
similarity where good gravimetric control exists. Due to the shorter
sampling interval (14 km versus about 100 km averaging for the gravimetric
geoid) for the altimeter the GEOS-3 satellite can better detect short
wavelength features such as the low over the Java Trench. On the basis
of these comparisons we conclude the GEOS-3 altimeter s an accurate and

highly useful instrument for mapping the geoid at sea.
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INTRODUCTION

With the aid of a radar altimeter mounted on board the GE0S-3
satellite it is now possible to rapidly determine the shape of the ocean
surface. This information can be used to provide an estimate of the
marine geoid. However, because the altimeter is a new instrument, it is
of considerable interest to compare such measurements with other types
of data. Thus we examine how well GEOS-3 estimates of geoid height

compare with data from independently determined gravimetric geoids.

GRAVIMETRIC GEOIDS

On land the geoid may be constructed using astrogeodetic methods;
or alternatively utilizing gravimetric methods and Stokes' integration
of the measured values of gravity. At sea direct determination of
deflection of the vertical is a difficult task, consequently only about
20 measurements have ever been made (Von Arx, 1966). Due to this dif-
ficulty, only with measurements of gravity at sea can geoid computations
be performed. This technique for oceanic geoid construction was demon-
strated in the western North Atlantic Ocean (Talwani, et al, 1972).
Subsequent studies nave involved construction of oceanic geoids in the
Indian Ocean (Kahle and Talwani, 1973), Northwest Pacific (Watts and
Leeds, 1977) and an updated Indian Ocean geoid (Kahle, Chapman and
Talwani, 1978). Worldwide geoids have been constructed by Heiskanen
(1957) and Marsh and Vincent (1974).

Basically our technique of geoid construction involved a series of

computational steps:
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1. Compilation of marine gravity data and averaging over a specified
area - in this case 1° x 1° averages.

2. Calculation of free air anomalies on the basis of a certain
gravitational potential model; our computations utilized the
GEM-6 model (Smith et al., 1976).

3. Subtraction of the calculated free-air anomalies (GEM-6) from
the areal averages of measured gravity; this is the set of
difference gravity anomalies.

4. Application of Stokes' integral to these difference gravity
values to obtain the difference geoid.

5. Addition of this difference geoid to the geoid of the gravi-
tational potential model (GEM-6) to obtain the total gravi-

metric geoid.

Computationally this procedure is efficient because it eliminates
the need for calculation of Stokes' integral over the entire earth. As
the integration is done only over the area of study, this is equivalent
to utilizing GEM-6 gravity values outside the area of computation. Some
errors can be introduced, especially near the boundaries; however,
such errors are less than 1 meter (Strange et al., 1972).

Due to this procedure there are several inherent characteristics of
these gravimetric geoids. Outside a certain region the values of
gravity due to a satellite model are utilized, consequently the long
wavelength (roughly N<16) components in these geoids are determined by
that particular gravity model. In our case the long wavelength com-
ponents of the gravimetric geoids are determined by the GEM-6 field.

Another property of these geoids results from the initial procedure of
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averaging gravity values over a finite region. Averaging over a certain

interval and subsequent decimation of data corresponds to a low pass
filter operation with a gradual cutoff band. In our gravimetric geoids
this procedure would eliminate most wavelengths shorter than 2° which is
twice the sampling period. At a latitude of 23° then one could state
that our 1° x 1° gravimetric geoids do not contain much information in
the wavelengths shorter than about 200 km. Another characteristic of
the present marine geoids is that in some regions where there are few
ship tracks there is difficulty in obtaining average gravity values. As
Stokes' function is most sensitive to adjacent locations, it would be
expected that in regions where gravity averages are poorly determined,
the geoid would likewise not be accurately calculated.

In constructing these geoids there were no corrections made for the
effect of mass of the atmosphere external to the geoid (Moritz, 1974).
In ignoring this problem, errors of several meters in geoid height are
possible (Rapp, 1975). Such errors would be manifest as very long
wavelength differences or constant offsets in geoid height.

Prior to our comparison study, the gravimetric geoids were first
transformed to be relative to a best fitting ellipsoid with flattening
1/298.255. During the transformation only the J2 and J4 terms were
altered; there was no change in the zero'th order undulation. Theore-
tically then the radius of this new reference ellipsoid corresponds to
the actual radius of the earth. GE0S-3 data is referred to an ellipsoid
with flattening 1/298.255 and radius 6378142 m. There is a possible
scale difference between the reference ellipsoids for gravimetric geoids
and altimetric geoids. They do, however, have identical values of

flattening.
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For purposes of comparison in this study we utilize gravimetric

geoids in the Indian Ocean (Kahle, Chapman and Talwani, 1978) as shown
in Figure 1, Northwest Pacific (Watts and Leeds, 1977) in Figure 2, and

North Atlantic (Talwani and Leeds, in preparation) in Figure 3.

GEOS-3 ALTIMETER

Several characteristics of the GE0S-3 radar altimeter have a
bearing on our study. On board the satellite there are two transmit-
ters, one designated the global mode and the other termed intensive
mode. Both measure the height of the satellite above the sea surface
every .01 seconds. In practice it has been found that the global mode
results in a signal with higher noise; consequently this mode was little
used after the initial stages of the mission (H.R. Stanley, personal
communication). Ouring computer processing of this data an average
measurement is determined. For the low rate telemetry format this is a
2.048 second average and for the high rate telemetry format a 3.277
second average. At an average ground track speed of 6.55 km/sec this
results in a measurement every 14.3 km (low rate) or 21.5 km (high
rate). Due to this averaging procedure most wavelengths shorter than
28.6 km (1ow rate) or 43 km (high rate) will be eliminated from our
GEOS-3 measurements.

After the radar altimeter measures the altitude of the spacecraft,
orbit calculations are utilized to locate the satellite relative to the
center of mass of the earth. During the orbit computation a satellite
derived gravity field is used; any errors in the assumed geopotential
coefficients will generate uncertainty in the radial position of the

satellite. In a comparison study of the SKYLAB radar altimeter and
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satellite geoids, an error analysis of orbital uncertainty was performed

by Marsh et al. (1976). Due to possible errors in the quantity GM there
was a mean radial uncertainty of 2.8 m in the SKYLAB orbit. Possible
errors in geopotential coefficients and station coordinates generated
radial orbit uncertainty of approximately +1 m about the mean value.
This uncertainty in radial position of SKYLAB was slowly varying over a
given orbit. Certainly for the GE0S-3 satellite an orbital error ana-
lysis would indicate different numerical values; however, similar infer-
ences can still be made. Any errors in the quantity GM, coefficients of
the geopotential, and station coordinates will all result in mean radial
uncertainties and slowly varying errors in the radial position of GE0S-3.
What causes additional confusion with this satellite (GEOS-3) is that
several different gravitational field models were utilized for the orbit
computations; for the data in this paper it was a GEM-8 (Wagner et al.,
1976) or an NWL model. Another possible source of uncertainty is caused
by any bias in altimeter range data. This is discussed in detail by
Martin and Butler (1977).

After altitude measurement and orbit calculation, the sea surface
height is determined. To obtain an estimate of geoid height, tidal
corrections should be made. Our GEOS-3 data were corrected with the

tide model of Hendershott (1973).

COMPARISON OF GRAVIMETRIC GEOIDS WITH GEOS-3 ALTIMETER

Using GEQS-3 altimeter estimates of geoid height, we have made
comparisons with the gravimetric geoids presented in the previous
section. The gravimetric geoids were interpolated at the point of

altimeter measurement; interpolation was linear relative to the nearest
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three gravimetric geoid values. A track chart of the location of
altimeter measurements, and the extent of the gravimetric geoids is
shown in Figure 4; a 1isting of orbit numbers for each track is in
Table 1.

In Figure 5 there is a comparison of data with the Indfan Ocean
geoid, the altimeter data is plotted as a function of time of acquisi-
tion from the first data point. The first obvious fact from this com-
parison is that GEQS-3 data often differs from the gravimetric geoid by
2 constant level. RMS differences between the two sets of data are in
the range 3.69 m to 13.27 m as 1isted in Table 2.

In analyzing the causes for this discrepancy there are a variety of
possible causes. These include bias in altitude determination (Martin
and Butler, 1977), radial orbital uncertainty, scale errors in the
geoid, and long wavelength errors in efither the gravimetric geoid or
radial orbital position. To test for the effect of bias in altitude
measurement, corrections for this error were made using the results of
Martin and Butler (1977). After correction for the effects of bias
utilizing the results of Martin and Butler, the rms differences were
recomputed and results listed in Table 2. In general this bias cor-
rection often increases the discrepancies. This shows that our com-
parisons of the GE0S-3 values are mostly lower than the gravimetric
geoid, and the bias correction enlarges this difference. Due to small
uncertainties in the geopotential coefficients, value of GM, and trac-
king station coordinates, there may be uncertainty in the radial orbital
position of GEOS-3. Such errors would be manifest as either constant or
slowly varying radial uncertainty. This has been proven in a quan-
titative manner for the SKYLAB altimeter by Marsh et al. (1976). Any

radial error in orbit determination can generate apparent constant
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? Table 1
F
é Track no. Orbit Telemetry mode Transmitter mode
INDIAN OCEAN
G018 646 Low Intensive
G0275 461 Low Intensive
60142 1200 Low Global
G0182 1568 Low Intensive
G0106 362 High Intensive
GO112 584 Low Intensive
NORTHWEST PACIFIC
60242 2037 Low *atensive
60230 1795 Low Intensive
60235 416 Low Global
G0266 430 Low Global
NORTH ATLANTIC
60329 3245 Low Intensive
G0039 184 Low Global
G0096 325 Low Global
G0069 398 High Intensive
GOON 210
NORTHWEST PACIFIC
60846 1724 Low Intensive
60855 1616 Low Intensive
60565 2028 Low Intensive
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Comparison of Indian Ocean gravimetric geoid with GEOS-3

estimates of geoid height.

function of time of acquisition from first point.
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Table 2

RMS discrepancies between gravimetric geoids and GEOS-3 estimates of geoid

Track no.* RMS difference RMS difference
after bias cor-
rection

A priori orbital error

INDIAN OCEAN

G0106 3.69 meters 4.78 meters
60112 6.99 12.26
60118 13.27 18.37
G0142 6.67 10.01
G0275 10.84 16.02
60182 11.1% 6.46
NORTHWEST PACIFIC
G0242 17.87 15.87
60230 18.00 23.61
G0235 5.86 11.07
60266 6.82 10.27

NORTH ATLANTIC

GooN 18.99

G0039 23.93 37.23
G0069 13.18 15.65
G0096 13.18 15.68
G0329 3.07 8.05

*0Orbit numbers listed in Table 1
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offsets between the gravimetric and altimetric geoids. If the actual
orbit error is slowly varying, then over the short segment during which
altimeter data is acquired it may appear to have a constant offset or
tilt which in reality is only one part of a mucn longer wavelength error
in radial position of the satellite. A complicating factor with GEQS-3
is that several different sets of geopotential coefficients have been
utilized for the orbit calculations. These gravity models are either
GEM-8 (Wagner et al., 1976), GEM-10 (Lerch et al., 1977), or a NWL
model. In properly utilizing GEOS-3 data it is mandatory that all
orbits be calculated with only one geopotential model. This would
provide a consistent data set.

During orbit calculations by NASA a priori esfimates of rms orbital
errors were made. These are listed in Table 2. For example, track GO106
has an a priori radial uncertainty of greater than 10 m rms while the
rms discrepancy between the gravimetric and altimetric geoid is 4.78 m.
In other cases the actual rms difference exceeds the prior estimates.
Additionally constant offset discrepancies between the two data sets may
occur due to scale errors in the gravimetric geoid or ellipsoid for
GEOS-3 data and to the lack of atmospheric corrections with the gravi-
metric geoids. In this type of comparison study it is virtually impos-
sible to isolate the cause of the observed constant offsets between
GEOS-3 geoids and gravimetric geoids. They may be caused by any or all
of the aforementioned sources of error. These large constant offsets do
indicate the need for high quality orbital computations with a con-
sistent gravity model, atmospheric corrections in gravimetric geoids,
elimination of errors in reference ellipsoids, and analysis of internal

consistency of the data.
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By analyzing altimeter data at crossover locations and least square
reduction of crossover errors, Rummel and Rapp (1977) were able to
obtain rms crossover discrepancies of .78 m for intensive mode opera-
tion. Our comparisons indicate the need for this type of crossover
analysis and error reduction.

Comparisons of the altimeter data and the Northwest Pacific gravi-
metric geoid are shown in Figure 6. In this the influence of the
transmitter mode is evident. Tracks G0242 and G0230 are relatively
smooth and were collected in the intensive mcde, tracks G0235 and GO266
have high frequency noise and were made in the global mode. In general
all of the figures show that the intensive mode has less high frequency
noise than the global mode of acquisition.

Another aspect of our comparison study involves the question of
what are the shortest wavelengths in the geoid and how well does the
gravimetric geoid and altimeter data record such wavelengths. To under-
stand the short wavelength (less than several hundred kilometers) com-
ponents of the geoid, it is necessary to examine their origin. Any
geoid anomaly is due to the anomalous potential caused by a mass hetero-
geneity. On the basis of potential theory it would be expected that
short wavelength components of the geoid would be caused by the nearest
mass anomalies; this would be topography of the ocean floor and moho
which are large, adjacent, mass inhomogeneities. To see this mathematically
consider the relationship between the Fourier transform of gravity and

bathymetry, the admittance.

Z(k) = 5 [g(k)]/;: [b(k)] (1)
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For an Airy model of two dimensional crust this function would be
(McKenzie and Bowin, 1976)
2(k) = 216 (o <R,) ek (1 - k) (2)
where G is the gravitational constant
and’ﬁc ’ﬁw’ are density of crust and water respectively
k {s wavenumber in radians/km
d is depth of the water layer
t is the thickness of crustal layer
Utilizing the transfer function between the Fourier transform of gravity
and geoid (Chapman, 1979; A. Leeds, personal communication) we can
obtain the admittance between the Fourier transform of geoid and bathy-

metry for two dimensional Airy isostasy:

216G
%N)/}-(‘b) = Yﬁ (P =Py e kd (1 . o7kt (3)

where:;FZN) is the Fourier transform of
geoid height

vy 1is normal gravity : 980 cm/sec
What this equation shows is that topography of the ocean floor will give
rise to undulations of the geoid which ﬁave identical frequencies but
amplitude decreasing with an increase in frequency at high wavenumber. Any
other niode! of compensation would aiso have identical frequencies but a
different amplitude function. This relationship is important in our
comparison study because it indicates that topographic features will
generate undulations of the geoid with similar frequencies. In the case
of the Hawaiian ridge this has been proven in a quantitative manner by

Watts (1978).
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As an example of this relation between bathymetry and geoid con-
sider the Aleutian trench (Figure 7). At the trench axis there is a
topographic depression which is approximately 100 km wide, it has a
gravity anomaly of similar width. Assuming two dimensionality it is
possible to compute what the geoid anomaly is from the gravity anomaly

(Talwani et al, 1972; A. Leeds, personal communication).
-1 oo
N(x) = (;;0 =[ __ g(x') log Ix - x'I dx' (4)

This is a convolution integral and is the spatial equivalent of the
transfer function between the Fourier transform of gravity and geoid
(Chapman, 1979). Utilizing this formula and the observed gravity across
the Aleutian trench, a two dimensional geoid profile has been computed
and is also shown in Figure 7. Additionally a GEQS-3 profile and
corresponding gravimetric geoid is shown. From this it is clear that
above the trench there is a two dimensional geoid minimum with similar
frequencies as the bathymetry. In both amplitude and wavelength this is
identical to the observed minimum in GEOS-3 data. However, the trench low
as seen in the 1° x 1° gravimetric geoid is much broader and shallower.
On the basis of the relation between geoid and bathymetry having iden-
tical frequencies and our computation of the two dimensional geoid, it
is clear that above the narrow Aleutian trench there is a geoid anomaly
with similar frequency components. As the GE0S-3 altimeter records a
signal similar in shape to the two dimensional geoid, it is reasonable
to assume that the altimeter is faithfully measuring the geoid signal.
In the 1° x 1° gravimetric geoid the trench low is much broader and
shallower; in comparison to the GEOS-3 data and two dimensional geoid,

the gravimetric geoid has less high frequencies and more energy in the
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medium frequency (wavelengths approximately 200 km) range. This is
aliasing of the geoid signal and is due to our procedure in geoid con-
struction of averaging gravity values over 1° squares.

This analysis of geoid height over the Aleutian trench indicates a
Timitation of 1° x 1° gravimetric geoids. In certain regions there can
be energy in the geoid for wavelengths shorter than are resolved by
averaging over 1° squares. In such areas it is necessary to construct
gravimetric geoids by first averaging gravity values over smaller
regions, perhaps 10' or 5' squares. Prior to averaging these values, it
is possible to estimate how much high frequency information exists in
the gecid. This can be done by multiplication of the Fourier transform
of bathymetry and the admittance function. This gives an estimate of
what the geoid heights would be at the shorter wavelengths. Another
technique to estimate the high frequency geoid heights would be to first
compute the Fourier transform of gravity values. After multiplication
by the transfer function for a plane earth, this yields the Fourier
transform of geoid height. This provides an estimate of the geoid
height at the highest frequencies.

Data from the North Atlantic region are compared in Figure 8.

Again the same features are noted as before, constant offsets and noisy
altimeter data when the global mode is utilized. However, track GOO9€
exhibits another feature: there is a tilt of the altimeter measurements
relative to the gravimetric geoid. Because this is such a long wave-
length difference and does not appear in the other regions of the North
Atlantic, we suspect it is due to very long wavelength errors in the
computed satellite orbit. For this reason, Rummel and Rapp (1977) in

rorrecting GEOS-3 data removed both a long wavelength orbital tilt in
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addition to constant offsets. Such a procedure is both justified and
necessary in order to obtain good geoid estimates from the GE0S-3
altimeter.

In an effort to overcome such long wavelength differences, four tracks
of GE0S-3 altimeter data were adjusted by requiring that they agree with
each other at crossover locations and with the GEM-6 geoid. To do this
adjustment the technique of Rummel and Rapp (1977) was utiliz '; this
minimizes in a least square sense discrepancies due to bias and tilts.

A comparison of these adjusted GEOS-3 geoid estimates with the Northwest
Pacific gravimetric geoid is shown in Figure 9. For each track the
GEOS-3 data and gravimetric geoid are both shown, directly above this
the difference in height between the two is shown at a different scale.
Thus for track G0266 agreement is quite good except at the Bonin trench;
the rms discrepancy is 2.07 m (Table 3). For all of these tracks major
disagreements of up to 10 m occur above the trench systems such as the
Bonin, Mariana, Ryukyu, and Philippine trench. As discussed previously
for the Aleutian trench, this discrepancy is due to inadequate reso-
lution of the gravimetric geoid.

Other broad regions of difference occur; on track 60565 (Figure 9)
southeast of the Mariana trench there is a broad disagreement of up to 5
meters. Because this area does not have the same quantity of gravimetric
data as other regions, we suspect this is due to errors in the gravi-
metric geoid. When making detailed comparisons though, it becomes
exceedingly difficult to ascertain whether there are slight errors in
orbital computation or geoid calculation, or simply one could be seeing
the effect of transient sea surface topography in the altimetry data.

With gravimetric geoids what is needed are finer resolution grids and
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Table 3

RMS discrepancies butween gravimetric geoids and adjusted GEOS-3 data

in Northwest Pacific

Track no. RMS difference before RMS difference after
adjustment adjustment
G0846 12.34 meters 2.67 meters
60855 4.82 1.69
G0565 4.0) 2.36
60266 10.27 2.07
64




.t

detailed error analysis of tueir quality; in orbit determination the
best calculations should be made to reduce radial errors to less than .
meter.

The primary miss .on of the GEOS-3 satellite was to determine infor-
matfon about the gravitational field of the earth; another question then
arises as to what wavelength information will be best determined by
satellite altimetry. For very long wavelengths, we have observed dis-
crepancies between the altimetric geoids and gravimetric geoids. While
we could not isolate the cause of this difference, it is 1ikely to be
partially due to radial orbital uncertainty as was demonstrated for
SKYLAB by Marsh et al. (1976). Any such errors restrict the utility of
satellite altimetry in obtaining information about the longest wave-
lengths of the earth's gravitational field. At the present time ground
tracking of orbiting satellites has provided the best information on
these longest wavelengths. In general, however, this is restricted to
wavelengths with degree and order less than approximately 10. According
to Khan (1976) the estimated accuracy in determination of individuai
spherical harmonic coefficients for degree 11 and higher is less than
60%. More recent gravitational field solutions suck as GEM-9 (Lerch et
al, 1977) inay however be more accurate.

In order to answer the following question a hypothetical experiment
can be performed. Compare an altimeter determining the geoid with a
gravimeter measuring gravity. How well does each instrument perform in
detecting its respective signal? The answer to this can be found by
examining the relative properties of the geoild and gravity fieid and the
comparative accuracies of altimeters and sea gravimeters.

Consider hypothetical measurements of geoid and gravity on a plane

two dimensional earth. On this idealized body the geoid height is
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estimated by utilizing sea surface measurements from a radar altimeter.
Due to the presence of oceanographic noise we assume uncertainties in
measurements of about 1 meter. Gravity is measured by a sea gravimeter
to an accuracy of 10 mgal limited by cross coupling and other errors.
Those are both somewhat arbitrary and conservative estimates but hope-
fully reflect the measursment situation to a certain degree. While
radar altimeters can measure sea surface height tc nossibly 10 cm
(SEASAT-A), due to unknown oceanographic noise the geoid can only be
determined to about 1 meter accuracy at present. Likewise, with marine
gravimeters a precision of several mgal is possible, but in analyzing
data due to two different ships at crossover, errors of 10 mgal are
common. In our hypothetical experiment these instruments detect the
geoid and gravity on a 5 km deep ocean overlying a 6 km thick crust.
There is topography compensated in an Airy manner; the amplitude spec-
trum of the topography is white with an amplitude of 3 km. The noise
spectra for each instrument is also considered to be white.

Then on the surface of the water the amplitude spect: -~ of gravity
is ubtained from equation 2 and spectrum of geoid is obtained from
equation 3. A plot of these functicns is in Figure 10. The vertical
scale has been adjusted so that 10 mgals is equivalent in height to 1
meter. Thus whenever one function is plotted higher than the other, it
indicates the higher function has a larger signal to noise ratic. From
this plot we see that for wavelengths longer than 628 km, an altimeter
will have a higher signal to noise ratio. For wavelengths shorter than
628 km a marine gravimeter will record with a better signal to noise
ratio. What we wish to indicate by this analysis is that below a

certain wavelength a marine gravimeter can determine the gravitational
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Figure 10

Comparative accuracies of an altimeter and gravimeter in
detecting the gravitational field on a plane earth. This
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field with a better signal to noise ratio than a radar altimeter. For
longer wavelengths a radar altimeter performs better. This critical
wavelength depends on the noise levels of the individual instruments, in
our hypothetical example it was 628 km. It should be understood though
that a radar altimeter still records short wavelength information; this
was demonstrated in our previous example over the Aleutian trench. As
radar altimeters and marine gravimeters improve in their ability to
detect the gravitational field, there will be a different critical

wavelength below which a gravimeter performs better.

SUMMARY AND CONCLUSIONS

In comparing the GEQS-3 geoid estimates with the gravimetric
geoids over the different oceans, several features emerge. Constant
offsets and tilts cause large-scale discrepancies of up to 24 m rms
(Table 1). These errors can be due to radial orbital uncertainty, scale
errors in the geoid, lack of atmospheric correction in constructing the
geoid, or bias errors in altitude determination by the altimeter. We
did not discern the relative importance of these factors in causing the
discrepancies. Over large scale topographic features such as the
Aleutian Trench there can be a large geoid signal with wavelengths
shorter than can be resolved by 1° X 1° gravimetric geoids.

In regions where there is good coverage of marine gravity data, and
sufficient energy in the geoid at shorter wavelengths (less than 200 km)
more detailed gravimetric geoids should be utilized. Examination of the
topography and techniques utilizing the admittance between geoid and
bathymetry should be useful in estimating the geoid signal at these

short wavelengths.
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After elimination of long wavelength differences, adjusted GEOS-3
data still show discrepancies with the gravimetric geoids. Over the
trench systems of the western Pacific there were differences of up to
10 m. This is due to averaging gravity data over too large an area. In
other regions there are discrepancies of several meters. Such dif-
ferences indicate the need for estimation of the errors in geoid com-

putations and the best possible orbital determinations for the GE0S-3

satellite.
Although some difficulties exist with constant offset a‘ - 9
wavelength discrepancies, the GEQS-3 radar altimeter appear. ..ect

geological features such as deep sea trenches and is an excelilent instru-
ment for acquiring measurements of the shape of the ocean surface. With
the rapid mapping of the marine geoid on a global basis by GEQS-3 there
will be a wealth of new information about the earth's gravitational
field. It should be understood though that in detecting very short
wavelength features of the field, a marine gravimeter will perform

better than a radar altimeter. This is due to the long wavelengths

being predominant in the geoid, while short wavelength anomalies are

most obvious in gravity measurements.
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Techniques for Interpretation of Geoid Anomalies
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Introduction

When a new scientific instrument is developed and utilized for the
study of the earth, therz are always new and exciting discoveries. Such
an instrument is the GEOS-3 radar altimeter, which has been used to make
measurements of the shape of the sea surface over most of the worlds
oceans. After corrections for errors and oceanographic effects this
data is a determination of the marine geoid.

Given the shape of this gravitational equipotential surface inferences
can be made about the density inhomogeneities within the earth which cause
geoid undulations. Prior to satellite altimetry determination of the geoid
was the primary goal. Now with geoid measurements via satellite altimetry
new questions can be asked. Why does the geoid have its particular shape and
what are the structures within the earth which cause geoid anomalies? In
ovder to utilize altimetry data in studying the earth's interior mathematical
techniques are necessary. For this reason we have developed several new
analytic techniques for interpretation of geoid anomalies.

Qur procedure is to initially compute formulas for the geoid anomaly over
idealized bodies. These serve to demonstrate various properties of geoid
anomalies. Then formulas are developed for computing the geoid anomaly over
an arbitrary two dimensional body. Most general procedures require the calcu-
lation of geoid anomalies over three dimensional bodies. In order to under-
stand the relationship between the gravity anomaly and the geoid, techniques
in the frequency domain are developed. Finally, as practical examples,
calculations of the geoid anomaly across continental margins and over sea-

mounts are compared with actual geoid measurements.
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Basic Formulas and Ideal Bodies

In dealing with geoid anomalies we are concerned with the computation
of the shape of an equipotential surface, this surface being primarily
ellipsoidal with small undulations due to an anomalous potential.
Anomalous potential is the difference between total potential and the
normal potential due to the reference ellipsoid. If we know the anomalous
potential, then the geoid anomaly is given by Brun's formula (Heiskanen

& Moritz, 1967).

N= I
Y (1)

Where N is geoid height, T is the anomalous potential, and y is normal

gravity - 980 cm/secz. A point mass will have an anomalous potential of

G M
' 8 3 2 (2)
where G is the Newtonian constant 6.67 10™- c¢m”/gm sec“, M is the mass, and

R is the distance between the point mass and the observation point. This

expression has two conventions: potential is zero at infinity and positive
everywhere else. Thus an excess mass corresponds to positive potential and
positive geoid height. Our basic problem then is how to compute the geoid

anomaly due to an assemblage of point masses. )

Ny 2] gﬁp d x dy dz
X'y'2 Y ﬁx_x')z . (y-y.)z v (2-2') (3)

Primed coordinates indicate the observation po1nt..unpr1med coordinates are

the integration variable, and o is density. Initially we compute the geoid
over ideal bodies; lines, sheets, and rectangles in both two and three dimensions.
A finite horizontal line located at Yor 2o with linear density A (gm/cm)

has a corresponding geoid anomaly of (Figure la)

X2
N = g_/’ A dx
Y
X, EX-X‘)Z + vy + (zo-z')?']%'

This, when integrated, becomes

(4)
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Y
e (X"'X') + Ex,‘x‘)z + (yo-y.)z + (zooz'a z

Figure 18 shows a plot of this function, the geoid height is always positive
and decays to 0 in the 1imit as |y| goes to infinity.

If the finite horizontal 1ine is integrated along the z axis, one obtains
the geoid anomaly over a tinite vertical sheet (Figure 2a). This integral {s
(see appendix for details)

Go
N =~ {6 (x2.27) - Gy (x3,27) = Gy (x7.22) ¢ Gy (x].z') } (6)
y .

where @ is the surface density (gm/cn) and
Gy (x,2) = (z-2') log, {(x-x‘) + [x-x‘)z + (yo-y' )2+ (22" ng }
(7)
- (z-2') + (x-x') log, {(z-z') + [(x~x')2 + (yo-y')z + (2219 }
- xox')? = (ygy)? - (x=x') [(x-x")2 + (yooy")? #(22")

e
ixx) + [[(x-x")2 + (yoy")? +(z-z')ﬁﬁx-x‘)2 + (yo-y')

+ Iyo-y' l S‘Iﬂ.'|

and restricting (2-z2') >0
A plot of this function is in Figure 2B. While always positive, the geoid
height decays at a slower rate than the finite horizontal line.

Our next ideal body is an infinite horfzontal line. while the actual
fntegration is quite simple we utilize a slightly longer derivation in order
to show the relationship between gravity, deflection of the vertical, and the
geoid. This 1s also the basis for a later derivation in tl';e frequency domain.
In the two dimensional geofd calculations a complication arises. invoiving

the zero reference level. Calculation of the geoid anomaly over the infinite
horizontal line will illystrate this complexity.
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Due to an infinite horizontal line located at y=0, 2=24, the horizontal

component of gravity on the 2=0 plane is

h
Fo = -2GA_ y¥ (8)

) (v~ + 2,9)
Deflection of the vertical is defined to be the angle between a vertical
line along the z-axis and the local direction of gravity (Figure 3). On a
plane earth the gravitational attraction has a vertical component of
y + Fg¥, where y is normal gravity and Fg¥ is the vertical component of the

gravitational attraction due to anomalous mass. The horizontal component s

h h
simply Fg"', thus Fg
v tan & = (9)
y + Fg'

where § {s deflection of vertical. Because ng << y,and § = 0

Fg“ ~2G) y ‘
§ = — = - 5 (10)

Y v (y©+z,9)

Deflection of the vertical in the y direction is just the slope of the qeoid.

3 N -26x
& = ¢4 = y (]])

3y Y (yzﬁ* 202)

Solving for geoid height N we obtain:

G 2 y
2 2
N=- ___log, (y*+ 2,°) (12)

Y Yo
where Yo s an arbitrary constant of integration. With the two dimensional
potential the usual procedure is to let the potential be zero at unit distance,
or when (yo2 + 202) = 1; it must be zero at some finite distance. This has
two effects; it causes the absolute amplitude of N to depend upon the units
used, and it introduces both positive and negative geoid heights for a positive
mass. In dealing with two dimensional bodies it is necessary to ignore this

arbitrary constant level. Thus in two dimensional models only
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Calculation of geoid anomaly over an infinite horizontal line. In
B the horizontal attraction of gravity in th, the vertical attraction
due to the line is ng. Acceleration due to the earth is g, and
deflection of the vertical is d.
Figure 3
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deviations from a constant level are important.

After setting the potential at zero for unit distance we obtain for the geoid:

G A
R - 2 + 2
N _Y Tog, (¥ zo) (13)

When the infinite horizontal line is integrated along the z axis, one obtains
the geoid anomaly over a two dimensional vertical sheet.

. 6 o/zz loge [(yo-y')2 + (2-2')2] dz
Y 2]

and after integration

(14)

Go

- — {(z-2') logg [(yg-y')? + (z-2')%]
Y

N =

(15)
-1 (z-2') %2
-2z + 2,yo-y" Tan @ ——— .}

,yo'yll

This anomaly is shown in figure 2c,for comparison purposes in figure 2b there
is a geoid anomaly over a finite vertical sheet. Obviously they are quite
similar in shape. This shows that two dimensional methods might approximate
three dimensional ones in spite of the arbitrary height difference.

A two dimencional rectangle is obtained by an integration of the mass
line over both the y and z axis .(Figure 4a).

z y
N=-8o (2172 100, [{y-y")2 + (2-2')2] dy dz
; (16)
21/ n

after integration (see appendix for details)
Go

N=-— [67 (yz, 22) - 63 (y75 23) - 6, (yp, z1)  (17)
Y

+ 6y (y1, 27)]

Q
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Calculation of geoid anomaly over a two dimensional rectangle.
Note that the geoid anomaly is never-flat, rather it is always

curving.

Figure 4
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where

Gy (ys 2) = (y-y') {(z-2') Toge [ly-y)2 + (z2)81 - 22+ 2 | yy'|

(18)

-2 (y-y")
(z-2') ) -2yz+ [(z-2)2+ (y-y")2] Tan™!
Jy-y'| (z-2')

Tan-1 + (z-2') (y-y'")

assuming (z-2') > 0

In Figure 4b there is a plo: of this anomaly. Over the rectangle the
geoid is not flat, it is always concave downwards until a point of inflection
above the edge of the body. The implication of this curvacure is that in
constructing geoid modeis the anomalous mass must integrate to zero, otherwise
there will be a long wavelength curvature of the geoid anomaly. To make the

anomalous mass sum to zero, both negative and positive densities are utilized.

Integral Formulas For Two Dimensional Bodies

While analytic solutions for ideal bodies have an initial utility in under-
standing properties of geoid anomalies and verifying other formulas they are
of limited utility in learning about the earth. Better models of the earth
involve specifying densities of bodies of arbitrary shape and computing the
resultant geoid anomaly. In order to achieve this result we have developed
several techniques for the computation of geoid anomalies over bodies which
are polygons in either two or three dimensions. These enable the models of
virtually any shape to be calculated, the desired accuracy in shape only
limited by the number of specified sides.

A simple numerical solution to computing geoid anomalies was originally
developed by Talwani, Poppe and Rabinowitz (1972) in order to compute the geoid
across a two dimensional structure from the gravity. For a givén polygon in
two dimensions the horizontal component of gravity is computed with the line
integral method of Talwani et al. (1959), then after division by normal gravity
the deflection of vertical is obtained.
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F
8 ai (]9)

Y

As in our previous derivation for the infinite 1ine, this is the slope of the

geoid
dn
§= (20)
dy
so finally

y
N=f s (y) dy (21)
Yo

This final integration is done with the trapezoidal rule or else Simpson's
formula. Although it is a numerical solution it produces very accurate results
in excellent agreement with exact analytic solutions.

For geophysical interpretation of two dimensional bodies of arbitrary
shape a method has been developed to directly compute the geoid anomaly over
a polygon in two dimensions. In this technique the body is specified by the
location of each vertex and the density of the body, as in Figure 5a. For

any arbitrary two dimensional body the geoid anomaly is

G 2 2
N=oa— ]oge [(y-y')c + (2-2')¢] dy dz (22)
Y
S

To obtain a direct analytic solution for a two dimensional polygon we utilize

Stokes' theorem to convert this surface integral to the following line integral:

G e 2 1
N=-— & {(y-y') Toge [(y-y')2 + (z-2')%] - 2 (y-y') + 2 (z-2")
Y
.1 (r=y*) (23)
Tan 1 dz
(z-2')

and restricting (z-z') > 0
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With a pofygonal approximation each side is defined by the formula:

Z'miy'l'b.l

then the contribution to the geoid anomaly due to the 1th line segment is:

(see appendix for detatils)

ng = | my inxll? Toge [(y-y')2 + (2-2')2] - my(y-y*)2

+ m2 Ay (y-y') - mi (mi2-1) A2 logg [ly-y')2 + (z-2')4]

(14my2) . 2(14my2)2
-2m2a2 Tan 7| (1mi2) (y-y') + miA; (24)
“*’“12)2 A,

-mg(y-y')2 + 22 Tan! (y-y')

2

-C4 012 loge

(1+¢;2) 2%+ 2¢5052+04

(1+c42)2
+

+0y 27 + (1-c4?) D32 Tan
(14¢52) ~ (1+¢49)2

with Az

Di

n3
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Yy
!'Z')
4
Yi-1
= mi y' + 81 -2'
=1/ my
= -By/my -y’
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thus the total geoid anomaly is

(25)
6o o Ny L = number of segments
3
Y =]

Due to singularities in the integral formula the following special cases need
also be considered:

a) m; =0 then ny =0 (slope of line segment is zero)

b) ¢4 = 0 then (sope of 1ine segment is infinite)
ng = ((y;=y') [(2-2') Togg [(y3-y*)? + (2-2')2] - 2(z-2')
+2 lyi-y'l Tan"! Sf:fl% ] -2 (ys-y') 2 (26)
Jri-r') (yi=y')
*Lygy')2 + (2208 Tan!
4
+ (ys-y") (z-2')}
Zi-1

(the extension of line segment passes

c) By/my + y' =0  then through observation point)

2° Joge [(1 ] 21 322 2 1ar] 1 ) 24
= (— 10 + - — t 2 an —_
ny {2m1 e 5;29 z o ( m } z (27)
1-1

assuming z' =0, z> 0

For a given geophysical model a number of individual bodies are specified
by their respective densities and shape as defined by a number of vertices
of a polygon. For each body the geoid effect is calculated using either the
numerical technique in formula (21) or the analytic technique of formula (24).
After summation over all bodies the total geoid height due to the ﬁodel is
obtained. In practice both of these mathematical techniques yield identical
results. In Figure 5b there is a sample computation of geoid height and
vertical component of gravitational attraction over a pentagonal body. The
geoid has a shape similar to the gravity anomaly but is much wider: the

geoid height decays with distance at a é}ower rate.




S TMETELUTER IR, - I o o A T

In modeling two precautions are necessary. First the constant level of the
geoid height must be ignored. This is because of the arbitrary location of
zero potential for a two dimensional body. A second precaution concerns the
specification of densities. In geoid calculations the anomalous density must
be utilized rather than the total density. This is because Brun's formula
(formula (1)) requires anomalous potential rather than total potential. If
a given model is in isostatic equilibrium this second precaution requires
that the sum of the anomalous masses in a given column be zero. This require-
ment is different than in standard gravity models If the total mass did not
sum to zero then a constant gravity value could always be subtracted from calculated
gravity to obtain the gravity anomaly. In geoid computations this procedure
does not work, the reason being that a two dimensional rectangle (as discussed
previously) does not have a flat geoid anomaly above it, whereas in gravity
calculations a two dimensional rectangle, except for edge effects, has a flat
gravity anomaly.

As a practical example of the utility of these methods we consider the
study of an Atlantic type continental margin. In the transition between the
deep sea and the continental marjin of Nova Scotia in Eastern Canada, the
ocean bottom changes in depth by five kilometers. Likewise the
ocean surface changes in heigat by six meters (Figure 6) T his change in
geoid height has been determined from the GEOS-3 satellite. A natural question
arises then, what is the cause of this change in geoid height? To help answer
this question, a two cimensional density model of the Nova Scotia margin has
been constructed (Figure 6). This is a simple three component model with water,
crust, and mantle material. It is fully compensated in an Airy manner. Util-
jzing the two dimensional technique described in this section, we have calcu~

lated the geoid anomaly over this model. As Figure 6 indicates, the calculated
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Geoid anomaly across Nova Scotia margin, left end of GEOS-3 profile
is at 44,5°N, 63.25°W and right end is at 40°N, 58.7°W.
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geoid height is in good agreement with the observed GEQS-3 data. It can be
concluded that a simple density model of the Nova Scotia margin which is in
isostatic equilibrium 1s capable of successfully modeling the observed GE0S-3
data. Due to the noise level of the data a more elaborate model was believed

unjustified.
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Geofd Calculations For Three Dimensional Bodies

While the two dimensional approximation has a certain utility, more
realistic geophysical modeling requires ths computation of the geoid anomaly
due to bodies of arbitrary shape and density in three dimensions. In the
method now developed the shape of the body is prescrited to be a polyhedron.
Any shape can be approximated by this method by simply including sufficient
detail with many facets. This same technique was developed in gravity
modeling by Coggon (1976), Paul (1974), and Barnett (1976).

In Figure 7a we illustrate a polyhedron which is assumed to have constant
density. To calculate the geoid height for this body the fundamental integral
formula 3 has to be solved. Conceptually our method of solution is quite
simple. This volume integral is converted to a surface integral by the
divergence theorem. For each facet of the polyhedron this surface integral
can be solved by conversion to a 1ine integral via Stokes' theorem. Thus
the total volume integral is caiculated by a summation of surface integrals,
one for each polygonal facet. Each surface integral is calculated by a
summation of line integrals, one for each line segment on a given facet.

This is an exact analytic technique and is accurate for any shape which can
be approximated as a polyhedron.

Rewriting equation 3 in the form

N=§$///V-(5;)dv
v

whzre r js the unit vector in the
radial direction
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U, perpendicular to facet

THREE DIMENSIONAL POLYHEDRON

Calculation of geoid anomaly over 2 three dimensional polyhedron.

Figure 7
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Pe{x-x)x+{y-y'lys+{z-2') 2
[(x - x)2+ (y - y)2+ (2 - 212

and v is the vector del operator

We see that 1t can be changed to a surface integral with the divergence theorem.

N-g_g/../;;-ﬁ4ds (29)

or = g_g.d//? [(x - x') ugy * (y - y") ugp * (z -2") u43] ds
.)2]§

Thus:

lx-x)2 4y -y)2+(z-
where u4 is a unit vector normal to the element of surface area ds, and has
components (ugys Ugos Ug3)-

This equation now is a surface integral and mu. .e solved for each
individual facet upon which the unit normal vector G4 is constant. After this
integral is computed for each face, the results are summed for all facets
thereby calculating the geoid anomaly due to the entire body. Thus

Ns= ? I1 where Ii is equation 29 evaluated for
the ith facet of the polyhedron. (30)
Solution of this integral for each face of the polyhedron requires a coordinate
transformation, rotating the facet until it is normal to cne of the
new axes. This technique was originally used for solving integrals in gravity
and magnetic computations by Barnett (1976) and also Paul (’274).

This coordinate transformation involves a rotation and translation. To
construct the neczssary rotation matrix, three unit vectors must be first cal-
culated. For a giver facet (Figure 7b) these three vectors are determined in

the following way. Each vertex in the facet is numbered in counter clockwise

order when looking into the body. Unit vector G] extends from point 1 to puint

5 i -
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2, and unit vector 62 extends from point 2 to point 3. Given this numbering

scheme G] X 62 (vector cross product) is the outward facing normal for the
facet. With these vectors, two additional unit vectors can be calculated
u, = Uy x Uy where 4, is the
g =g x Uy outward unit normal
An orthogonal rotation matrix is constructed from these unit vectors.
in Y2 U3
lul = Jugyy vz ug
Ynt Yz Ya3
where Uy is the jth component
of the unit vector Gi.
A coordinate translation is also applied so that the observation point (x', y', z')
becomes located at the new zero origin. The complete coordinate transformation
changes the (x, y, z) coordinates to a new (g, n, 6) system, in which

(x', y's 2') becomes (0, 0, 0,).

Thus
¢ Y1 Y2 Yl | ¢
nl = u3] Uy u33 Yi - |n (31)
8 U Up Yyl 12 )

where

g' =upp x' o+ uy2 y' +u3 2
n' =us X' +uzpy' +uzz 2’
' ®uy X' Uy +ug 2

After coordinate transformation the integral 29 for the i'th facet changes
to the simpler form:

I‘l=—g %_ 8§ dzdn . (32)
Y 2, 2402
S [C+ﬂ+91]
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In order to solve this surface integral for the i'th face, we change it to

a line integral over the sides of the polygonal facet via Stokes' theorem.

%
Iy = G_e.f 84 109, {: + [1:2 +nl+ eizj }dn' (33)
Y 7

where the integration is counter
clockwise (when looking into the body)
around the line segments bounding the
i'th face of the polyhedron. It must be
a closed contour.
Each side of the facet is a line segment with an equation

o= myn + o5 (34)

where mj is the slope of the j'th 1ine segment
G BRSL S

and also z% = ¢, - m; n.
CJ CJ j nJ

Thus the total integral for the i'th facet is a sum of line integrals over
all of the bounding 1ine segments.

1, =g L
I Tl (39)
and "jﬂ
L1j=§_e_f o1 Toge flngn + c3) + (36)
Y T
nj

%
[(mjn + 53)2 + nz + 912] }dn
and L; is the line integral for the j'th 1ine segment of the i'th facet of
the polyhedron,

This assumes that mj is finite. If it is not then dn is zero and consequently

i .
s S Lj. Also if 84 s zero, then I is zero. After integration of equation
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36 and summation over all line segments of all facets, the final result is

ootained. (See appendix).

Ty (il
i 3

s T (R
PRI (min + t2)2 + o2 + 2
fomyd frgn + o2 + o]

% ki
+n [1 + qu + mj;}g + 84 Tan™! (mjef - c}n)
2 e%
"

(37)

["""'ijz..’6 8 [(mjn + c;-)z +q

This expression then, in conjunction with the coordinate transformation
of equation 31, when evaluated, gives the geoid anomaly over an arbitrary
polyhedron. As a practical matter, it is difficult to specify the coordin-
ates of the body in the orderly manner required. To simplify matters all
faces could be triangles and the body would be assembled in the manner des-
cribed by Barnett (1976). Also it should be noted that both the two dimen-
sfonal and three dimensional solutions to geoid anomaly modeling are exact
analytic expressions. This is in contrast to the asymptotic expansion
technique for geoid anomaly modeling developed by Ockendon and Turcotte (1977),
which although easier to evaluate requires the body to be very thin. Another
modeling technique was utilized in a study of a seamount region by Fisher (1976).
In many studies of geoid anomalies it will be necessary to compute the resultant
anomaly on a spherical earth. The three dimensional method developed here
can be utilized for that purpose, as long as it is realized that the connecting
segments between points on the polygon are linear. An alternative aﬁproach
would Ye to utilize the method developed by Johnson and Litehiser (1972),

who give an expression for the potential due to a body on a spherical earth.
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Their method in combination with Brun's formula would be a good numerical
solution to geoid modeling on a spherical earth. Another numerical technique
for computing geoid anomalies on a spherical earth was developed and applied
in a study by Bowin et. al. (1975).

As a geophysical example, this three dimencional modeling technique is
utilized to study a geoid anomaly which has been observed above the Truk Islands
(part of the Caroline Islands in the western Pacific). This geoid anomaly is
5 meters in amplitude and is above a seamount which is 4 km high . Quite
simply this geoid high can be explained as due to the excess mass of the
seamount itself, and the deficit mass of its compensating body. To model this
anomaly the topography was digitized and a polyhedral body was constructed -

In addition a polyhedral compensating mass was calculated. An Airy type crust
with a compensation depth of 30 km was utilized. In Figure 8 a cross section
of this model is depicted, along with both the calculated and observed geoid
height. From the good jgreement of the two, it can be said that this geoid

anomaly is explained by an isostatic model of this seamount.
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Techniques in the Frequency Domain

v

A different understanding of the geoid is possible in the wavenumber
domain. This 1s done by examining the relationship between the Fourijer
transform of gravity and the Fourier transform of the geoid. In other words,
what is the transfer function between gravity and the geoid? OQur derivation
is analagous to the derivation of formula 21, but is done in the frequency
domain.

Given the vertical component of gravity due to a two dimensional body

we go to the wavenumber domain via the Fourier transform.

+o
?’('ng) - f ng (y) e'iky dy (38)

To obtain the Fourier transform of the horizontal component of gravity we

Hilbert transform 7 (ng)

..ff(rg'*) = ‘?"(F.gv) « 1esgn (k) : + (39)

where multiplication by i sgn (k) is
the Hilbert transformation (Papoulis, 1962)
also sgn (k) = +1 k> 0 and i = [—ljv‘
-1 k<0
This procedure can be verified by comparing the Fourier transforms of the
vertical and horizontal components of gravity due to an infinite mass line.

After division by normal gravity we get the Fourier transform of the deflection

. T Fen
Flo- Fehe Fenismw .
Y

Y

of the vertical.

Utilizing the integration theorem in the frequency domain the Fourier transform

of the geoid is obtained. This is because the geoid is the integral of deflection
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of the vertical.

9‘(") - ﬂ’(‘ng) lﬁﬂijﬂ (41)

or Fnn - . EAART)

Thus given the Fourier transform of gravity we multiply by a transfer functi..
S(k ) to obtain the Fourier transform of the geoid. For the two dimensional
case:

S(k ) = _1
Y

(42)
This transfer function shows that a geoid anomaly over a body will have
the same phase spectra as the gravity anomaly. In simpler words this is our
previous observation. A geoid anomaly over a body has the same general shape.
Any maximum in the geoid occurs exactly where a gravity maximum does. However
the geoid anomaly for a given wavelength is changed in amplitude by the factor
( 1/] k|). Thus for long wavelengths ( k<<1 ) the geoid anomaly will be
magnified, while at short wavelengths ( k>>1 ) diminished. This is our '

observation that geoid anomalies are "wider".
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Conclusions

In this paper we have been concerned with developing the techniques
necessary for the interpretation of geoid anomalies. Thece are mathematical
formulas which for a given geological model can be utilized to compute the
resultant geoid anomaly. If the model is considered two dimensional then
densities for a polygon in two dimensions are specified and using formulas
24 and 25 the geoid heights are calculated. In this method only the relative
heights are important. Any geologic body can be modeled with a polyhedral
shape in three dimensions. If density is variable within the body several
polyhedra may be utilized. After specifying densities for this, formula 37
is utilized to calculate the resultant geoid anomaly. To understand geoid
anomalies, it is seen that they basically havc the same shape as gravity
anomalies, but with the long wavelength components amplified. Techniquas
such as these are only tools. Their real importance is in enabling the

interpretation of observed geoid anomalies, such as are detected by GEQS-3.
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Chapter IV

Geoid Anomalies Over Oceanic Features
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Geoid Anomalies over Oceanic Features

In using satellite altimeter measurements to study the Earth's interior
a simple question can be asked. What is the shape of the ocean surface over
bathymetric features? Physically such features would be expected to have
related geoid anomalies because there is a large density contrast between
oceanic crust and the surrounding water. At the bottom of the ocean floor
there are certain types of large structures; seamounis, continental margins,
fracture zones, mid-ocean ridges, and deep sea trenches. Over each one of
these features there are characteristic undulations of the ocean surface.
Being directly related to the density structure, these measured shapes can
be utilized to infer the internal lateral density variations within the
tarth. Using the GEOS-3 radar altimeter geoid anomalies have been identified

- '
L ]

over thesé structures.
Bordering the continents in the Atlantic ocean are passive continental
margins. Detailed geophysical studies of these regions usually involve the
study of several important questions; 1location of the ocean-continent
boundary, nature of the mechanism of isostasy, and history of subsidence
along the margin. Of these questions, geoid measurements may be of
assistance with the first two. As an example of a passive margin consider
the East Coast United States. Across this margin the geoid has a 6 meter
step similar in sense to bottom topography (Figure 1). In placs this
anomaly is quite distinct, as off Nova Scotia; further south the increase
is quite gradual. An important area of research would be to ascertain why
this shape varies along the coast. This study would probably be concerned

with isostatic geoid anomalies.
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At many of the co\ *inental margins in the Pacific Ocean active
subduction of the 1ithosphere occurs at deep sea trenches. These are
active continental margins. At these margins there is a characteristic
geoid anomaly. With GEOS-3 data we see that above the trench axis the
ocean surface forms deep valleys up to -20 m in amplitude. Over the Aleutian
Trench the sea surface has a depression of -13 m, while at the Mariana
trench the geoid dips by almost -20 m (Figure 2). Seaward of the Aleutian
Trench there is a long wavelength increase in the geoid towards the Aleutians.
This anomaly is concave downward and continues to increase landward of the
trench where the depths are shallower. Because it is the nature of the
geoid to show long wavelength anomalies it is expected to be most sensitive
to deep density inhomogeneities rather than crustal structures. As the
downgoing slab is a large and deep inhomogeneity, any anomaly caused by
it would be more evident in the geoid rather than in gravity.

Another primary type of geoid anomaly is above mid-ocean ridges
where accretion of the lithosphere occurs. One example of this type
anomaly is across the Southwest Indian Ridge in Figure 3. Gravity and
topography profiles are from a nearby ship track; the geoid data are from
the GE0S-3 satellite. Although gravity data show little of a long wavelength
anomaly, the geoid has a distinct anomaly centered over the ridge axis.
This is about 7 meters in amplitude and at least 1000 km wide. A track
chart of altimeter data acquired over both the Southwest Indian and Southeast
Indian Ridge is illustrated in Figure 4. Other geoid profiles across the
Southwest Indian Ridge are shown in Figure 5. Each of these six profiles
shows a higher region to the soui{.east of the ridge axis followed by a sudden
change in slope directly at the axis. As there appears to be a broad

regional slope to the data a linear trend has been removed from each profile.
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Geoid profiles over trenches and a marginal sea.
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Profiles over the Southwest Indian Ridge.
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These profiles are in Figure 6. Each profile over the Southwest Indian
Ridge after removal of a 1inear trend shows a characteristic geoid anomaly
similar to the one in Figure 4. This anomaly is maximum at the ridge axis
and almost 10 m in amplitude. It is 1800 km wide. Profiles across the
Southeast Indian Ridge show a much larger regional background as shown in
Figure 7. After removal of a linear trend the characteristic ridge anomaly
is evident in Figure 8, This anomaly has a 6 meter amplitude and 2000 km
width. Presumably this ridge anomaly is the result of density anomalies
due to creation and evolution of the lithosphere. A detailed study of
this and other ridge anomalies should be undertaken to ascertain any
dependence upon spreading rate and any possible asymmetry. Using a thermal
model of the 1ithosphere, Haxby and Turcotte (1978) have modeled the ridge
anomaly in the North Atlantic.

Other smaller oceanic structures have shorter wavelength geoid
anomalies. Above islands there is a geoid anomaly several meters high.
For example 6 meters over Bermuda (Figure 1) and 4 meters over the Caroline
Islands (Figure 9). At fracture zones where the crust has a significant
age difference on either side there will be a difference in depth which
causes a geoid anomaly. Over the Romanche Fracture Zone the geoid has
a step of 4 or 5 meters (Figure 10). With similar large fracture zones it
will be possible to use geoid height measurements to trace fracture zones
where ship measurements are scarce. Another type geoid anomaly occurs over
the Bismarck Sea. This is a small marginal basin several kilometers shallower
than adjacent ocean. Above this region the ocean surface forms a broad high,

450 km wide and 7 m high (Figure 2).
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Introduction

Due to undulations of the geoid free-air gravity anomalies measured
at sea are caused both by lataral changes in mass distribution and also
by changes in height above or below the reference ellipsoid. In those
gravity modeling studies which do not consider the latter effect of height
changes, there may sometimes be serious misinterpretation. The required
correction term to eliminate this effect is at most 27 mgal and most
significant when studying the geophysical implications of the long wave-
length gravitational field.

To understand the need for this correction, consider the standard
procedure in gravity modelinc; a density model of the anomalous mass is
used to calculate the vertical component of gravitational attraction
which is then compared with the free-air gravity anomaly. This procedure
implicitly assumes the equivalence between free-air gravity anomalies and the
gravitational attraction (in the verticai direction) of the anomalous mass.
This assumption is only an approximation; due to geoid undulations there
can be substantial errors in this procedure. This approximation is well
known to geodesists (Bomford, 1962) but is not commonly acknowledged in
geophysical studies.

For models of localized mass anomalies or short wavelength features
this approximation is'probably valid. For regional studies, however, with
the objective of interpreting longer wavelength components of the gravity
field the importance of correcting the free-air gravity anomaly for geoidal
undulations is greatly increased.

For example, in a study of the North Atlantic regional gravity field
the effect of this approximation was not discussed by Cochran and Talwani

(1978). In this work there would have been a correction term of up to
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approximately 20 mgal added to their observed free-air gravity prior to

interpretation. Other studies in the Japan sea and Izu-Bonin region

(Segawa and Tomoda, 1976) and the Aleutian arc (Grow, 1973) have similarly
not considered this additional correction. A modeling study of mid-ocean
ridges (Lambeck, 1972) was one of very few to include this indirect effect

in the theoretical calculations. Due to the extensive neglect of this

effect in geophysical studies we briefly discuss its origin ard then indicate

the types of physical situations in which it is most significant.

Origin of Error

When measurements of gravity are made aboard ship at sea they are of
course actually being made on the surface of the geoid. In some cases,
in order to properly utilize this data for geophysical interpretation, it
is necessary to correct for the undulations of the geoid surface. Consider the
standard method for obtaining the gravity anomaly. After measurement of
gravity on the geoid, the normal gravity on the ellipsoid is subtracted thus
yielding the gravity anomaly.
49 = 99ps = Tn where ag is free-air gravity anomaly
Yobs is measured gravity on the geoid
Y, is gravitational attraction of the
ellipsoid, on the surface of that ellipsoid

It is important to note that for determining the free-air gravity anomaly,
these two gravitational attractions are measured with respect to different
references. The geoid is the reference for the observed gravity and the
ellipsoid the reference for theoretical gravity. The difference in height
between the ellipsoid and geoid (Figure 1) contributes to the difference in
gravitational attraction between what is measured (gobs) and what is calculated
(yn), and thus the resulting gravity anomaly is not solely due to an anomalous

mass. To see the need for this additional correction consider the following
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Measurements of gravity (gobs) are made on the geoid which is at a

height N above the reference ellipsoid. Attraction of the ellipsoid

(yh) is calculated at a different height, on the surface of that
-— ellipsoid. This height difference is the reason for the geoid

correction term.

123




I L A R S

expression which simply equates forces of gravitational attraction:

) R L i eoid
49 gobs Yn 3;7-" + gravitational effect of mass between g

and ellipsoid + gravitational effect of anomalous mass

where g;b is radial gradient of normal gravity

N is height of the geoid above the
reference ellipsoid - in meters.

On the right side of this equation the first term is a free-air correction,
and the second term a Bouguer correction. The free-air term is -.3086 mgal/
meter and using a planar approximation the Bouguer correction is
+.043 mgal/meter assuming a water density of 1.03 gm/cm3. Correction for
the Bouguer term subtracts the effect of excess water mass for positive
geoid height and adds in a gravitational effect of the missing water mass
for negative geoid height. Thus to obtain the gravitational effect of

the anomalous mass:
gravitational effect of anomalous mass (in mgal) = ag + .2656*N

This equation is obtained by transferring the free-air and Bouguer terms
to the other side of the previous equation. The term which is added to the

gravity anomaly can be designated the geoid correction term. This term

is numerically equal to .2656*N. This geoid correction term is added to

the free-air anomaly (Ag) in order to obtain the gravitational attraction

of anomalous mass - in mgal.

Significance of Correction

This correction will be at most +27 mgal, corresponding to the fact
that geoid heiaht (N) is rarely above or below 100 meters. To consider the

importance of this correction it is necessary to understand the properties
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of the geoid. Undulations of this surface are very smooth, with very long

wavelengths. For many regions the corresponding geoid correction will only
appear as a constant offset in the data, which in gravity studies is not
always important. However, when considering the long wavelength gravitational
field (wavelengths longer than approximately 500 km) this correction becomes
of greater significance in geophysical studies. At the present time, scientists
are beginning to investigate the long wavelength components of the gravi-
tational field, and it is in these studies that the geoid correction in
marine gravity must be considered.

To'give an example of how this correction might be applied, we consider
a profile of gravity across the Tonga-Kermadec trench (Figure 2). Above the
bathymetry profile, the gravity anomalv (Ag) referred to the geoid is shown.
Utilizing es. ~ates of geoid height from the GEDS-3 satellite we have also
illustrated the . -0id height along track.

As the geoic _orrection term is .2656*N it is directly proportional

to geoid height (N). Thus the scale on the top left of Figure 2 is
for geoid height (N) while the scale on the top right is for the geoid

correction term which is a value in mgal to be added to the free-air

anomaly (ag). After addition of this correction to the gravity anomaly, the
gravity referred to the ellipsoid is obtained and 11lustrated in the same
figure. In this case the correction is at most 18 mgals. For this region we
must affirm the existence of a regional gravity high behind the island arc.
This is an important conclusion and directly shows the application of the

geoid correction term.

For the purposes of relatively short wavelength gravity modeling this
correction may not be very significant while, for more regional studies,

failure to take the geoid effect into account may lead to considerable
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misinterpretation. The importance of considering the geoid height correction
for measured gravity is further emphasized as a better definition of the
structure of the earth's crustal layers leads to efforts to determine the
nature of deeper structures. Lateral density heterogeneities in the mantle,
for example, produce gravity variations similar in wavelength to those of

the undulations of the geoid. As an example of the effect of the geoid

correction term on regional gravity and the consequences for interpretation,

one can examine the regional high associated with marginal basins behind
western Pacific 1sland arcs. The regional free-air gravity anomaly field
landward of the Mariana and Izu Bonin arcs averages approximately +25 mgal
while the Pacific ocean basin has a regional field of approximately zero.

The geoid height above the reference ellipsoid varies from as high as 60 meters
behind these arcs to zero in the Pacific basin thus producing a geoid
correction term of up to 16 mgal. After addition of this term to the

free-air anomaly the gravitational attraction of anomalous mass in the

marginal basin is 40 mgal, over the Pacific ocean basin it is still zero.

This would result in a different interpretation about the extent and density

of deep lateral mass heterogeneities.

Summary
The need for this geoid correction term was stated previously by

Bomford (1962, p 443), and is thus not a new idea. This is only a timely
reminder, since with the determinations of the geoid by the GE0S-3 radar
altimeter the correction is now feasible. Of course it was possible to
implement this correction prior to radar altimetry by using global gravi-
tational field models, however, with GEQOS-3 geoid data it can be done with

a higher degree of accuracy. In geophysical studies of the long wavelength
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gravitational field this correction 1s mandatory, although due to the long

wavelength nature of the geoid it may not be significant in studies of
the shorter wavelength gravitational field.
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Introduction
Measurement of the gravitational field in the world's oceans has
rosuited in an increased understanding of the physical processes which
occur in the vicinity of deep sea trenches. It has long been recognized
that island arcs and adjacent trenches are the site of some of the
largest free-air gravity anomalies over the surface of the Earth. Ever
since the development of pendulum measurements of gravity in submarines,
2 basic understanding cf the primary features of gravity at island arcs
has been possible. With only a few data points in a given transect it
was possible to recognize the existence of a significant low in the free-
afr gravity anomaly directly above the trench axis and an adjacent high
over the island arc. Utilizing the Vening Meinesz pendulum apparatus on

the submarine H.M.S. Telemachus, four crossings of the Tonga Trench

indicated this characteristic pattern of gravity anomalies (Talwani, et
al., 1961). On one of the profiles a value of -224 mgal was observed
over the Tonga Trench and a positive free-air anomaly of +153 mgal over
the island arc. On the basis of earlier studies in the Indonesian archi-
pelago Vening Meinesz (1954) observed that significant isostatic gravity
anomalies existed in the region and suggested that the trench system
existed as a result of horizontally compressive and shear stress.

When it became possible to make continucus gravity measurements on
board a moving surface ship, a wealth of new information about the
Earth's gravitational field became available. With this new data it
became evident that many trenches had a distinct gravity anomaly seaward
of the trench axis. This has been termed the Outer Gravity High (Watts
and Talwani, 1974). One plausible explanation of this ancmaly {is that
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at a trench the 1ithosphere undergoes elastic deformation produc’:» a

bathymetric ris. and consequent gravity high.

With plate tectonic theory it became evident that as the 1itho-
sphere descended into the relatively hot asthenosphere, the slow rate of
heat conduction permitted differences in temperature to be maintained.
These thermal conditions result in a density contrast between the cooler
slab and the surrounding hotter mantie and a consequent gravity anomaly.
It is uncertain what the actual differences in density are, tut the
configuration of the descending slab is known from seismic .cudies.

Thus models of the density structure including the downgoing lithosphere
have been possible and were actually censtructed for the Chile Trench

(Grow and Bowin, 1975), Aleutians (Grow, 1973), and Japan Trench (Segawa

and Tomoda, 1976). In all of these studies each new development in
{nstrumentation or theory resulted in a better determination and explanation
of the gravity field in the vicinity of deep sea trenches.

Measurement of the gravitational field in a marine environment has
heretofore been concerned with the radial component of the gravity
vector. However, as the gravitational field is a conservative force
field, it can equally be described in terms of the scalar gravitational
potential. On the Earth the equipcotential surface of the gravity field
which coincides with mean sea level is teimed the geoid. In the absence
of noise, determination of the shape of the geoid over the Earth's
surface would give information on the gravitational field equivalent to
that obtained by gravity vector measurements. In the presence of noise
geoid height measurements give more useful information for wavelenaths
between several hundred and several thousand kilometers (Chapman and
Talwani, 1979). Determination of the shape of the geofd in marine areas

can contribute new and valuable information about the gravitational
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field and the interior densities wiihin the tarth. In this study

measurements of geoid height in the vicinity of deep sea trenches
enable identification of a characteristic geoid anomaly. For the
Tonga-Kermadec Trench, geoid and gravity values ars used to determine
a new model of the density structure. These new measurements give
better constraints on variations in mantle density than were previously

available with only gravity measurements.
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Data Acquisition

Geoid measurements are made by using a radar altimeter mounted
on a spacecraft which orbits the Earth. In utilizing the GEOS-3 satellite
to obtain estimates of geoid height, a certain procedure is used to
collect and process the data. Mounted on board this orbiting spacecraft
is a radar altimeter which is always oriented toward the center of mass
of the Earth. During data acquisition the altimeter emits radar pulses
which are ref’acted from the ocean surface and received by spacecraft
antennas. In this manner measurements of the satellite altitude are
obtained 100 times per second. When combined with accurate orbital
tracking of the satellite, the height of the instantaneous sea surface
relative to the reference ellipsoid is determined. Due to the existence
of forces other than from the Earth's gravitational field, the sea
surface at any given time may depart from the actual geoid. Such
differences are caused by tides, currents, and other oceanographic
phenomena. In general though, for the deep ocean these discrepancies
can be considered noise which in amplitude is less than approximately
1 meter. After acquisition of the data, it is time averaged over .1024
second intervals; a second smoothing procedure averages the data over
2.2 or 3.3 second intervals. The data which we utilize is an average
value of geoid height over a 14.4 km or 21.6 km distance; the ground
speed of the sub-satellite track is approximately 6.55 km/sec. For all
of the data which we use in this study, a listing of the instrument

type, transmission mode, and date of acquisition is available in Table 1.
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GEOID ANOMALIES OVER DEEP SEA TRENCHES

With the use of this GEOS-3 altimeter data, an extensive study of
geoid heights over island arc regions has been undertaken. As the data
was examined, it became possible to identify a characteristic geoid anom-
aly which exists over all major deep-sea trenches in the world's oceans.
This geoid anomaly is caused by the lateral density differences within
the Earth beneath the island arc region. With aaequate additional
constraints and proper interpretation, it can provide useful information
about the density and structure of the upper mantle and the physical
processes which occur at deep sea trenches.

To discern the characteristic geoid anomaly over deep sea trenches,
we examine the various trench systems in the Pacific and Indian Oceans.
These are in turn the Aleutian and Kuril Island arc system, the Mariana
and Bonin Island arc-trench region, the Philippine Trench, the Tonga-
Kermadec region, Peru-Chile Trench, and lastly the Java Trench. Over
each of these deep-sea trenches a set of representative geoid profiles
is displayed. Track locations of all the data are illustrated in Figure
1, while instrument and data characteristics are listed in Table 1. For
each of the geoid tracks the data has been projected to a line per-
pendicular to the strike of the trench -xis; as the original tracks are
fairly linear, this only represents a scale change. Profiles from each
trench region are displayed in Figures 2 through 7. Bathymetry and
gravity data from a nearby ship track is shown along with geoid profiles
from the GEOS-3 satellite.

Geoid profiles from the Aleutiar and Kuril Trench are illustrated
in Figure 2. These data clearly indicate the type of profile which will

be seen as characteristic of all deep sea trenches. Beginning about
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2000 kilometers seaward of the trench ax{is, the geoid has a constant
increase in height as the axis is approached. This slope is about

20 meters over a distance of 1800 kilometers. Directly above the deep-
sea trench there is an approximate 13 meter decrease to form a Tow

150 kilometers in width., Immediately landward of the minimum there is
an approximate 18 meter increase until a maximum is reached directly
above the island arc. Behind the arc there is a gradual decrease in
geoid height of about 10 meters over a 1000 kilometer interval. A1l of
these tracks show both the deep Tow over the trench axis and the adja-
cent high above the island arc. Tracks 64263, G3681, and G3138 all have
the gradual decrease behind the arc. Track G4806, however, has a slight
increase and then a step to a higher level. This step in geoid height
occurs at the continental margin southwest of Alaska. This same track
also passes over the Emperor Seamounts and shows the characteristic high
and flanking Tows (Watts, 1979). Over the Kuril Trench track G3509 has
the same features as the Aleutian Trench.

An appropriate area to study deep-sea trench anomalies is in the
region of the Philippine Sea. This is the location for the Mariana and
Izu-Bonin, Philippine, Japan, and Ryukyu Trench systems. At the eastern
boundary of the Philippine Plate the Mariana and Bonin Island arc-trench
system has an interesting sequence of geoid undulations. Above the Izu-
Bonin Trench tracks G4824 and G4861 in Figure 3 have an increasing geoid
height as the trench axis is approached from the seaward side. Directly
over the axis of the trench there is a minimum of approximately 5 meter
amplitude. This 1s followed by an 18 to 25 meter increase to the high
over the Bonin Islands. Adjacent to this Bonin high there is another
minimum which is about 6 to 8 m in amplitude. Landward of the arc the
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geoid height remains fairly constant with a gradual increase. Further
south above the Mar{iana Trench the increase in geoid height seaward

of the trench is more evident due to lengthier tracks of data with G5323
and G4841. With these two profiles the increase in geofd hefght is

35 meters over 1500 km distance. Over the Mariana Trench axis there is
a 10 meter minimum followed by a steep 20 meter increase landward of the
axis. Above the Parece Vela Basin the geoid is fairly constant or has a
gradual increase.

In the western Philippine Sea the plate boundary is marked by the
location of the Philippine Trench. GE0S-3 geofd profiles over this
region are 11lustrated in Figure 4. In these tracks, as they approach
the trench axis from the West Philippine Basin, the geoid graduailly
increases in height by up to 20 m over 1800 km. Over the Philippine
Trench itself there is a 5 to 15 m low, followed by a steep 15 to 25 m
increase to a geoid high landward of the trench. Track G1694 passes
over the Halmahera Ridge which has a 5 m high and two flanking lows. In
the gravity field over this ridge there is a +36 mgal anomaly and an
adjacent -187 ingal low (Watts, 1976).

Some of the clearest examples of the geoid anomaly at deep sea
trenches occur in the region of the Tonga and Kermadec Trench system.
These are fllustrated in Figure 5. Beginning in the Southwest Pacific
Basin the geoid increases in height as the trench is approached. This
is an increase of almost 40 meters over a 2800 km distance. Similar to
the other trench axes discussed previously, there is a 10 m low over the
axis of the Tonga-Kermadec Tranch. This low is followed by a steep
increase of up to 30 m to the high region over the South Fiji Basin.

For GEOS-3 track G2445 the geoid immediately begins to decrease landward
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of the trench axis; from Figure 1 it is seen that the track almost
immediately is back over the Pacific Basin. For tracks G1989 and G1477
the geoid decreases when the Pacific Basin is similarly reached. Both
tracks 62018 and G1590 cross over the South Fiji Basin and then have a
local high above the Fij1 Plateau. Track G1590 has a s1ight minimum
above the South New Hebrides Trench.

On the eastern side of the Pacific Ocean the Peru-Chile Trench is the
location for subduction of the Nasca Plate. This trench also has a
gradually increasing geoid height as the trench axis is approached from
the seaward side. At this trench, however, the increase is very slight--
only about 10 to 20 m over 1500 km (Figure 6). Again, as seen in the
other regions, there is a 5 to 7 m low over the trench axis followed by
410 to 15 m step at the continental margin. Due to the presence of
land, no altimeter measurements were made landward of the trench.

Outside of the Pacific Ocean the only major trench system is in the
Indfan Ocean, the Java Trench. This region has the steepest geoid
nomalies seaward of the trench. At this location there is a slope of
about 55 m over a 1500 km distance (Figure 7). Above the trench itself
the Tow is not as pronounced as in other regions. Here it is only about
2 to 5 m deep. Following the trench low there is a dramatic 30 m
increase to the high region over the Java Sea. This increase in geoid
height continues behind the arc at about the same rate as seaward of the
trench.

After observation of GEOS-3 altimeter data over these active
subduction zones, an important conclusion is possible. Over all major
deep-sea trenches there is a distinct pattern in the geoid. Beginning

anywhere from 1000 to 3000 km seaward of the trench, the geoid increases
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in height until just prior to the trench axis. This very long increase
has a slope of 7 meters per 1000 km (1.4 seconds of arc) at minimum to
37 meters per 1000 km (7.6 seconds of arc) at maximum. In shape this
increase seaward of the trench is in some cases concave downwards
(Aleutian Trench); concave upwards (Java Trench); or fairly linear
(Tonga Trench). Directly over the trench axis there is a narrow minimum
in the geoid. This low is from 100 to 200 km in width and in depth
anywhere between 3 m and 15 m (measured from the maximum on the seaward
boundary). From the base of the trench axis low there is a steep
increase of up to 30 m to a high region landward of the tr.-ch axis. In
some cases; there is a distinct geoid high above the island arc. This is
most obvious with the Bonin Islands and also the Aleutian Arc. Landward
of the island arc the geoid is somewhat variable; behind the Aleutians
there {s a gradual lowering of geoid height. However, over the Java

Sea the geoid continues to rise. In other regions the geoid remains
fairly level landward of the trench. These features then are cha:acter-
istic of the geoid in the vicinity of deep-sea trenches; a grad-al long
increase as the trench is approached from the ocean basin, a narrow low
over the trench axis, and a relative high but with variable slope

landward of the trench.
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Gravitational Field in Vicinity of Deep Sea Trenches

From the GE0OS-3 altimeter measurements the characteristic geoid
anomaly ovar deep sea trenches has been ascertained. In previous work
at the ocean surface marine gravimeters have always been utilized to
measure the gravitational field. These former studies have defined the
free-air gravity anomaly which is characteristic of deep sea trenches.
An early study of the Tonga Trench mapped the major features of the
free-air gravity (Talwani, et al., 1961). In this work pendulum meas-
urements were used to detect the large negative anomalies over the
trench. Above both the Tonga and Kermadec Trench the free-air gravity
has a minimum 100 to 200 km in width and -200 mgal in amplitude. Landward
of the trench over the Tonga Ridge positive gravity anomalies, 100 to
150 mgal in amplitude, were described by Talwani, et al. (1961). This
region has a representative example of the typical free-air gravity
anomaly above the trench and island arc. A gravity and bathymetry
profile from Eltanin 29 is illustrated in Figure 5. For this profile
there is a -220 mgal low over the Kermadec Trench and an adjacent 50 to
100 mgal high above the Lau Ridge and Le Havre Trough. Other regions
have similar gravity profiles, although at the Java Trench there is a
double gravity low with an intermediate high (Figure 7).

Another common feature of the gravitational field is the existence
of a positive free-air gravity anomaly seaward of deep sea trenches.
This has been designated the Outer Gravity High by Watts and Talwani
(1974). Originally observations of a bathymetric rise seaward of the
Kuril Trench led Hanks (1971) to suggest horizontally compressive
stresses occur in this region. According to his hypothesis, these

stresses acting normal to the trench axis cause elastic deformation
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E ; of the lithosphere resulting in an outer bathymetric rise. This concept

g was utilized by Watts and Talwani (1974) to explain the occurrence of the

i Outer Gravity High. In their model the elastic flexure of the 1itho-
sphere causes the crust to bend upwards thus resulting in a positive gravity
anomaly. Gravity and bathymetric profiles from Vema 20-06 in Figure 2
show the outer topographic rise immediate¢ly seaward of the Aleutian trench
and the associated positive free-air gravity anomaly 50 mgal in amplitude.

A final feature of the gravitational field is the gravity anomaly
landward of the trench. Above marginal basins the free-air values are
near zero or slightly positive. As the crust in this area has a normal
oceanic thickness yet occurs at shallow depths relative to the deep
basin, it is possible to infer the existence of low density upper mantle
(Karig, 1971). Beneath the Fiji Plateau Solomon and Biehler (1969)
discovered a mass deficiency equivalent to a 1% density decrease to
100 km depth located within the mantle. Yoshii (1972) calculated that
Tow density mantle material occurs beneath the Sea of Japan. And behind
the Izu-Bonin Trench, Segawa and Tomoda (1976) also calculated lower
average mantle densities. What all of these studies indicate is the
presence of lower mantle densities behind deep-sea trenches, when compared
to the deep ocean basins.

Combining all of these observations together, one can describe the
characteristic free-air gravity in the vicinity of deep sea trenches.
Immediately seaward of some trenches there is often an Quter Gravity
High. This is about 50 mgal in amplitude and several hundred kilometers
in width. Directly above the trench axis there is a narrow low, usually
-150 to -250 mgal in amplitude. 1In the island arc region there are positive
anomalies over the topographic highs with amplitudes of more than +200 mn3?

Landward of the island arc the free-air gravity anomaly is often close .
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zero or slightly positive. However, after elimination of crustal effects,
lower average mantle densities are present when compared to the deep

ocean basin region.

151




Combination of Gravity and Geoid Measurements

Technically, measurement of either the gravity field or geoid gives
all the information possible about density variations within the
Earth. Only one type of measurement is necessary. In a practical
situation, due to the presence of noise, both altimetry and gravimetry
measurements are useful for studying the density heterogeneities; they
provide complementary information. To see why this is true, consider
the nature of the geoid and gravity field. As observed in the previous
figures (2 to 7), the geoid mostly has gradual undulations. Primarily
it has long wavelength information. Free-air gravity anomalies,
however, contain many fine details; in the gravity field short wave-
length information is most evident. Due to the long wavelength char-
acter of the geoid and the high wavenumber nature of the gravity field,
for wavelengths longer than a certain number a radar altimeter will
record the gravitational field with a higher signal to noise ratio; but
at shorter wavelengths a marine gravimeter will perform better. This
is illustrated in a quantitative manner by Chapman and Talwani (1979).
When using data from both an altimeter and gravimeter the best possible
information can be obtained at both shorter and longer wavelengths.

For the Earth's gravitational field quite often long wavelength
anomalies are ascribed to deeper structures while shorter waveliength
features are explained by the more shallow structure. For example,
gravity anomalies less than several hundred kilometers wide are often
modeled by crustal structure as in the study by Talwani et al. (1961).
Long wavelength undulations typically are explainea by phenomena within
the mantle. Bott (1971) suggested the mantle transition zone was the

cause of harmonics for wavelengths longer than degree and order 8.
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This practice of relating longer wavelength anomalies is explained
by two principles. If a deep body has detailed structures and consequent
high frequency gravity anomalies locally, these details will be lost due
to attenuation with depth - only long wavelength information will remain.
A second principle is that long wavelength gravity anomalies cannot be
maintained by shallow structures. They would generate stress differen-
ces in excess of the breaking strength of the shallow material. Com-
bining these principles with the previous discussion, it is possible to
see that marine gravity probably gives the best constraints on the shallow
densities while radar altimetry is most useful for determining the
deeper density heterogeneities. When data from these two sources are
combined, there should be useful information about both the deep and
shallow lateral density variations within the Earth.

In using both geoid and gravity data to constrain Earth models,
a problem arises with the gravity values. Very often in the region
landward of the island arc the free-air gravity anomaly is close to
zero, yet the geoid is high. This would appear to make interpretation
quite difficult. It must be realized though that the free-air gravity
anomaly is caused by both mass inhomogeneities and changes in height
of the geoid. Any effect due to gevid height differences is often
termed the 'Indirect Effect'. To insure that gravity values are only
caused by anomalous mass, a geoid correction term should be added to
the free-air gravity. These geoid corrections in marine gravity are
discussed by Bomford (1962) and by Chapman and Bodine (1979). After
correction for this factor both gravity and geoid values may then be

properly interpreted.
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To give a concrete example of these ideas, we utilize a previously
published density model. In a thorough study of the Izu-Bonin Trench,
Segawa and Tomoda (1976) used the free-air gravity anomaly and seismic
refraction data to infer the crust and upper mantle density structure.
Their model had an excellent match with the observed free-air gravity
values. A reasonable fuestion to ask then is can this model be used to
calculate geoid heights in agreement with the observed values. To
answer this we utilized their model to compute the geoid anomaly. The
result is illustrated in Figure 8. Above the calculated geoid height,
the observed values from GEQS-3 are shown. The computed anomaly com-
pares poorly with the observed data. This density model cannot explain
the geoid anomaly over deep sea trenches. This poor agreement is due to
two factors. As the calculated geoid values disagree with the measured
data, there are obviously incorrect densities in their model. From our
previous discussion it may be suggested that these incorrect density
values are within the mantle. This is, however, not certain. Another
important factor is the use by Segawa and Tomoda of the free-air anomaly.
They neglected the 'Indirect Effect'. Landward of the arc, a value of at
most 12 mgal should have been added to the free-air anomaly prior to inter-
pretation. We have used this example to indicate that the use of geoid
data in conjunction with gravity values provides a new and more powerful
constraint on density models. The study of the Izu-Bonin Trench by
Segawa and Tomoda (1976) was one of the most complete and excellent
studies of a trench region; their model had very good agreement with the
data they utilized. At this time, however, new data on geoid heights
are available which would provide additional information to constrain

their density model.
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Possible Causes of the Geoid Undulation

Due to the inherent ambiguity in gravity interpretation, it is
always necessary to first consider the relevant physical processes for a
given region. An understanding of these processes enables the range of
possible density models to be greatly restricted. Existence of a posi-
tive regional free-air gravity anomaly landward of active trenches has
been previously known due to satellite based gravity models (Kaula,
1969). A primary suggestion as to the cause of this anomaly is an
excess mass due to descending l{ithosphere. While the slab penetrates
into the asthenosphere it gradually heats up due to thermal conduction.
As the rate of heat transfer is quite slow compared to the rate of sub-
duction, the descending slab is in many cases cooler than the surroun-
ding asthenosphere. Due to such thermal differences, the slab is denser
than the adjacent material. This is an excess mass and causes a posi-
tive gravity and geoid anomaly (Griggs, 1972; Hatherton, 1970 and 1969).
In the calculations by Griggs the density contrast between the slab and
surrounding asthenosphere was at some depths greater than .2 gm/cm3.
This generated a gravity anomaly of +100 to +300 mgal in amplitude,
depending upon the model parameters. Griggs also specified an undefined
form of regional compensation. In a study of the crust and upper mantle
beneath the Chile Trench, Grow and Bowin (1975) utilized density contrasts
between .024 and .05 gm/cm3 for the descending lithosphere. For the
Izu-Bonin Trench, Segawa and Tomoda (1976) used a density contrast of
.05 gm/cm3 for the slab. In a discussion on the gravity effect of
downgoing slabs Watts and Talwani (1975) concluded the total arovity
effect is 1imited in extent to the island arc-trench region and suggested

that the regional positive anomaly is due to some other mass inhomogeneities.
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In order to analyze the possible effect of a denser slab, a simple
calculation has been made utilizing a two-dimensional technique (Chapman,
1979). The hypothetical slab extends from 100 to 400 km depth where
there i{s a density contrast of +.04 gm/cm3 with the surrounding mantle
(Figure 9A). For this theoretical example there is a gravity anomaly of
+55 mgal and a geoid undulation of 30 meters. The geoid anomaly {is
maximum over the center of the slab and decays downwards on either side.
It should be noted that for all these two-dimensional calculations the
absolute level of geoid height is arbitrary.

Another possible suggestion as to the cause of the trench geoid
anomaly might be the outer bathymetric rise often found seaward of deep
sea trenches. Such a model has been utilized tc explain the free-air
gravity seaward of the trench axis (Watts and Talwani, 1974). 1In the
study of Watts and Talwani the bathymetric rise was considered to be the
result of elastic flexure of the lithosphere due to regional stress
fields. In Figure 9B such a possible model is illustrated. While the
calculated gravity can explain the Quter Gravity High at trenches, the
computed geoid anomaly is only 5 m high and a few hundred kilometers
wide. As the observed geoid anomaly at deep sea trenches is much
wider and larger in amplitude, the outer bathymetric rise would explain
only a minute portion of the observed geoid undulation.

One plausible mechanism to generate the geoid high invclves density
changes within the mantle. Gravity studies in the past have indicated
a need for lower mantle densities (relative to the deep ocean basin)
landward of the trench. This observation was made by Karig (1971) after

studying seismic and gravity results at marginal basins. He noticed
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POSSIBLE CAUSES OF GEOID UNDULATION
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free-air values of gravity were near zero above these basins. Seismic
results showed the crust in these areas to be of standard oceanic
thickness, and yet to occur at shallower depths relative to the deep
ocean basin. Arbitrarily assuming deep ocean basin to be normal, behind
the trench there are higher densities at shallow depths. Relatively
lower densities occur deeper. This is a dipole type, layered mass
distribution. Using the expressions of Ockendon 4 Turcotte

(1977), this type mass distribution is seen to cause a positive geoid
anomaly above the marginal basin.

There are two possible ways to have lesser average mantle densities:
either lateral changes in thickness or density of a body. Figure 9 C
{1lustrates the first possibility. In the region landward of the arc
water depths are shallower, yet crustal thickness is everywhere constant.
At these shallow depths there are higher relative densities landward of
the arc, when compared with the deeper ocean basin. Compensation
occurs by having lower density (3.35 gm/cm3) mantle material at depth.
If compensation is not complete then the geoid and gravity high are
accentuated. This case is also {1lustrated in Figure 9 C. Figure 9D
i1lustrates the second possible type mass distribution. Compensation
occurs by having lower density material throughout the mantle to 100 km
depth. An important observation can be made by comparing Figures 9 C
and 9 D. Both of these models cause virtually {identical geoid and
gravity values. Thus utilizing this type of data, the two types of
possibilities are indistinguishable. Additional constraints would
be necessary to differentiate between the two causes.

One final process which might affect geoid undulations is the
presence of phase transformations within the descending 1ithosphere.

Due to changes in pressure and temperature in the subducting slab, the
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mantle material will undergo changes in phase at various depths (Ringwood,
1976). Oue to thermal differences, the transition at 400 km would
migrate upwards in the slab with a consequent .2 gm/cm3 increase in
density. If the slab {s considered a separate body, then it will
conserve mass and the volume of the slab will decrease due to such phase
changes. Decrease in the slab volume insures that the total excess mass
is constant. After phase transformation the calculated geoid and gravity
anomaly is virtually identical to the values calculated prior to the
change of phase. This is because the total excess mass is unchanged.
Thus any occurence of phase transformations within the descending 1itho-
sphere has no effect on the calculated geoid and gravity anomaly.

There is of course no harm in including phase transitions within the
descending 1{thosphere, as many authors have done.

After considering all of these physical processes, several obser-
vations are possible. Any effect of the downgoing slab may be signi-
ficant. However, the calculated anomaly is maximum over the center of
the slab and decays to either side. This calculated shape is dissimilar
to the observed geoid undulation over deep sea trenches. The slab
effect may be a contributory cause but cannot be the only mechanism
which is involved. There must be some physical process to generate a
generally high geoid anomaly landward of the trench axis. A probable
mechanism which will explain the geoid high behind the arc is a shallow
crust either partially or totally compensated at depth by a mantle
with variable thickness or density. Any presence of an outer bathy-
metric rise will have only a minor effect on the calculated geoid; phase
transformations within the descending slab will have no effect on the

calculated geoid undulation.
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Study of the Tonga-Kermadec Trench

———

Any attempt to ascertain the cause of the geoid anomaly over deep-
sea trenches is best made by the explicit study of a given region. In
the vicinity of the Tonga-Kermadec Trench the characteristic geoid
undulation is quite evident and suitable data exists to study this
area. One of the earliest studies of the Tonga Trench utilized pendulum
gravity measurements aboard a submarine in combination with seismic
refraction data. In this study by Talwani et al. (1961) a crustal
thickness of 36 km was calculated for the Tonga-Kermadec Ridge. As
part of a comprehensive study of Melanesia extensive two-siiip seismic
refraction results were reported by Shor et al. (1971). This latter
work is very useful because the seismic results give constraints on
the thickness of the crust and sediments landward of the trench axis.

In this present study gravity data were utilized which had been
obtained on Eltanin cruise 29 from June to August 1967. Gravity
measurements were made with a Graf Askania Sea Gravimeter Gss 2
mounted on an Anschutz stable platform with an electrically erected gyro.
Cross coupling errors were corrected by the use of an analog system.
During this cruise a satellite navigation system in combination with
the ship's electromagnetic log was used to provide accurate locations.
Navigation, bathymetry, gravity and seismic profiles from Eltanin 29
are presented in a report by Hayes et al, (1972).

Profiles of bathymetry, gravity and geoid data across the Kermadec
Trench are illustrated in Figure 3. The gravity values are the

gravitational attraction of anomalous mass. This is obta.ned by

addition of a geoid correction term (Chapman and Bodine, 1979) to
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the free-air gravity anomaly. The effect of this correction is to
increase the gravity values landward of the trench by 18 mgals maximum.
Geoid measurements are from the GE0S-3 satellite. Both gravity and
geoid values are referenced to a best fitting ellipsoid with flattening
1/298.255.

With the gravity data there is a 210 mgal high over Osborne Seamount
(Part of Louisville Ridge) immediately seaward of the trench axis.
Directly above the Kermadec Trench the gi.vity minimum is -210 mgal,
while over Lau Ridge and Le Havre Trough gravity values average +70
mgal with peaks up to +140 mgal. Landward of the arc system there is
a regional high of about +35 mgal above the South Fiji Basin. With
data from GEQS-3 track G1477 the geoid anomaly characteristic of deep-
sea trenches is evident. Beginning 1600 kilometers seaward of the
trench axis the geoid is +8 meters; gradually it increases in height
to +36 meters. Over the Kermadec Trench there is a lTow region in
the geoid which is at a +27 meter level. Landward of the trench
the geoid increases in height up to +56 meters, it remains at this
high level above the South Fiji Basin.

Any model of this region must be able to expiain the general
characteristics of the gravity and geoid. The density model must
be able to produce a calculated geoid high landward of the arc, a
Tocal minimum above the trench axis and a gradual decrease in geoid
height progressively seaward of the trench axis. From the bathymetry
it is evident that the South Fiji Basin, Lau Ridge and Le Havre Trough
are shallower than the Southwest Pacific Basin. These shallower
depths must be at Teast partially compensated otherwise there would be
much higher gravity values landward of the trench. Of primary interest

then is where the lower average densities must occur.
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A standard assumption in gravity modeling is that variations in
crustal thickness can be the mechanism of compensation. In our model
this was not the sole mechanism. Our final crustal model is illustrated
in Figure 11. The gravity effect of this is also shown in comparison
with observed data. Quite obviously this model produces gravity values
much greater than observed data for the region landward of the trench
axis. This calculation indicates the necessity for lower average
densities to be present in the mantle landward of the trench. A similar
conclusion has been reached by other authors for different trench regions;
for example, Segawa and Tomoda (1976) in the Izu-Bonin region.

This model of the crustal structure was obtained by consideration
of seismic refraction data from Shor et al. (1971) to help constrain
crustal thickness. As their measurements were obtained about 60 nm
to 300 nm south of the Eltanin 29 track, they were projected along strike
to the ship profile. For the Southwest Pacific Basin no refraction data
existed and a standard oceanic crust was assumed. In the standard
model there was 5.5 km water, 2.0 km upper crust with density 2.7 gm/cm3,
4.0 km lower crust with a 2.9 gm/cm3 density overlaying mantle material
with density 3.4 gm/cm3. In the Southwest Pacific ">sin any deviations
from the standard model were fully compensated in an Airy manner. After
inclusion of mantle densities, crustal structure landward of the trench
was slightly adjusted until calculated gravity values agreed with
observed data. Even though the refraction data was not perfectly
coincident with the ship track, our final crustal model is in good
agreement with seismic results. Table 2 has a comparison of the density
model and seismic refraction values of Shor et al. (1971).

For both this crustal model and the entire model including the deeper

mantle a spherical Earth method was used. Johnson and Litehiser (1972)
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developed a technique for calculation of gravitational potential and
attraction due to a spherical cap with polygonal sides. Geoid height is
computed by dividing anomalous potential by normal gravity. In our
utilization of this method the body is a input in cross section. Each
segment is a spherical lamina which extends perpendicular to the cross
section a certain distance. In our model the width was 2000 kilometers.
Modeling was initially done assuming a plane two dimensional earth,

later modeling only used spherical earth calculations. It was discovered
that due to neglect of curvature the plane earth models gave erroneous
values seaward of the trench. To insure that anomalous mass was being
used, the gravitational effect of a standard Earth was subtracted. The
standard model contained standard oceanic crust as previously defined and
uppermost mantle 88.5 km thick with density 3.40 gm/cm3. Only hori-
zontal differences in density are important thus any effect of adiabatic
compression was neglected. Our model thus contains no information on
vertical density contrasts. A1l that is important are the lateral
density differences.

Inclusion of mantle structure completes our final density model as
shown in Figure 12. Crustal structure is identical to that which is
j1lustrated in Figure 11. This model contains structures which were
defined by seismic research. Seismicity studies have shown the presence
of the Benioff zone (Sykes et al., 1969), while seismic velocity and
attenuation anomalies (Mitronovas and Isacks, 1971; Oliver and Isacks,
1967) indicate this zone is caused by descending 1ithosphere. In our
model * location of the descending lithospheric slab is based on the
most recent seismicity study by Billington (1979). Thickness of the
slab was constrained at 55 km down to a depth of 250 km and at 40 km for

depths to 600 km. Studies of attenuation of shear waves indicate the
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presence of a low Q zone above the slab near Tonga (0Oliver and Isacks,
1967). Possibly this indicates an anomalous zone, thus a region of low
density material was 1nc1udeq between 65 km and 180 km depth beneath the
island arc. This anomalous zone may extend to shallower depth or also
further landward. Because there was no defini-e seismic evidence concerning
its upper 1imit, this was not done.

Our procedure in modeling was to first use seismic refraction data
to constrain crustal structure. For the mantle location of a descending
slab and low Q Zone were then fixed, constrained as well as possible by
seismic studies. Density of the uppermost mantle was assumed to be
3.4 gm/cm3 while underlaying mantle was fixed at 3.35 gm/cm3. For the
mantle region densities within the slab and low Q Zone were varied, as
was the thickness of the uppermost mantle landward of the slab. Minor
adjustments in crustal structure were also made until calculated values
of geoid height and gravity agreed with the measurements.

Mantle structure in this final model has the following charac-
teristics. Depth to the lower density mantle landward of the trench is
35 km less than beneath the Southwest Pacific Basin. Thinning of the
uppermost mantle body is the mechanism for generating a mass deficit
within the mantle. This is because density of the lower density mantle
is .05 gm/cm3 less than density of the uppermost mantle body at similar
depth. These lower average densities are the compensating mechanism for
the higher average densities at shallow depths landward of the trench.
However, this model is not fully compensated. At a depth of 100 km
there is a difference in pressure of 60 bars beneath the South Fiji
Basin compared to the Southwest Pacific Basin. There is an excess of

4

mass amounting to 7.3 x 10 gm/cm2 in a column beneath the South Fiji

Basin relative to the Pacific Basin. This mass excess would correspond
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to a +31 mgal anomaly over the South Fiji Basin, assuming a Bouguer
approximation.

In this model the effect of the slab is relatively small. Compared
to the surrounding mantle the slab has a density contrast of +.02 gm/cm3.
During our modeling procedure it was discovered that if the density
contrast of the slab was +.05 gm/cm3 or larger there would be no calculated
low in the geoid over the trench axis, although there would still be a
=190 mgal minimum above the axis. Use of the geoid data constrains
the density contrast of the slab to be less than .05 gm/cm3 relative to
the surrounding material. In order to match the observed data, however,
the density contrast was only +.02 gm/cm3. Gravitational effect of the
slab is illustrated in Figure 13. Both geoid and gravity are maximum
above the slab with values of +13 m and +24 mgal respectively. Presence
of lesser densities in the low Q zone negate the effect of the slab. Due
to both bodies the total effect is -8 m and -38 mgal at maximum. As
regards the effect of the slab, several conclusions are possible. There
is a maximum density contrast of +.05 gm/cm3 for the slab, although in
our model it is required to be a lower value, +.02 gm/cm3. Calculated
geoid heights and gravity values due to the slab explain only a small
portion of the observed anomaly. Presence of lesser densities in the
low Q zone counteract the influence of the slab and result in a total
effect which is slightly negative. As the net effect of both the slab
and low Q zone explains only a small portion of the observed anomaly, it
might be possible to construct a total model excluding those bodies.

Such a possibility was not tested however, because there is definite
seismic evidence for these bodies. But it is clear that from gravity

and geoid evidence alone, the evidence of a dense slab cannot be inferred.
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Summary and Conclusions

After observing GEOS-3 radar aitimeter data, a characteristic geoid
anomaly has been identified which occurs over all major deep-sea trenches.
Seaward of the trench there is a gradual increase in geoid height with
higher values near the trench and lower geoid heights progressively seaward.
Slope of this very long increase ranges between 7 meters and 37 meters per
1000 km of distance. This gradual slope begins anywhere between 1000 and
3000 km seaward of the trench. In some regions the slope is concave downward
as at the Aleutian Trench. Other areas have a slope which is fairly linear
(Tonga Trench) or concave upward (Java Trench). Directly above the axis of
trenches the geoid forms a narrow low from 100 to 200 km in width and
anywhere between 3 m and 15 m in depth. Beginning at the base of the trench
axis low there is a steep increase in geoid height of up to 30 m to a high
region landward of the trench axis. Over some island arcs, for example the
Bonin Islands or the Aleutian Arc, there is a distinct ¢=0id high. This is
between 5 and 10 m in amplitude. Landward of the trench axis the geoid has
a generally high level relative to the deep sea basins. In this region
however, slope of the geoid is variable. Behind the Aleutians the geoid
has a slow decrease progressively landward, while over the Java Sea there
is a progressive increase. In other regions the geoid remains fairly
constant landward of the trench.

In utilizing data to study the Earth it is best to combine both geoid
and gravity measurements. Gradual undulations of the geoid constrain
densitics deep within the Earth while gravity anomalies help determine
crustal density. In using both types of data it is important to correct the
free-air gravity anomaly for undulations of the geoid. Addition of a geoid

correction term insures that gravity values are equal to the attraction of
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the anomalous mass.

A density model of the Tonga-Kermadec region has been constructed
which explains both the observed gravity and geoid values. Occurence
of both a geoid and gravity high landward of the trench is caused by a
dipolar type mass distribution. Landward cf the trench axis, water
depths are shallower when compared to the deep ocean basin. Thus at
shallow depths there are higher densities relative to the Southwest
Pacific Basin. An abnormally thick crust is not the mechanism for
compensating these higher relative densities. Rather, in our model,
compensation occurs by thinning of the uppermost mantle body. Beneath the
South Fiji Basin lower density mantle material occurs at a depth 35 km
shallower than beneath the Southwest Pacific Basin. These lower relative
densities do not provide full compensation. At 100 km depth, pressure
beneath the South Fijf Basin is 60 bars greater than beneath the Southwest
Pacific Basin.

Perhaps one could associate the uppermost mantle body (density equal
to 3.4 gn/cm"’) with 1ithosphere and the less dense, underlying mantle
body, with asthenosphere. Using this terminology, partial compensation
occurs within the mantle by a thinning of the 1ithosphere beneath the
South Fiji Basin. According to Watts et al. (1977) age of the ocean
floor in this region is approximately 30 m.y.b.p. If this were normal
oceanic 1ithosphere, depth to the asthenosphere would be expected to be
approximately 65 km (Forsyth, 1977). This coincides with our model and
is an interesting observation, but most 1ikely fortuitous.

In explaining the geoid anomaly any effect of the descending
Tithospheric slab is Timited. Density contrast for the slab cannot

exceed .05 gm/cm3, but in our model is only .02 gm/cm3. In our model
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gravity values due to the slab are +24 mgal at maximum.

In the characteristic geoid anomaly at deep sea trenches there is
an increase in geoid height as the trench is approached from the seaward
side. This gradual sloping of the geoid seaward of the trench is
entirely explained by the mass distribution landward of the trench axis.
No annmalous mass (relative to landward regions) beneath the Pacific Basin
is required to explain the gradual siope in the geoid.

During our modeling, 1t was found that it was quite difficult to
match both gravity and geoid values. This 1s a qualitative observation
that they provide complementary information. Also the geoid was quite
sensitive to changes in mantle structure. If the depth to the lower
density mantle material landward of the arc was altered by 5 km, there was a
10 m change in calculated geoid height. Yet in gravity this caused only
a 10 mgal difference.

As in any study of the gravitational field there are 1imitations to
our model. For example landward of the trench we cannot distinguish
between thinning of an uppermost mantle body or lesser densities within
the uppermost mantle. A thinner mantle body is the mechanism we utilized
to produce a mass deficit at depth, but a seismic study would be nece-
ssary to confirm this conclusion. Similarly for the descending slab a
qualification is necessary. For a slab thickness of 55 km thinning to
40 km, it was found that the density contrast could not be .05 gm/cm3 or
greater. Otherwise the geoid low above the trench axis could not be
computed. If however a thicker slab were utilized, the density contrast
would decrease. This data would not be able to distinguish between
different thickness of descending 1ithospheric slabs. Lastly, in our

model density within the mantle was assumed to have no lateral variation.
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This is an untested assumption, but perhaps seismic surface wave studies
in the ocean basins could detect any such variability within the
mantle.

Study of the Tonga-Kermadec region raises interesting questions.
Can the sloping geoid anomaly seaward of all trenches be explained by
mass disteibution landward of ti. trench axis? As this anomaly is
variable in shape, perhaps mass heterogeneities are also required
beneath the deep ocean basins.

Another enigma {is the variability in geoid height landward of the
trench axis. Can a model be constructed which would produce a variable
geoid slope in this region? Our modeling seemed to suggest this would de
possible by varying the horizontal extent of the dipolar type mass
distribution.

Another intriguing :esult in our model is the excess pressure at
100 km depth landward of the trench. What are the forces required to
sustain this model in equilibrium? Presumably any dynamic model which
can geanerate such forces, would give rise to a geoid and gravity ano-
maly. In cur model any variation in density within the asthenosphere
was naglected, yet such differences would be required to maintain our
model in equilibrium. Sleep (1975) has suggested a model for flow
beneath island arcs. In his work topography was explained by stresses
amounting to several hundred bars. It would be most interesting to
construct a geophysical model capable of explaining any possible dynamic

flow along with observed geoid and gravity anomalfes.
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APPENDIX
A) Finite Vertical Sheet
Z2 i |%2
. ' 1y2 ut 2 ! i
N=Go 109e{(x-X)+ [(x-x )+ (y-y") +(zz)§
Y
2) X1

This integral is of the form

loge {a + [_Bz + X2
letting u2 = 82 + xz. restricting u:> 0 and 1ntegrating by parts we obtain

= [ - Bz_:’éloge (a+u) - [u?-82 BZJ du

a +tu

and after 1ntegra2‘ng again

= EJ -BZJ'log (a+u) [u -82]
+ a log, {[U - 32.1+ U}"‘ - a2 Sin'][l gb2 + au!]
[ - aZJ a+ul |b]
or finally

ﬁoge {a + [52 + X ?dx x logg {a + [bz + xZJ?
+a log, {x + B2+ XZJ?+ ,
B2 - % fp2 s a D2 + x?J&}]
' a+ [£2+ x‘g [8]

restricting x > o

B) Two dimensional rectangle

N=- G.&f{(y - y') logg [y - yH2+ (- 299 -2y
Y

4
y
+2lz-2" Tan™! -y } 2 dz
1z -2z

y
1
restricting (z - z') > o (this is the same integral as used for the two dimensional

sheet) and integrating
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N=- L&{ (y-y") [(z-z') logg [(y-y')2 + (z-2')2] - 22

Y
+2 |y-y'| Tan"1 (z-2' ]- 2yz2
Y=y
Z2 Y2
-1
+ 2 (2-2') Tan -y') dz
S frg o3
"

Z;

This last integral is of the form

ﬁ Tan™! adz
z

Letting w = a then integrating by parts we find

Z
1 Tan T wdw=-1€014+1) Tan" YW+ 1
3 2 > W
W w
so finally

N=- G_.EE (.Y‘.Y') [(2"2') 10ge [(y-y')z + (2-21)2]
Y
z-2' ] -2yz
|¥=y
Y2 (22

+ [(z-z')2 + (v-y')%1 Tan™ {‘Y-"H'J' (z-2') (y-y')B
z-

"

-2z +2 Jy-y Tan™!

C) Two dimensional polygon
For the ;th side of the polygon we have

ng = _/§<y-y') loge [ly-y")? + (z-2)%1 - 2 (y-y")

+ 2 (z-2') Tan™! (y-y' } dz
sz-z';

and we integrate along a linear line segment defined by z =mj y + by ;

assuming m{ and 1/mj are not zero we obtain

182

ST AR e ‘“"1




24

ng = \/ {[(Z'B‘I)/mi -y') loge [(Z-B'i -y)z + (z_zs)z]

my
Zi1
-2 2-B -y) + 2 (z-2') Tan~ (-31 - )
My
z-2')
where my = 24 - 24 -]
Yi = ¥4 -1
Bi = 25 - mj yy

First part of tﬁe integral is of the form X loge (a+bx+cx2) dx and is a
standard integral. Third part of the integral is of the form x Tan"!

[(Cx + D)/x] dx. Letting u = (Cx + D)/x and integrating by parts, this

becomes

-0_2_[-Tan']u+f du ]
2 (u-c)2 (u-c~)2 (1+u2)

After the final integration we find for the third part

/; Tan™ [(Cx*D)/x] = ¥ { x2 Tan"! [(Cx+D)/x]

-c 02 log, [(mz) x? + 2C0x + 02]
(14c2)? p

+Dx  + (1) 0% 1an’! [(Cx+D)/x]}
(14?)  (14c4)?

Thus formula 23 cun be integrated to obtain formula (24).

In evaluating the line integral the following special cases are also
important.

3 Case (a). If m. = 0, then dz is zero and consequently n; is also zero.
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Gase (b). If 1/my = 0 then y is constant along the line segment and the
line integra. (23) fs written as:
24
] [ ] 2 1 2
ny = (ys-y') log, [(y-y")© + (z-2')"]
i,

-2 (ys-y') + 2 (z-2") Tan"! (yry')} dz
(z-2")
This is identical in form to the integral for the two dimensional rectangle
and is solved in an identical fashion.

Case (c). If the extension of the line segment passes through the

observation point (when By/m; + y' = 0) then the line integral (23) is

written as
Z
ng = Z log, [(1+1/m 2) 22] -2 2/m
i == 9e i i
i
219

+27Tan) (im) 3 @
assuming 2' = 0, Z> 0
This is easily integrated to become equation (27).
D) Three dimensicnal polyhedron. For the j'th line segment of the
i'th facet we have, after integrating equation 36 by parts and rearranging

ni+]
)
L; . Eﬁi % n ]oge{ (mjn"'C;) + [(mjn+;3)2. + n2+5¥]6}
2y M
nj4+] Mi+]
n 2 s
ooy Mdn _cj dn v,
J f(mymecg) en®eal ] 72
n.i ni
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i

'j[ (mgo?n + c30%) 4,
Y
(n2+9$) ﬁmjn"'cj)z*' nzﬂﬂ :

K

The first integral is independent of the path of integration, thus when
L; s summed over all line segments for a closed path this integral will sum
to zero. Consequently, we ignore this term. The second integral is in a
standard form. To solve the third integral the substitution is made.
n= mg 9% - t}z X

Ty ¢3) )
This will transform the last integral into

%
2.2. o 2.2 o
["'J"i"‘ﬂ Lriiy / dx %

(c3%2 + mgod) B?ﬂ+m?g+ﬁ(ﬁg+;?g

which is a standard form and can be integrated. This same integral (36) has
also been solved for gravity problems by Barnett (1976) and Paul (1974).
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ance in explaining this geoid anomaly. A gradual slope of the geoid seaward of the trench axis is
explained as simply due to the mass distribution landward of the trench,
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