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INTRODUCTION

An ancient problem which has intrigued mankind concerns the shape

of the planet on which men reside. How big is the Earth and what shape

does it have? To answer this question people developed the science of

geodesy, the study of the shape and size of the Earth. Traditionally

this field has often been isolated from other branches of Earth science,

its goal being narrowly defined as the precise determination of the

figure of the Earth and distances thereon. As the general shape has

been known for quite some time, this principal question has been repea-

tedly answered with successively better accuracy. At this time however,

geodetic research is undergoing a transition towards greater interaction

with other Earth sciences such as geophysics and physical oceanography.

This change	 due to new advances in technology, specifically to the

development of radar altimeters mounted on board Earth orbiting satel- 	 •

lites. These instruments are capable of mapping the shape of the ocean

surface and providing accurate estimates of the geoid height. Such an

advance promises to yield new and exciting information about the Earth.

As always though in any new field of research there are basic problems

and questions prior to any new discoveries. In this thesis such fun-

damental questions are first addressed, and then this information on the

shape of the ocean surface is utilized to make new inferences about the

internal structure of the Earth.

For centuries mathematical geodesists have been able to calculate

the shape of the Earth. If the internal density distribution is known

then an appropriate differential equation can be solved for the ellip-

ticity of the Earth. Alternatively after measurement of the gravity

field on the surface of the Earth, Stokes' formula can be utilized to

calculate the geoid. The geoid is defined as a gravitational equipotential



surface which most nearly coincides with mean sea level. Quite often

it is termed the shape of the Earth.

Rather than calculation of this shape, an alternate approach is the

direct measurement of the shape of the Earth. To a good approximation

this is possible when utilizing radar altimeters mounted on board

orbiting space craft. Such an instrument determines the height of the

satellite above the instantaneous ocean surface. After combination with

accurate orbital tracking of the satellite motion the height of the

ocean surface relative to the Earth's ellipsoid is determined. Tech-

nically the instantaneous sea surface height departs from the geoid by

up to approximately 1 meter in the deep sea due to oceanographic effects

such as tides and currents. Since the geoid signal s much larger than

this, up to 100 meters, these oceanographic influences can be termed

noise. Thus satellite altimeters determine the height of the marine

geoid in the presence of oceanographic noise. For most geophysical

purposes this is a suitable approximation.

In April, 1975 an Earth orbiting satellite was launched by NASA. It

was called GEOS-3, and its mission dedicated to the mapping of the shape

of the ocean surface. This satellite has provided a wealth of new

information about the Earth, specifically more than 20 million kilometers

of measurements of the marine geoid. In order to use this information

to study the interior of the Earth there are basic questions to be

answered. Does this instrument really determine the marine geoid, and

how well does it function? To partially answer this question it is

possible to calculate the marine geoid from ship gravity data and make

comparisons with the satellite altimeter data. This is accomplished in

chapters 1 and 2. Given measurements of the geoid, what are the

techniques necessary to interpret the data and make inferences about

Y
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internal densities which cause the anomalies? In chapter 3 such methods of

interpretation are developed. What are the basic results of satellite

altimetry, what types of geoid anomalies have been detected? A basic survey

of the various types of geoid anomalies is presented in chapter 4. In

utilizing geoid data to study the Earth, it is best applied in combination

with marine gravity data. But in utilizing gravity measurements at sea,

what corrections are necessary !-ecause they were made on the undulating

geoid? The need for geoid corrections in marine gravity is demonstrated

in chapter 5. Lastly the question is asked, what new information about the

Earth has been learned from the GEOS-3 satellite. In the final chapter a

study of geoid anomalies over deep sea trenches demonstrates the power of

marine geodesy and marine gravity in studying the interior of the Earth.

In order to determine how well the GEOS-3 radar altimeter maps the

geoid, it is possible to make comparisons with an independently determined

geoid. In the first chapter this procedure is described for the region of	 .

the Indian ocean. To caiculate the geoid height, a technique using

differences in gravity and geoid values is utilized. Initially average values

of free air gravity are obtained for 1° x 1° squares in the region. Then

values of gravity calculated from the GEM-6 gravitational field model are

subtracted from the average values to obtain difference gravity data.

Integration of this difference gravity using Stokes' formula results in the

calculation of the difference geoid; this is added to the GEM-6 theoretical

geoid heights to obtain the total Indian Ocean 1° x 	 gravimetric geoid.

This regional geoid has features such as the Indian Ocean low of -130 m as

well as a regional high in the Southwest Indian Ocean.

Utilizing the Indian Ocean geoid as well as gravimetric geoids from

the North Atlantic and Northwest Pacific Ocean extensive comparisons have

3



been made with GEOS-3 radar altimeter estimates of geoid height, this is

described in chapter 2. A most obvious conclusion from such comparisons

is the constant offsets between the two data sets. These errors may be

due to scale errors in the reference ellipsoids, lack of atmospheric

corrections for the gravimetric geoid, errors in calculation of the

orbit in the radial direction, or altimeter bias errors. Another observation

is that altimeter data collected with the intensive mode instrument is less

noisy than global node measurements. Even after elimination of long wavelength

errors, there are still discrepancies between the two data sets. In some

cases this is due to the averaging procedure of the gravimetric geoid con-

struction. It appears though that after correcting for errors in orbital

determination and other long wavelength errors, the satellite radar altimeter

can be utilized for a global mapping of the marine geoid, with resolutions

greater than are easily achieved with gravimetric geoids.

After establishing the validity of the radar altimeter measurements,

it is necessary to develop new techniques to interpret marine geoid data.

This is accomplished in chapter 3. To demonstrate various properties, ideal

bodies of constant density are first utilized to calculate the geoid anomaly.

While such an approach has a certain initial utility, more realistic direct

methods require the computation of the geoid anomaly due to arbitrary two

and three dimensional bodies. In developing the formula for a two dimensional

polygon, the surface integral expression for geoid height is changed to a

line integral formula via Stokes' theorem and then integrated. For a three

dimensional polyhedron the volume integral expression for geoid height is

first converted to a surface integral by using the divergence theorem and

then to a line integral with Stokes' theorem. To better understand the

geoid anomaly, the relationship in the wavenumber domain between gravity and

4



geoid is developed. This indicates that the geoid has the same phase

spectrum as the gravity anomaly but the amplitude spectrum is amplified at

long wavelengths.

A basic need in the study of marine geodesy is to characterize the

Iypes of geoid anomalies which occur over geological structures. Such

results in satellite altimetry are illustrated in chapter 4. Over continental

margins the geoid increases by a 5 or 6 meter step at the shelf break. At

deep sea trenches there is a 10 to 20 meter low which is 100 to 200 kilometers

in width. Over the Bismarck sea region there is a 7 meter high geoid anomaly

500 km in width. At the Southwest Indian ridge there is a broad geoid high

at least 500 to 700 km wide and 6 meters in amplitude. Above the Caroline

Islands the ocean surface has a 5 meter positive anomaly, while at the

Romanche fracture zone the geoid has a 5 meter step similar in shape to the

bathymetry.

When measurements of gravity are made at sea they obviously are made

on the geoid. However due to undulations of the geoid the free air gravity

anomaly is not directly proportional to the gravitational attraction of the

mass anomalies. If however a correction is first made for the varying

distance from the center of the Earth and for the gravitational effect of

mass between the geoid and ellipsoid, then the gravitational attraction of

the mass anomalies is obtained. This geoid correction becomes necessary when

studying the medium and long wavelength gravitational anomalies associated

with the densities inside the mantle. This process for correcting the free air

anomaly is discussed in chapter S.

Finally in the last chapter geoid anomalies over deep sea trenches

are discussed. Over all active subduction regions in the Pacific and Indian

Ocean the geoid has a characteristic shape, thousands of kilometers in width.

4
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6,a

Over the Aleutian Trench beginning about 2000 kilometers seaward of the

trench axis, the geoid has a constant increase in height as the axis

is approached. This slope is approximately a 20 meter rise over a

distance of 1800 kilometers. Over the trench itself there is an approx-

imate 13 meter decrease to form a 150 kilometer wide minimum. Immed-

iately landward of the axis there is an 18 meter increase until a

maximum is reached over the island arc. Behind the arc the geoid

height gradually decreases by about 10 meters over a 1000 kilometer

interval. In the vicinity of all major deep-sea trenches certain features

form the characteristic geoid anomaly; a gradual long increase as the

trench is approached from the ocean basin, a narrow low over the trench

axis and a geoid high but with variable slope landward of the trench.

For the Tonga-Kermadec region a modeling study was undertaken to

determine the density structure necessary to produce calculated values
	

. n

similar to the observed geoid and gravity anomaly. From this work several

conclusions are possible. Shallower depths landward of the trench repre-

sent a mass excess which must be mostly compensated. Compensatinn must

occur by the presence of a mass deficit somewhere in the underlying mantle.

In our model a thinner uppermost mantle body provides the compensating

mechanism. This separation of the mass excess and the underlying mass

deficit is the primary cause of the charaAeristic geoid anomaly. Presence

of the descending lithosphere is only of secondary importance in explaining

the geoid anomaly. For the Kermadec Trench the density contrast of the

slab with the surrounding mantle is approximately .02 gm1cm 3 . Further

studies are necessary for the other trench regions to determine if

similar principles can be used to model the characteristic geoid anomaly.

6



Chapter I

Detailed 1° x 1° Gravimetric Ocean Geoid

and

Comparison with GEOS-3 Radar Altimeter Geoid Profiles
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Introduction

A comprehensive set of data on the variation of the sea surface

height has been obtained in the past three years by means of the GEOS-3

satellite carrying a radar altimeter. With knowledge of the satellite's

position and after corrections for oceanographic effects, one obtains

along-track variations of the geoidal height over the world's oceans.

These measured undulations of the geoid are extremely valuable for

geophysical interpretations because they provide, in part, information

about density inhomogeneities in the earth's upper mantle. The distribution

of the density inhomogeneities reflected in the geoid will hopefully

provide information on convection within the mantle or on other possible

driving forces of the earth's lithospheric plates.

Consequently, it is of special interest to determine and study the

geoid on a worldwide scale. In the past, the only way to compute the

geoid over oceanic areas was to apply Stokes' integral to the gravity

anomalies observed over the earth's surface. Gravimetric geoids over

oceanic areas have been computed in this way in the western North Atlantic

(TALWANI, POPPE and RABINOWITZ, 1972), in the Indian Ocean (KAHLE and

TALWANI, 1973) and in the Northwest Pacific (WATTS and LEEDS, 1977).

The knowledge of the geoid derived from surface gravity is essential

in order to calibrate the radar altimeter, test its performance and

possibly suggest optimum locations at which the altimeter measurements

should be performed. Eventually, it will be desirable to compute a

gravimetric geoid independent of satellite altimetry in order to obtain

the dynamic sea surface height, the slight discrepai 	 between the geoid

and sea surface being important in ocean dynamics.

8



In turn, there are techniques to recover gravity anomalies from

GEOS-3 measurements of the sea surface height (e.g. KANN, SIREY, BROWN

and AGRAWAL, 1976). The method for obtaining gravity anomalies on the

basis of satellite radar altimetey can be very useful for determining

the gravity field in remote tress such as in the southern hemisphere

where ship measurements are scarce. In order to test this method and

define its accuracy it is necessary to compare the results with independently

obtained gravity values from surface ship gravity measurements in surveyed

regions.

It is the purpose of this paper to compile a new set of 1 0 x 10

mean free-air gravity anomalies in the Indian Ocean by using all the

gravity data available up to 1976, compute the corresponding gravimetric

geoid and compare the results with GEOS-3 altimeter derived geoid profiles

(in the Southwest and Northeast Indian Ocean).

Sea Gravity Data in the Indian Ocean

Fig. 1 shows the location of the submarine pendulum observations

(VENING MEINES2, 1948; GIRDLER and HARRISON, 1957; TALWANI, 1962) as

well as the ship's tracks along which continuous gravity measurements

were obtained.

At present, there are about 100,000 gravity data available in the

Indian Ocean.

The data used in this study were obtained by

a) Lamont-Doherty Geological Observatory of Columbia University

during VEMA cruises 18, 19, 20, 22, 24, 29 and 33 and during

CONRAD cruises 8, 9, 11, 12, 14 and 17.

9
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b) Institute of Geophysics and Planetary Physics of the University

of California at Los Angeles and Scripps Institution of Oceanography,

San Diego, during ARGO cruises "Monsoon" and "Lusiad" (HELFER,

CAPUTO and HARRISON, 1963; CAPUTO, MASADA, HELFER and HAGER,

1964).

c) Department of Geodesy and Geophysics, Cambridge University,

during OWEN cruises 611 through 619, 621 through 626, 110, 111

and during DISCOVERY cruises 671 and 672 (HYDROGRAPHIC DEPARTMENT,

1963, 1966; WILLIAMS, 1968).

d) ESSA (now NOAH) during PIONEER and OCEANOGRAPHER Cruises (U.S.

DEPARTMENT OF COMMERCE, 1969, 1970).

e) Bundesanstalt fOr Bodenforschung, Hannover, West Germany, during

METEOR cruise (PLAUMANN, 1965, personal communication).

f) Woods Hole Oceanographic Institution, U.S.A., during CHAIN

cruise 100 (BOWIN, 1973, and BOWIN, personal communication).

The data obtained prior to 1971 are included in the gravity maps

(TALWANI and KAHLE, 1975) of the International Indian Ocean Expedition

(IIOE) Atlas of Geology and Geophysics (UDINTSEV, 1975) as well as in

the previous Indian Ocean geoid paper (KAHLE and TALWANI, 1973). During

recent Lamont cruises (1974, 1977) a considerable amount of data of

greater accuracy have been accumulated which made it desirable to recompile

the entire set of 1° x 1° mean gravity data. The main areas of substantial

improvements in the surface gravity field of the Indian Ocean are the

Central Indian Basin including the prominent Indian Ocean gravity low as

well as the South-West Indian Ocean covering the pronounced South-West

Indian Ocean gravity high. In the West Pacific we incorporated 1 0 x 10



mean free-air anomalies compiled by WATTS and LEEDS (1977). For the

Indian peninsil_ we used a set of t o x t o anomalies by WOOLARD (1970)

and values for Madagascar were provided by the International Gravity

Bureau, Paris (CORON, 1972, personal communication).

The new set of t o x t o free-air anomalies for the Indian Ocean is

listed in Table 1. The gravity values are referred tc the International

Reference Ellipsoid (f = 1/297).

The to 
X1  

averages were obtained from revised free-air anomaly

contour maps by dividing each t o x t o square into nine smaller squares.

The values at the centers of these smaller squares were visually inter-

polated and averaged to give a value for the 1. x 1. square. In areas

such as the southwest Indian Ocean the t o x t o values were determined by

averaging individual measurements.

Method of Geoid Computation

The following method - proposed and used by many authors including

STRANGE, VINCENT, BERRY and MARSH (1972) and TALWANI, POPPE, and RABINOWITZ

(1972) - has been adopted in computing the gravimetric geoid for the

Indian Ocean:

1) Calculation of the free-air anomalies based primarily on the satellite

derived gravity field, in this case the GEM-6 potential field model

which includes harmonics up to n = 16 (LERCH et al., 1974; SMITH et

al., 1976).

2) Subtraction of the GEM-6 free-air anomalies from the new set of

t o x l o. mean gravity data (: Difference anomalies dog).

3) Computation of the difference geoid AN (Fig. 2) by applying Stokes'

integral to the difference anomalies dog.

4) Summation of the GEM-6 geoid 
NGEM-6 

(Fig. 3) and the difference

geoid AN (: Gravimetric geoid N = NGEM-6 + AN) (Fig. 4).

12
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The advantage of this procedure is that Stokes' integration (HEISKANEN

and MORITZ, 1967)

1
oN-	 r S (v) aog da	 (1)

4wgR

has to be carried out only over the Indian Ocean because outside this

area the difference anomalies bag are assumed to be zero.

We recognize that we are ignoring the difference anomalies outside

the Indian Ocean, which will give rise to some errors particularly near

the boundaries of our area of integration. These errors however are

less than 1 meter (STRANGE et al., 1972). In parts of the Indian Ocean,

where gravity averages could not be obtained by the procedure described

above - because of scarcity of data - we assumed the difference anomaly

dag to be zero. As we shall see in a later section, this gives rise to

errors in regions of no ship gravity measurements. This procedure is

still superior to methods in which gravity values are truncated after a

certain radius.

In Equation (1)aN - Difference geoid, R - mean earth's radius, g -

mean earth's gravity, * - angular distance between the element of area

da (at which dog is given) and the point of calculation, S(*) - Stokes'

function. Stokes' function S(*) is defined as

2
S 	 -	 F(0)	 (2)

sino

f
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where FW n cosp + isin*(1-5 cos* - 6 sine+ - 3 cos*ln(sinl + sine))

Since S (*) changes strongly near *-0° the effect of a square very close

to the computation point cannot be calculated by simply using S(*) with

* being the distance to the center of the square. For this reason the

squares close to the computation points were subdivided into smaller

squares in such a way that the percentage error in calculating S(*) is

below 1% (TAIWANI et al., 1972).

The GEM-6 Geoid, Difference Geoid and 1 0 x 1 0 Gravimetric Geoid

In subtracting the GEM-6 free-air anomalies (n-16) from the 1° x 1°

surface data and applying Stokes' integral to the difference anomalies,

a difference geoid is obtained which reflects mainly the contributions

of harmonics 16 < n < 180. The order n-180 corresponds to a wavelength

of 2 degrees which is approximately represented by the 1° x 1° mean

free-air anomalies. As such, the difference geoid containing wavelengths

between about 220 km and 2500 km,can be interpreted as a filtered version

of the total geoid. This range is of special interest for geophysicists

because mass inhomogeneities associated with sea-floor spreading and

lithospheric motions may produce geoid anomalies of such wavelengths.

Fig. 2 shows the computed difference geoid.

The areal average of the difference gravity anomalies aag is

-.54 mgal and that of the difference geoid aN is -.47m. Thus, the

systematic error in geoid height corresponding to this difference is

negligible and may not be considered further. The general pattern of

the difference geoid can be characterized by the zero mete- contour

line. , indicated by the heavy line on Fig. 2. The entire Northwest Indian
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Ocean including the major basins such as the Somali and Arabian Basins

are associated with a negative difference geoid reaching -18 m over the

Arabian Basin. Another large area with negative difference geoidal

undul y 0 on is the Northeast Indian Ocean covering the southern Central

Indian 3asin, the West Australian Basin and the Indonesian deep sea

trench with lowest values over the Sunda Trench (-22 m) and Timor

Trough (-30 m).

The northern Central Indian Basin, the major part of the Bay ;f

Bengal (Ganges Cone) and the entire Southwest Indian Ocean is characterized

by a pronounced difference geoid high with highest values over the

Madagascar Ridge (+20 m). While the major actively spreading	 es are

not well expressed in the difference geoid, the triple junction of the

three Indian Ocean ridge branches at 25°S, 70°E clearly stands ou' 	 a

positive feature (+8 m). Also aseismic ridges including the Madagascar

Ridge, the Mascarene Plateau, the Ninetyeast Ridge (+14 m) and the

Afanasy Nikitin Seamount chain are associated with a positive difference

geoid.

The total 1° x 1° geoid obtained by adding the difference geoid to

the GEM-6 geoid (Fig. 3) is shown in Fig. 4. While the difference geoid
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reflects wavelengths between 220 and 2500 km, the total geoid reveals

information with all wavelengths greater than 220 km. As might be

expected, the long wavelength features are still present in the total

geoid. The prominent Indian Ocean geoid low (-130 m) as well as the

geoid highs in the Southwest Indian Ocean and over the western Pacific

are clearly expressed in the 1 0 x 1 0 total gravimetric geoid. In addition

the short and intermediate wavelength features such as the Mozambique

Ridge and Basin, the Madagascar Ridge and Mascarene Plateau, the Triple

Junction, the Ninetyeast Ridge and the Sunda Trench are evident by the

bending of contours around those structures. The minimum south of India

has shifted towards the northeast and has decreased in amplitude by 8 m.

The Somali Basin low appears to connect with the Arabian Basin low.

GEOS-3 Profiles in the Indian Ocean

Classically the geoid height has been determined by the Stokes'

integration of gravity values, as demonstrated in the previous section.

The altimeter in the GEOS-3 satellite now makes it possible to directly

measure the elevation of the satellite over the ocean surface. When

combined with precise orbital tracking one obtains the height of the

ocean surface relative to an earth ellipsoid. The sea surface is not at

a constant gravitational potential; nongravitational forces can cause

slight deviations between the geoid and sea surface. Dynamic topography

due to ocean currents can be 100 cm in amplitude (DEFANT, 1941), tidal

heights in the deep ocean can also be 50 cm in amplitude (SCHWIDERSKI,

1977). After correction for such deviations, measurements of the geoid

height may be obtained along the sub satellite track.

24



While this procedure for obtaining geoid heights from altimeter

measurements is valid, it is subject to certain errors. An extensive

error analysis has been made for GEOS-3 measurements in the calibration

area between Florida and Bermuda (Martin and Butler, 1977). This showed

an average noise level of .72 m in the intensive mode and 1.81 m in the

global mode for cumulative altitudes every .1 seconds. Additionally,

bias values of -5.3 m (intensive mode) and -3.55 m (global mode) were

discovered for altitude determinations by the altimeter. Accuracy of

the sea surface height measurements is primarily limited by the orbit

computations. Long wavelength errors in orbital height can be between

1-2 m rms and 10 m rms depending upon the method of tracking (H.R.

Stanley, personal communication). A consistent set of altimeter data

can be constructed by analyzing measurement differences where two satel-

lite tracks cross. By least square reduction of such crossover errors

Rummel and Rapp (1977) were able to effectively eliminate any long wave-

length orbital discrepancy. In this paper we are primarily interested

in comparing original GEOS-3 data (from NASA Wallops Flight Center) with

a gravimetric geoid in the Indian Ocean to see the influence of such

errors. The orbit numbers and dates for the satellite tracks are

listed in Table 2.

Operation of the altimeter is conceptually simple. A radar pulse

is transmitted downward and the return pulse is received after reflection

from the sea surface. As there is a finite beam width, the instrument

measures the sea surface height over a limited area; with a 14.3 km

radius for global mode and 3.6 km radius for intensive mode. Operation

of the altimeter is in one of two modes; global mode or intensive mode

during which measurements are made every .01024 seconds. This is a sampling

rate of approximately every 65.5 meters. During data processing the sea

surface height measurements are averaged over a finite time.
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Table 2

ORBITS AND DATES FOR SATELLITE TRACKS

Track Orbit Day Year Altimeter Orbital
Designation Number Mode Accuracy

G0141 1194 184 1975 Global A

G0154 1237 187 1975 Intensive A

G0192 1647 216 1975 Intensive J

G0193 1653 216 1975 Global D

G0195 1667 217 1975 Intensive D

G0212 2061 245 1975 Intensive D

G0219 2104 248 1975 Intensive D

G0223 2189 254 1975 Intensive D

G0224 2190 254 1975 Intensive D

A 10
+
m rms

D 3 - 1 O rms

J 3m rms
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This is a low pass filtering operation. In this paper we only use time

averaged data usually over a 2.048 second interval. Consequently the

resultant datum is an average measurement of the sea surface height over

an area of 14.3 by 13.4 km (global mode) or 3.6 by 13.4 km (intensive

mode). Knowledge of the beam footprint and the altimeter accuracy is

necessary in understanding the utility and ultimate resolution of GEOS-3

measurements.

The geoid measurements made by the radar altimeter are shown in

Figure 5 and 6. The sub satellite track is plotted on a Mercator projection,

the geoid height is plotted perpendicular to the track with positive

values on the north side. An arbitrary constant offset has been subtracted

from each profile because we are interested only in the relative changes

of the geoid. Figure 5 is the Indonesian Island arc region and Figure 6

is the Southwest Indian Ocean.

Three GEOS -3 tracks, all approximately perpendicular to the Java

Trench, are illustrated in Figure 5. Each profile shows a steep long

wavelength increase in the geoid height of 90 m over a distance of

approximately 2400 km, with highest values towards the northeast. Not

being symmetric about the trench axis, the geoid continues to increase

across the trench until leveling off in the Philippine Sea (Fig. 4).

Directly over the Java Trench the profiles indicate a geoid low of -10

m amplitude and 250 km wavelength. Analogous with the gravity low over

deep sea trenches (WATTS and TALWANI, 1974), this geoid low is primarily

caused by the bottom topography.

While the principal features of the Northeast Indian Ocean are deep

sea trenches and an island arc, the Southwest Indian Ocean is the location
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Figure 6

GEOS-3 profiles in the Southwest Indian Ocean. Sub satellite track is

dotted line, track designation (e.g. GO154) is at start of pass. Geoid

height is plotted perpendicular to track, positive values are northwards

and the scale is indicated. An arbitrary constant was removed from each

track.	 28
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of a seismically active spreading center - the Southwest Indian Ridge.

Topographically high, it is associated with a 6 m positive geoid anomaly,

500 km wide (Figure 6 and 7, especially tracks G0219 and G0224). Add-

itionally a longer wavelength geoid gradient exists, increasing towards

the southeast and leveling off at the ridge axis (Figure 4 and 6).

Comparison of gravimetric geoid with GEOS-3 altimeter measurements

Being a new scientific instrument, the accuracy and precision of

the GEOS-3 altimeter must be determined. Obviously a useful test would

be the comparison of the gravimetric Indian Ocean geoid with geoid

heights measured directly by the GEOS -3 radar altimeter. In making the

comparison characteristics of each method must be understood. The

gravimetric geoid contains information from the GEM-6 gravity model up

to n - 16, the higher harmonics (to n = 180) being dependent upon the

accuracy and availability of ship gravity data. Resolution of features

with wavelengths less than about 200 km cannot be expected in the

gravimetric geoid due to our averaging procedure over V x 1° squares.

With the GEOS-3 altimeter sea surface features with wavelengths of 1.31

km can technically be resolved (with average values every 655 m), however

with the averaged data we utilized resolution is limited to 28 km. Also

inaccurate orbit determinations result in constant and very long wavelength

errors in the altimeter measurements.	 Consequently we only make comparisons

of geoid information with wavelengths shorter than several thousand km.

GEOS-3 measurements of geoid height are referred to an ellipsoid

with flattening f = 1/298.255 and semi-major axis a = 6378145 m, thus

the gravimetric geoid was converted to this ellipsoid prior to com-

parison. Linear interpolation of the gravimetric geoid with the nearest three
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geoid values was used in order to compute the gravimetric geoid height

along the sub satellite track. Results of this comparison are in Figure

7, each track location is plotted in Figure 5 or 6 and the track designation

(e.g. GO195) is at the start of the pass (time - 0 seconds).

Obviously the radar altimeter cannot measure the geoid over land,

thus such measurements have been deleted (e.g. Madagiscar). GEOS-3

measurements in Figure 7 are indicated by the thin line and the gravimetric

geoid by the thick line. An obvious feature of this comparison is the

offset values of up to 25 m, probably due to error in orbit determination.

These profiles indicate a great similarity (except for a constant shift)

between GEOS-3 data and the gravimetric geoid wherever good gravimetric

control exists (see e.g. G0242). In some areas (south of 39°S in SW

Indian Ocean) only few sea gravity measurements exist. Consequently, in

this area the gravimetric geoid contains little information for wavelengths

shorter than n - 16 (2500 km). This is seen in tracks G0224 and G0219

between 0 and 120 seconds over the Southwest Indian Ridge. The GEOS-3

data indicate a clear anomaly over the ridge while the gravimetric geoid

does not. As there is poor gravity control in this area and the anomaly

is seen on both tracks, we conclude the gravimetric geoid is incorrect

along this part of profiles G0224 and G0219, whereas GEOS-3 measures the

true geoid anomaly over the Southwest Indian Ridge.

In finer detail, the GEOS-3 altimeter has greater resolution than

the 1° X 1° gravimetric geoid (of this paper), due to a smaller sampling

interval for the altimeter. Over the Java Trench (tracks G0195, G0193

in Figure 7) the effect of the averaging procedure for the calculation

of the gravimetric geoid is clear: GEOS-3 data indicate a 250 km wide

low, 10 m deep. The gravimetric geoid barely defines the low. Due to

the information content in wavelengths shorter than about 200 km, it is

understandable that the GEOS-3 altimeter with a smaller sampling interval

would measure the geoid more accurately in this region.
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Conclusions

On the basis of marine gravity measurements in the past three

decades, we have compiled and listed in Table 1 1° x 1° mean free-air

gravity anomalies for the Indian Ocean. These values are useful in

geoid computations and as a test for techniques of gravity recovery from

GEOS-3 geoid measurements. Utilizing these 1 0 x 1 0 averages we have

computed a difference and total gravimetric geoid for the region.

The difference gravimetric geoid contains information with wavelengths

between about 200 km and 2500 km, such wavelengths being determined by

lateral density inhomogeneities within the crust and upper mantle.

Anomalies of -18 m in the difference geoid exist over the Arabian Basin,

another large area with negative values is the Northeast Indian Ocean

with lowest values over Sunda Trench (-22 m) and Timor Trough (-30 m).

Over the Madagascar Ridge there is a 20 m difference geoid high, another

positive feature is the triple junction of the three Indian Ocean ridges,

+8 m amplitude. Aseismic ridges such as Madagascar Ridge, Ninetyeast Ridge

and Afanasy Nikitin seamount chain are also associated with a positive

difference geoid.

The total gravimetric geoid contains information on all wavelengths

down to about 200 km; thus it has both long and intermediate wavelength

features. Over the Central Indian basin is the most prominent long

wavelength feature, the -130 m Indian Ocean geoid low. Steep geoidal

gradients exist over the Indonesian Island Arc up to a flat region of

the geoid in the Phillipine Sea. Another level portion of the geoid

exists south of the Crozet Plateau. Intermediate wavelength anomalies

in the total geoid are over the same features as in the difference geoid.

.
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GEOS-3 profiles of geoid height show anomalies across topographic

features in the Indian Ocean. Over the Southwest Indian Ridge there is

a 6 m r.-hive geoid anomaly, 500 km wide. Across the Java Trench there

is a steep increase in the geoid of 90 m over a distance of 2400 km,

with highest values towards the northeast. Directly over the Java Trench

there is a -10 m geoid low, 250 km wide. If this relative low is removed,

an overall geoid high remains. This is an interesting result because it

might shed some light on the density inhomogeneities associated with the

descending Indian lithospheric plate. In part, this pronounced geoid

high - verified in the GEOS-3 profiles - can be explained by the positive

density contrast of the cold lithosphere with respect to the less dense

adjacent asthenosphere. On the basis of gravity data Watts and Talwani

(1974) concluded this effect is not the only component because unrealistically

high density values would have to be postulated to explain both the

"outer gravity high" and the overall high. It is further interesting to

note that in our GEOS-3 profiles an "isolated" outer geoid high does not

exist. The increase in geoid height seaward of the Indonesian Trench

appears to be a portion of the overall long-wavelength high - only

interrupted by the relative small-wavelength low over the trench proper.

Another possible source for part of this long-wavelength geoid high may

be associated with the downwarped isotherms caused by the cold sinking

lithosphere. If the temperature is lowered at the Olivine-Spinel transition

zone (at depths between 300 and 400 km) this phase change migrates

upwards, thus providing a positive density contrast of about 0.2 gm/cm3

(BOTT, 1971; RINGWOOD, 1976). To explain this long wavelength geoid

anomaly at the Java Trench, a detailed modeling study should be undertaken;

only then will the cause of this anomaly be better defined.

34



Comparisons of GEOS-3 data with the gravimetric geoid show a great

similarity where good gravimetric control exists. Due to the shorter

sampling interval (14 km versus about 100 Ian averaging for the gravimetric

geoid) for the altimeter the GEOS-3 satellite can better detect short

wavelength features such as the low over the Java Trench. On the basis

of these comparisons we conclude the GEOS-3 altimeter is an accurate and

highly useful instrument for mapping the geoid at sea.
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INTRODUCTION

With the aid of a radar altimeter mounted on board the GEOS-3

satellite it is now possible to rapidly determine the shape of the ocean

surface. This information can be used to provide an estimate of the

marine geoid. However, because the altimeter is a new instrument, it is

of considerable interest to compare such measurements with other types

of data. Thus we examine how well GEOS-3 estimates of geoid height

compare with data from independently determined gravimetric geoids.

GRAVIMETRIC GEOIDS

On land the geoid may be constructed using astrogeodetic methods;

or alternatively utilizing gravimetric methods and Stokes' integration

of the measured values of gravity. At sea direct determination of

deflection of the vertical is a difficult task, consequently only about

20 measurements have ever been made (Von Arx, 1966). Due to this dif-

ficulty, only with measurements of gravity at sea can geoid computations

be performed. This technique for oceanic geoid construction was demon-

strated in the western North Atlantic Ocean (Talwani, et al, 1972).

Subsequent studies have involved construction of oceanic geoids in the

Indian Ocean (Kahle and Talwani, 1973), Northwest Pacific (Watts and

Leeds, 1977) and an updated Indian Ocean geoid (Kahle, Chapman and

Talwani, 1978). Worldwide geoids have been constructed by Heiskanen

(1957) and Marsh and Vincent (1974).

Basically our technique of geoid construction involved a series of

computational steps:
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I. Compilation of marine gravity data and averaging over a specified

area - in this case 1 0 x 1 0 averages.

2. Calculation of free air anomalies on the basis of a certain

gravitational potential model; our computations utilized the

GEM-6 model (Smith et al., 1976).

3. Subtraction of the calculated free-air anomalies (GEM-6) from

the areal averages of measured gravity; this is the set of

difference gravity anomalies.

4. Application of Stokes' integral to these difference gravity

values to obtain the difference geoid.

5. Addition of this difference geoid to the geoid of the gravi-

tational potential model (GEM-6) to obtain the total gravi-

metric geoid.

Computationally this procedure is efficient because it eliminates

the need for calculation of Stokes' integral over the entire earth. As

the integration is done only over the area of study, this is equivalent

to utilizing GEM-6 gravity values outside the area of computation. Some

errors can be introduced, especially near the boundaries; however,

such errors are less than 1 meter (Strange et al., 1972).

Due to this procedure there are several inherent characteristics of

these gravimetric geoids. Outside a certain region the values of

gravity due to a satellite model are utilized, consequently the long

wavelength (roughly N<16) components in these geoids are determined by

that particular gravity model. In our case the long wavelength com-

ponents of the gravimetric geoids are determined by the GEM-6 field.

Another property of these geoids results from the initial procedure of
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averaging gravity values over a finite region. Averaging over a certain

interval and subsequent decimation of data corresponds to a low pass

filter operation with a gradual cutoff band. In our gravimetric geoids

this procedure would eliminate most wavelengths shorter than 2 0 which is

twice the sampling period. At a latitude of 23° then one could state

that our 1 0 x 1 0 gravimetric geoids do not contain much information in

the wavelengths shorter than about 200 km. Another characteristic of

the present marine geoids is that in some regions where there are few

ship tracks there is difficulty in obtaining average gravity values. As

Stokes' function is most sensitive to adjacent locations, it would be

expected that in regions where gravity averages are poorly determined,

the geoid would likewise not be accurately calculated.

In constructing these geoids there were no corrections made for the

effect of mass of the atmosphere external to the geoid (Moritz, 1974).

In ignoring this problem, errors of several meters in geoid height are

possible (Rapp, 1975). Such errors would be manifest as very long

wavelength differences or constant offsets in geoid height.

Prior to our comparison study, the gravimetric geoids were first

transformed to be relative to a best fitting ellipsoid with flattening

1/298.255. During the transformation only the J 2 and J4 terms were

altered; there was no change in the zero'th order undulation. Theore-

tically then the radius of this new reference ellipsoid corresponds to

the actual radius of the earth. GEOS-3 data is referred to an ellipsoid

with flattening 1/298.255 and radius 6378142 m. There is a possible

scale difference between the reference ellipsoids for gravimetric geoids

and altimetric geoids. They do, however, have identical values of

flattening.
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For purposes of comparison in this study we utilize gravimetric

geoids in the Indian Ocean (Kahle, Chapman and Talwani, 1978) as shown

in Figure 1, Northwest Pacific (Watts and Leeds, 1977) in Figure 2, and

North Atlantic (Talwani and Leeds, in preparation) in Figure 3.

GEOS-3 ALTIMETER

Several characteristics of the GEOS-3 radar altimeter have a

bearing on our study. On board the satellite there are two transmit-

ters, one designated the global mode and the other termed intensive

mode. Both measure the height of the satellite above the sea surface

every .01 seconds. In practice it has been found that the global mode

results in a signal with higher noise; consequently this mode was little

used after the initial stages of the mission (H.R. Stanley, personal

communication). During computer processing of this data an average

measurement is determined. For the low rate telemetry format this is a

2.048 second average and for the high rate telemetry format a 3.277

second average. At an average ground track speed of 6.55 km/sec this

results in a measurement every 14.3 km (low rate) or 21.5 km (high

rate). Due to this averaging procedure most wavelengths shorter than

28.6 km (low rate) or 43 km (high rate) will be eliminated from our

GEOS-3 measurements.

After the radar altimeter measures the altitude of the spacecraft,

orbit calculations are utilized to locate the satellite relative to the

center of mass of the earth. During the orbit computation a satellite

derived gravity field is used; any errors in the assumed geopotential

coefficients will generate uncertainty in the radial position of the

satellite. In a comparison study of the SKYLAB radar altimeter and
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satellite geoids, an error analysis of orbital uncertainty was performed

by Marsh et al. (1976). Due to possible errors in the quantity GM there

was a mean radial uncertainty of 2.8 m in the SKYLAB orbit. Possible

errors in geopotential coefficients and station coordinates generated

radial orbit uncertainty of approximately 11 m about the mean value.

This uncertainty in radial position of SKYLAB was slowly varying over a

given orbit. Certainly for the GEOS-3 satellite an orbital error ana-

lysis would indicate different numerical values; however, similar infer-

ences can still be made. Any errors in the quantity GM, coefficients of

the geopotential, and station coordinates will all result in mean radial

uncertainties and slowly varying errors in the radial position of GEOS-3.

What causes additional confusion with this satellite (GEOS-3) is that

several different gravitational field models were utilized for the orbit

computations; for the data in this paper it was a GEM-8 (Wagner et al.,

1976) or an NWL model. Another possible source of uncertainty is caused

by any bias in altimeter range data. This is discussed in detail by

Martin and Butler (1977).

After altitude measurement and orbit calculation, the sea surface

height is determined. To obtain an estimate of geoid height, tidal

corrections should be made. Our GEOS-3 data were corrected with the

tide model of Hendershott (1973).

COMPARISON OF GRAVIMETRIC GEOIDS WITH GEOS-3 ALTIMETER

Using GEOS-3 altimeter estimates of geoid height, we have made

comparisons with the gravimetric geoids presented in the previous

section. The gravimetric geoids were interpolated at the point of

altimeter measurement; interpolation was linear relative to the nearest

4
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three gravimetric geoid values. A track chart of the location of

altimeter measurements, and the extent of the gravimetric geoids is

shown in Figure 4; a listing of orbit numbers for each track is in

Table 1.

In Figure 5 there is a comparison of data with the Indian Ocean

geoid, the altimeter data is plotted as a function of time of acquisi-

tion from the first data point. The first obvious fact from this com-

parison is that GEOS-3 data often differs from the gravimetric geoid by

a constant level. RMS differences between the two sets of data are in

the range 3.69 m to 13.27 m as listed in Table 2.

In analyzing the causes for this discrepancy there are a variety of

possible causes. These include bias in altitude determination (Martin

and Butler, 1977), radial orbital uncertainty, scale errors in the

geoid, and long wavelength errors in either the gravimetric geoid or

radial orbital position. To test for the effect of bias in altitude

measurement, corrections for this error were made using the results of

Martin and Butler (1977). After correction for the effects of bias

utilizing the results of Martin and Butler, the rms differences were

recomputed and results listed in Table 2. In general this bias cor-

rection often increases the discrepancies. This shows that our com-

parisons of the GEOS-3 values are mostly lower than the gravimetric

geoid, and the bias correction enlarges this difference. Due to small

uncertainties in the geopotential coefficients, value of GM, and trac-

king station coordinates, there may be uncertainty in the radial orbital

position of GEOS-3. Such errors would be manifest as either constant or

slowly varying radial uncertainty. This has been proven in a quan-

titative manner for the SKYLAB altimeter by Marsh et al. (1976). Any

radial error in orbit determination can generate apparent constant
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Table 1

Track no.	 Orbit	 Telemetry mode	 Transmitter mode

INDIAN OCEAN

60118 646 Low Intensive
G0275 461 low Intensive
G0142 1200 Low Global
G0182 1568 Low Intensive
G0106 362 High Intensive
60112 584 Low Intensive

NORTHWEST PACIFIC

G0242 2037 Low ':itensive
G0230 1795 Low Intensive
G0235 416 Low Global
G0266 430 Low Global

NORTH ATLANTIC

G0329 3245 Low Intensive
60039 184 Low Global
G0096 325 Low Global
G0069 398 High Intensive
G0031 210

NORTHWEST PACIFIC

G0846 1724 Low Intensive
G0855 1616 Low Intensive
G0565 2028 Low Intensive
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Table 2

RMS discrepancies between gravimetric geoids and GEOS-3 estimates of geoid

Track no.*	 RMS difference	 RMS difference	 A priori orbital error
after bias cor-
rection

INDIAN OCEAN

G0106 3.69 meters 4.78 meters 10+ meters

G0112 6.99 12.26 10+

G0118 13.27 18.37 10
G0142 6.67 10.01 10+

G0275 10.84 16.02 10+

G0182 11.15 6.46 3

NORTHWEST PACIFIC

G0242 17.87 15.87 3
G0230 18.00 23.61 3+10

G0235 5.86 11.07 10+

G0266 6.82 10.27 10

NORTH ATLANTIC

G0031 18.99
G0039 23.93 37.23 10+

G0069 13.18 15.65 10

G0096 13.18 15.65 3-10

G0329 3.07 8.05 3

*Orbit numbers listed in Table 1

F	 .
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offsets between the gravimetric and altimetric geoids. If the actual

orbit error is slowly varying, then over the short segment during which

altimeter data is acquired it may appear to have a constant offset or

tilt which in reality is only one part of a mucn longer wavelength error

in radial position of the satellite. A complicating factor with GEOS-3

is that several different sets of geopotential coefficients have been

utilized for the orbit calculations. These gravity models are either

GEM-8 (Wagner et al., 1976), GEM-10 (Lerch et al., 1977), or a NWL

model. In properly utilizing GEOS-3 data it is mandatory that all

orbits be calculated with only one geopotential model. This would

provide a consistent data set.

During orbit calculations by NASA a priori estimates of rms orbital

errors were made. These are listed in Table 2. For example, track G0106

has an a priori radial uncertainty of greater than 10 m rms while the

rms discrepancy between th*_ gravimetric and altimetric geoid is 4.78 m.

In other cases the actual rms difference exceeds the prior estimates.

Additionally constant offset discrepancies between the two data sets may

occur due to scale errors in the gravimetric geoid or ellipsoid for

GEOS-3 data and to the lack of atmospheric corrections with the gravi-

metric geoids. In this type of comparison study it is virtually impos-

sible to isolate the cause of the observed constant offsets between

GEOS-3 geoids and gravimetric geoids. They may be caused by any or all

of the aforementioned sources of error. These large constant offsets do

indicate the need for high quality orbital computations with a con-

sistent gravity model, atmospheric corrections in gravimetric geoids,

elimination of errors in reference ellipsoids, and analysis of internal

consistency of the data.
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By analyzing altimeter data at crossover locations and least square
E

reduction of crossover errors, Runnel and Rapp (1977) were able to

obtain rms crossover discrepancies of .78 m for intensive mode opera-

tion. Our comparisons indicate the need for this type of crossover

analysis and error reduction.

Comparisons of the altimeter data and the Northwest Pacific gravi-

metric geoid are shown in Figure 6. In this the influence of the

transmitter mode is evident. Tracks G0242 and G0230 are relatively

smooth and were collected in the intensive mode, tracks G0235 and G0266

have high frequency noise and were made in the global mode. In general

all of the figures show that the intensive mode has less high frequency

noise than the global mode of acquisition.

Another aspect of our comparison study involves the question of

what are the shortest wavelengths in the geoid and how well does the

gravimetric geoid and altimeter data record such wavelengths. To under-

stand the short wavelength (less than several hundred kilometers) com-

ponents of the geoid, it is necessary to examine their origin. Any

geoid anomaly is due to the anomalous potential caused by a mass hetero-

geneity. On the basis of potential theory it would be expected that

short wavelength components of the geoid would be caused by the nearest

mass anomalies; this would be topography of the ocean floor and moho

which are large, adjacent, mass inhomogeneities. To see this mathematically

consider the relationship between the Fourier transform of gravity and

bathymetry, the admittance.

Z(k) _ 3 lg ( k )] / F[b( k )]	 (1)
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Figure 6
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For an Airy model of two dimensional crust this function would be

(McKenzie and Bowin, 1976)

I(k) n 2nG ec ^w) a -kd (1 - e-kt)	
(2)

where G is the gravitational constant

andfJc ,	 , are density of crust and water respectively

k is wavenumber in radians/km

d is depth of the water layer

t is the thickness of crustal layer

Utilizing the transfer function between the Fourier transform of gravity

and geoid (Chapman, 1979; A. Leeds, personal communication) we can

obtain the admittance between the Fourier transform of geoid and bathy-

metry for two dimensional Airy isostasy:

^N) (b) - 2!-
Ĵ	ylkl (PC -&P w

)a
-kd 

0 - e-kt)	 (3)

where JV(N) is the Fourier transform of
geoid height

y is normal gravity : 980 cm/sec

What this equation shows is that topography of the ocean floor will give

rise to undulations of the geoid which have identical frequencies but

amplitude decreasing with an increase in frequency at high wavenumber. Any

other model of compensation would also have identical frequencies but a

different amplitude function. This relationship is important in our

comparison study because it indicates that topographic features will

generate undulations of the geoid with similar frequencies. In the case

of the Hawaiian ridge this has been proven in a quantitative manner by

Watts (1978).
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As an example of this relation between bathymetry and geoid con-

sider the Aleutian trench (Figure 7). At the trench axis there is a

topographic depression which is approximately 100 km wide, it has a

gravity anomaly of similar width. Assuming two dimensionality it is

possible to compute what the geoid anomaly is from the gravity anomaly

(Talwani et al, 1972; A. Leeds, personal communication).

+m

N(x) _ (^Y) _	 g(x') log Ix - x'I dx'	 (4)

This is a convolution integral and is the spatial equivalent of the

transfer function between the Fourier transform of gravity and geoid

(Chapman, 1979). Utilizing this formula and the observed gravity across

the Aleutian trench, a two dimensional geoid profile has been computed

and is also shown in Figure 7. Additionally a GEOS-3 profile and

corresponding gravimetric geoid is shown. From this it is clear that

above the trench there is a two dimensional geoid minimum with similar

frequencies as the bathymetry. In both amplitude and wavelength this is

identical to the observed minimum in GEOS-3 data. However, the trench low

as seen in the 1° x 1° gravimetric geoid is much broader and shallower.

On the basis of the relation between geoid and bathymetry having iden-

tical frequencies and our computation of the two dimensional geoid, it

is clear that above the narrow Aleutian trench there is a geoid anomaly

with similar frequency components. As the GEOS-3 altimeter records a

signal similar in shape to the two dimensional geoid, it is reasonable

to assume that the altimeter is faithfully measuring the geoid signal.

In the 1 0 x 1 0 gravimetric geoid the trench low is much broader and

shallower; in comparison to the GEOS-3 data and two dimensional geoid,

the gravimetric geoid has less high frequencies and more energy in the
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medium frequency (wavelengths approximately 200 km) range. This is

aliasing of the geoid signal and is due to our procedure in geoid con-

struction of averaging gravit y values over 1° squares.

This analysis of geoid height over the Aleutian trench indicates a

limitation of 1 0 x 1° gravimetric geoids. In certain regions there can

be energy in the geoid for wavelengths shorter than are resolved by

averaging over V squares. In such areas it is necessary to construct

gravimetric geoids by first averaging gravity values over smaller

regions, perhaps 10' or 5' squares. Prior to averaging these values, it

is possible to estimate how much high frequency information exists in

the geoid. This can be done by multiplication of the Fourier transform

of bathymetry and the admittance function. This gives an estimate of

what the geoid heights would 5e at the shorter wavelengths. Another

technique to estimate the high frequency geoid heights would be to first

compute the Fourier transform of gravity values. After multiplication

by the transfer function for a plane earth, this yields the Fourier

transform of geoid height. This provides an estimate of the geoid

height at the highest frequencies.

Data from the North Atlantic region are compared in Figure 8.

Again the same features are noted as before, constant offsets and noisy

altimeter data when the global mode is utilized. However, track G0096

exhibits another feature: there is a tilt of the altimeter measurements

relative to the gravimetric geoid. Because this is such a long wave-

length difference and does not appear in the other regions of the North

Atlantic, we suspect it is due to very long wavelength errors in the

computed satellite orbit. For this reason, Rummel and Rapp (1977) in

correcting GEOS-3 data removed both a long wavelength orbital tilt in
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addition to constant offsets. Such a procedure is both justified and

necessary in order to obtain good geoid estimates from the GEOS-3

altimeter.

In an effort to overcame such long wavelength differences, four tracks

of GEOS-3 altimeter data were adjusted by requiring that they agree with

each other at crossover locations and with the GEM-6 geoid. To do this

adjustment the technique of Rummel and Rapp (1977) was utili2 '; this

minimizes in a least square sense discrepancies due to bias and tilts.

A comparison of these adjusted GEOS-3 geoid estimates with the Northwest

Pacific gravimetric geoid is shown in Figure 9. For each track the

GEOS-3 data and gravimetric geoid are both shown, directly above this

the difference in height between the two is shown at a different scale.

Thus for track G0266 agreement is quite good except at the Bonin trench;

the ms discrepancy is 2.07 m (Table 3). For all of these tracks major

disagreements of up to 10 m occur above the trench systems such as the

Bonin, Mariana, Ryukyu, and Philippine trench. As discussed previously

for the Aleutian trench, this discrepancy is due to inadequate reso-

luti on of the gravimetric geoid.

Other broad regions of difference occur; on track 60565 (Figure 9)

southeast of the Mariana trench there is a broad disagreement of up to 5

meters. Because this area does not have the same quantity of gravimetric

data as other regions, we suspect this is due to errors in the gravi-

metric geoid. When making detailed comparisons though, it becomes

exceedingly difficult to ascertain whether there are slight errors in

orbital computation or geoid calculation, or simply one could be seeing

the effect of transient sea surface topography in the altimetry data.

With gravimetric geoids what is needed are finer resolution grids and
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Table 3

RMS discrepancies between gravimetric geoids and adjusted GEOS-3 data
in Northwest Pacific

Track no.	 RMS difference before 	 RMS difference after
adjustment	 adjustment

G0846	 12.34	 meters	 2.67 meters
G0855	 4.82	 1.69
G0565	 4.fJ	 2.36
G0266	 10.27	 2.07
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detailed error analysis of toeir quality; in orbit determination the

best calculations should be made to reduce radial errors to less than .

meter.

The primary miss:.jn of the GEOS-3 satellite was to determine infor-

mation about the gravitational field of the earth; another question then

arises as to what wavelength information will be best determined by

satellite altimetry. For very long wavelengths, we have observed dis-

crepancies between the altimetric geoids and gravimetric geoids. While

we could not isolate the cause of this difference, it is likely to be

partially due to radial orbital uncertainty as was demonstrated for

SKYLAB by Marsh et al. (1976). Any such errors restrict the utility of

satellite altimetey in obtaining information about the longest wave-

lengths of the earth's gravitational field. At the present time ground

tracking of orbiting satellites has provided the best information on

these longest wavelengths. In general, however, this is restricted to

wavelengths with degree and order less than approximately 10. According

to Khan (1976) the estimated accuracy in determination of individual

spherical harmonic coefficients for degree 11 and higher is less than

60%. More recent gravitational field solutions such as GEM-9 (Lerch et

al, 1977) may however be more accurate.

In order to answer the following question a hypothetical experiment

can be performed. Compare an altimeter determining the geoid with a

gravimeter measuring gravity. How well does each instrument perform in

detecting its respective signal? 	 The answer to this can be found by

examining the relative properties of the geoid and gravity felj and the

comparative accuracies of altimeters and sea gravimeters.

Consider hypothetical measurements of geoid and gravity on a plane

two dimensional earth. On this idealized body the geoid height is
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estimated by utilizing sea surface measurements from a radar altimeter.

Due to the presence of oceanographic noise we assume uncertainties in

measurements of about 1 meter. Gravity is measured by a sea gravime*er

to an accuracy of 10 mgal limited by cross coupling and other errors.

Those are both somewhat arbitrary and conservative estimates but hope-

fully reflect the measurement situation to a certain degree. While

radar altimeters can measure sea surface height tr, possibly 10 cm

(SEASAT-A), due to unknown oceanographic noise the geoid can only be

determined to about 1 meter accuracy at present. Likewise, with marine

gravimeters a precision of several mgal is possible, but in analyzing

data due to two different ships at crossover, errors of 10 mgal are

common. In our hypothetical experiment these instruments detect the

geoid and gravity on a 5 km deep ocean overlying a 6 km thick crust.

There is topography compensated in an Airy manner; the amplitude spec-

trum of the topography is white with an amplitude of 3 km. The noise

spectra for each instrument is also considered to be white.

Then on the surface of the water the amplitude spect _- of gravity

is obtained from equation 2 and spectrum of geoid is obtained from

equation 3. A plot of these functions is in Figure 10. The vertical

scale has been adjusted so that 10 mgals is equivalent in height to 1

meter. Thus whenever one function is plotted higher than the other, it

indicates the higher function has a larger signal to noise ratio. From

this plot we see that for wavelengths longer than 628 km, an altimeter

will have a higher signal to noise ratio. For wavelengths shorter than

628 km a marine gravimeter will record with a better signal to noise

ratio. What we wish to indicate by this analysis is that below a

certain wavelength a marine gravimeter can determine the gravitational

M
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field with a better signal to noise ratio than a radar altimeter. For

longer wavelengths a radar altimeter performs better. This critical

wavelength depends on the noise levels of the individual instruments, in

our hypothetical example it was 628 km. It should be understood though

that a radar altimeter still records short wavelength information; this

was demonstrated in our previous example over the Aleutian trench. As

radar altimeters and marine gravimeters improve in their ability to

detect the gravitational field, there will be a different critical

wavelength below which a gravimeter performs better.

SUMMARY AND CONCLUSIONS

In comparing the GEOS-3 geoid estimates with the gravimetric

geoids over the different oceans, several features emerge. Constant

offsets and tilts cause large-scale discrepancies of up to 24 m rms

(Table 1). These errors can be due to radial orbital uncertainty, scale

errors in the geoid, lack of atmospheric correction in constructing the

geoid, or bias errors in altitude determination by the altimeter. We

did not discern the relative importance of these factors in causing the

discrepancies. Over large scale topographic features such as the

Aleutian Trench there can be a large geoid signal with wavelengths

shorter than can be resolved by 1° X 1 1 gravimetric geoids.

In regions where there is good coverage of marine gravity data, and

sufficient energy in the geoid at shorter wavelengths (less than 200 km)

more detailed gravimetric geoids should be utilized. Examination of the

topography and techniques utilizing the admittance between geoid and

bathymetry should be useful in estimating the geoid signal at these

short wavelengths.
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After elimination of long wavelength differences, adjusted GEOS-3

data still show discrepancies with the gravimetric geoids. Over the

trench systems of the western Pacific there were differences of up to

10 m. This is due to averaging gravity data over too large an area. In

other regions there are discrepancies of several meters. Such dif-

ferences indicate the need for estimation of the errors in geoid com-

putations and the best possible orbital determinations for the GEOS-3

satellite.

	

Although some difficulties exist with constant offset a ,	9

	

wavelength discrepancies, the GEOS-3 radar altimeter appear_ 	 .sect

geological features such as deep sea trenches and is an excellent instru-

ment for acquiring measurements of the shape of the ocean surface. With

the rapid mapping of the marine geoid on a global basis by GEOS-3 there

will be a wealth of new information about the earth's gravitational

field. It should be understood though that in detecting very short

wavelength features of the field, a marine gravimeter will perform

better than a radar altimeter. This is due to the long wavelengths

being predominant in the geoid, while short wavelength anomalies are

most obvious in gravity measurements.
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Introduction

When a new scientific instrument is developed and utilized for the

study of the earth, there- are always new and exciting discoveries. Such

an instrument is the GEOS-3 radar altimeter, which has been used to make

measurements of the shape of the sea surface over most of the worlds

oceans. After corrections for errors and oceanographic effects this

data is a determination of the marine geoid.

Given the shape of this gravitational equipotential surface inferences

can be made about the density inhomogeneities within the earth which cause

geoid undulations. Prior to satellite altimetry determination of the geoid

was the primary goal. Now with geoid measurements via satellite altimetry

new questions can be asked. Why does the geoid have its particular shape and

what are the structures within the earth which cause geoid anomalies? In

o„ier to utilize altimetry data in studying the earth's interior mathematical

techniques are necessary. For this reason we have developed several new

analytic techniques for interpretation of geoid anomalies.

Our procedure is to initially compute formulas for the geoid anomaly over

idealized bodies. These serve to demonstrate various properties of geoid

anomalies. Then formulas are developed for computing the geoid anomaly over

an arbitrary two dimensional body. Most general procedures require the calcu-

lation of geoid anomalies over three dimensional bodies. In order to under-

stand the relationship between the gravity anomaly and the geoid, techniques

in the frequency domain are developed. Finally, as practical examples,

calculations of the geoid anomaly across continental margins and over sea-

mounts are compared with actual geoid measurements.

4
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Basic Formulas and Ideal Bodies

In dealing with geoid anomalies we are concerned with the computation

of the shape of an equipotential surface, this surface being primarily

ellipsoidal with small undulations due to an anomalous potential.

Anomalous potential is the difference between total potential And the

normal potential due to the reference ellipsoid. If we know the anomalous

potential, then the geoid anomaly is given by Brun's formula (Heiskanen

b Moritz, 1967).

N n T

	

Y
	

(1)

Where N is geoid height, T is the anomalous potential, and Y is normal

gravity -980 cm/sec t . A point mass will have an anomalous potential of

GM

	

T -- r-	(2)

where G is the Newtonian constant 6.67 10
-8
 cm3/gm sect , M is the mass, and

R is the distance between the point mass and the observation point. This

expression has two conventions: potential is zero at infinity and positive

everywhere else. Thus an excess mass corresponds to positive potential and

positive geoid height. Our basic problem then is how to compute the geoid

anomaly due to an assemblage of point masses.

Ga dxdydz

N(x'.Y'.z') - tr 	 2	 2	 (3)
(x-x') + (Y-y') + (z-z')

Primed coordinates indicate the observation point, unprimed coordinates are

the integration variable, and p is density. Initially we compute the geoid

over ideal bodies; lines, sheets, and rectangles in both two and three dimensions.

A finite horizontal line located at y o , z  with linear density a (qm/cm)

has a corresponding geoid anomaly of (Figure la)
x2

N - Ga dx	 (4)
Y

x
1

	

E x-x l
) 2 + (yo_y , ) 2 + (zo-z')2, 

Y.

This, when integrated, becomes
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%Z
N	

GA logef(xl-xl)

(x2-x') +
	 X2-x' )2 + 

(yo _y') 2 + (zo_z,)]
(5)

Y 2
t 	 + lx -X.)2 + (yo _y') 2 + (zo_z')

Figure 18 shows a plot of this function, the geoid height is always positive

and decays to 0 in the limit as jyj goes to infinity.

If the finite horizontal line is integrated along the z axis, one obtains

the geoid anomaly over a finite vertical sheet (Figure 2a). This integral is

(see appendix for details)

Go
N a -. ( Gl (x2,z2) - GI (x2,zl) - Gl ( xi z2) + GI (x l , z1 3	 (6)

7

where Q i s the surface density (gmf/ca?) and 	 ,X

Gl (x,z) - (z-z') loge €(x-x') + C x-x') 2 + (yo-y') 2 + (z-z') 9 3
- (z-z') + (x-x') loge f(z-z') + C(x-x') 2 + (yo-y') 2 + (z-z')9

- (x-x' ) 2 - (yo-y') 2 - (x-x') C(x-x') 2 + (yo-y ') 2 +(z-z')
+ 

1

yo-Y . I sin 1 	 ^

(.<-x') + (x-x') 2 + (yo-y ') 2 +(z-z' )	 [(x-x') 2 + (yo-y')
LM 

I

and restricting ( z-z') >0

A plot of this function is in Figure 28. While always positive, the geoid

height decays at a slower rate than the finite horizontal line.

Our next ideal body is an infinite horizontal line. While the actual

integration is quite simple we utilize a slightly longer derivation in order

to show the relationship between gravity, deflection of the vertical, and the

geoid. This is also the basis for a later derivation in the frequency domain.

In the two dimensional geoid calculations a complication arises, involving

the zero reference level. Calculation of the geoid anomaly over the infinite

horizontal line will illustrate this complexity.

76



X

®	 /	 // (XI, Yo, ZO)

Yo	 Y

ZO-----

(X I , YO, ZO)
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Calculation of geoid anomaly over a finite horizontal line and

its resultant geoid height.

Figure 1
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Calculation of geoid anomaly over a vertical sheet. Resultant geoid

heights for the three dimensional (finite) and two dimensional

(infinite) vertical sheet are plotted.

Figure 2

78



Due to an infinite horizontal line located at y =0, z=zO , the horizontal

a	 component of gravity on the z=0 plane is

h
F 	 -2 G a __ -Y---- • 	 (8)

(Y + zo2)

Deflection of the vertical is defined to be the angle between a vertical

line along the z-axis and the local direction of gravity (Figure 3). On a

plane earth the gravitational attraction has a vertical component of

Y + Fgv , where y is normal gravity and Fg v is the vertical component of the

gravitational attraction due to anomalous mass. The horizontal component is

simply Fgh , thus	 Fgh
tan a =

	

	 ( 9)
y + Fgv

where a is deflection of vertical. Because Fgv << Y. and a - 0

gib

Y	 Y	 (Y + Z  )

Deflection of the vertical in the y direction is just the slope of the qeoid.

a	
a N -2Ga	 y	 (ll)

a Y Y (Y)

Solving for geoid height N we obtain:

G 	 y
N 	 loge (y2 + zo2)	 (12)

Y	 Yo

where yo is an arbitrary constant of integration. With the two dimensional

potential the usual procedure is to let the potential be zero at unit distance,

or when (y02 + z02) = 1; it must be zero at some finite distance. This has

two effects; it causes the absolute amplitude of N to depend upon the units

used, and it introduces both positive and negative geoid weights for a positive

mass. In dealing with two dimensional bodies it is necessary to ignore this

arbitrary constant level. Thus in two dimensional models only
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Calculation of geoid anomaly over an infinite horizontal line. In

8 the horizontal attraction of gravity in Fgh , the vertical attraction

due to the line is Fgv . Acceleration due to the earth is g, and

deflection of the vertical is d.

Figure 3
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i

deviations from a constant level are important.

After setting the potential at zero for unit distance we obtain for the geoid:

G 
N = - .— 1 oge (y2 + z0 )

Y

When the infinite horizontal line is integrated along the z axis, one obtains

the geoid anomaly over a two dimensional vertical sheet.

G v
f

z2 loge [(Yo -Y') 2 + (z-z') 23 dz
N = -	 (l4)

Y	 l

and after integration

G v
N = -	 {(z-z') loge

 

[(yo-Y')2 + (z-z')23
Y

-1 (z-z')	 z2	
(15)

- 2 z + 2 lyo-y'I Tan	 }

l Yo-y ' I z,

This anomaly is shown in figure zc,for comparison purposes in figure 2b there

is a geoid anomaly over a finite vertical sheet. Obviously they are quite

similar in shape. This shows that two dimensional methods might approximate

three dimensional ones in spite of the arbitrary height difference.

A two dimensional rectangle is obtained by an integration of the mass

line over both the y and z axis.(Figure 4a).

N = - G	
z2 

Y2 loge C(Y-Y , ) 2 + (z-z') 2 ] dy dz
Y	 (16)

zl	 Y1

after integration (see appendix for details)

G 
N =	 -- [G 2 (Y21 z2) - G 2 (Yl1 z 2 ) - G 2 (Y2, zl)	 (17)

Y

+ G2 (Y1 ' zl)]

(13)
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Z

Calculation of geoid anomaly over a two dimensional rectangle.

Note that the geoid anomaly is never-flat, rather it is always

curving.

Figure 4
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where
(18)

G
2 (Y• z) a (Y-y') {(z-z') loge UY-Y I ) 2 + ( z-z') 2] - 2 z + 2 I y-Y 'i •

(z-z )	 (Y-Y
Tan- 1	) -2 Y z + E(z-z') 2 + (Y-Y') 2] Tan-1 + (z-z') (Y-Y')

assuming (z-z') > 0

In Figure 4b there is a plot of this anomaly. Over the rectangle the

geoid is not flat, it is always concave downwards until a point of inflection

above the edge of the body. The implication of this curvature is that in

constructing geoid models the anomalous mass must integrate to zero, otherwise

there will be a long wavelength curvature of the geoid anomaly. To make the

anomalous mass sum to zero, both negative and positive densities are utilized.

Integral Formulas For Two Dimensional Bodies

While analytic solutions for ideal bodies have an initial utility in under-

standing properties of geoid anomalies and verifying other formulas they are

of limited utility in learning about the earth. Better models of the earth

involve specifying densities of bodies of arbitrary shape and computing the

resultant geoid anomaly. In order to achieve this result we have developed

several techniques for the computation of geoid anomalies over bodies which

are polygons in either two or three dimensions. These enable the models of

virtually any shape to be calculated, the desired accuracy in shape only

limited by the number of specified sides.

A simple numerical solution to computing geoid anomalies was originally

developed by Talwani, Poppe and Rabinowitz (1972) in order to compute the geoid

across a two dimensional structure from the gravity. For a given polygon in

two dimensions the horizontal component of gravity is computed with the line

integral method of Talwani et al. (1959), then after division by normal gravity

the deflection of vertical is obtained.

4
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Fgh

6 =-

Y

As in our previous derivation for the infinite line, this is the slope of the

geoid

a =	
do	

(20)

dy

so finally

Y

N

 = f

a (y) dy	 (21)

Yo

This final integration is done with the trapezoidal rule or else Simpson's

formula. Although it is a numerical solution it produces very accurate results

in excellent agreement with exact analytic solutions.

For geophysical interpretation of two dimensional bodies of arbitrary

shape a method has been developed to directly compute the geoid anomaly over

a polygon in two dimensions. In this technique the body is specified by the

location of each vertex and the density of the body, as in Figure 5a. For

any arbitrary two dimensional body the geoid anomaly is

N - - !—Pf loge [(Y-y ') 2 + (z-z') 2] dy dz	 (22)
Y

s

To obtain a direct analytic solution for a two dimensional polygon we utilize

Stokes' theorem to convert this surface integral to the following line integral:

N = - G
a ilf 

(Y-y ') loge [(Y-y ') 2 + ( z-z') 23 - 2 (.Y-y1 ) + 2 (z-z')

Y	 -1 (y-y')	 (23)

Tan	 .) d z
(z-z')

and restricting (z-z') > 0

M

(19)
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With a polygonal approximation each side is defined by the formula:

z=mi y+bi

then the contribution to the geoid anomaly due to the i th line segment is:

(see appendix for details)

hi =	 mi (Y-y ') 2 loge [(Y-y ') 2 + (z-z') 2] - m;(y-y')2

+ m1 2 ,A2 (Y-y') - mi (mil- ' ) A22 loge [(Y-y ') 2 + (z-z')2]

(l+mi2)	 2(1+mi2)2

-2 m1 Z A22 Tan -1	 (1 +m, 2 ) (y-y ') + miA2	 (24)

(1	 )2	 A2

-m.Z(Y-y')2 + z2 Tan-1 (y-y')
z

-c i D12 loge
	 0 + c i 2 ) Z2 + 2 ci Di Z + Di2

(1+c,2)2
	

Di2

yi

+ Dj Z + (t-ci 2 ) D1 2 Tan-

,(

 y-y

( l+c 1 2 )	 (1 —+c  z

yi-1

with A 2 = mi y' + Bi -z'

ci - 1 / mi

Di = -Bi/mi -y'

mi = slope of line segment

Bi = intercept of line segment

Z =mi y+bi

k.
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thus the total geoid anomaly is
(25)

N=
-G 

a	
ni	 L - number of segments

Y	 i=1

Due to singularities in the integral formula the following special cases need

also be considered:

a) mi = 0 then ni = 0	 (slope of line segment is zero)

b) ci = 0 then	 (slope of line segment is infinite)

ni - {(Yi-Y') [(z-z') loge [(Yi-y ') 2 + (z-z') 2] - 2(z-z')

+ 2 
1Yi

-y'1 Tan-1 
(z-z') ] - 

2 (Yi-Y') z	 (26)
(Yi -Y'

+ [(y,-y l ) 2 + (z- z') 2] Tan-1 (z-z')

zi

+ (yi -y') (z-z')}

zi-1

c) 5 /m + y , = 0	 then	
(the extension of line segment passes

i i	 through observation point)

Z2	 1	 3z2	 l	 zi

	

ni { i loge t(1 +m---^) z2] -	 + z2 Tan-1 (m )}	 (27)i	 i
zi-1

assuming z' - 0. z > 0

For a given geophysical model a number of individual bodies are specified

by their respective densities and shape as defined by a number of vertices

of a polygon. For each body the geoid effect is calculated using either the

numerical technique in formula ( 21) or the analytic technique of formula (24).

After summation over all bodies the total geoid height due to the model is

obtained. In practice both of these mathematical techniques yield identical

results. In Figure 5b there is a sample computation of geoid height and

vertical component of gravitational attraction over a pentagonal body. The

geoid has a shape similar to the gravity anomaly but is much wider; the

geoid height decays with distance at a 0ower rate.



In modeling two precautions are necessary. First the constant level of the

geoid height must be ignored. This is because of the arbitrary location of

zero potential for a two dimensional body. A second precaution concerns the

specification of densities. In geoid calculations the anomalous density must

be utilized rather than the total density. 11iis is because Brun's formula

(formula (1)) requires anomalous potential rather than total potential. If

a given model is in isostatic equilibrium this second precaution requires

that the sum of the anomalous masses in a given column be zero. This require-

ment is different than in standard gravity models If the total mass did not

sun to zero then a constant gravity value could always be subtracted from calculated

gravity to obtain the gravity anomaly. In geoid computations this procedure

does not work, the reason being that a two dimensional rectangle (as discussed

previously) does not have a flat geoid anomaly above it, whereas in gravity

calculations a two dimensional rectangle, except for edge effects, has a flat

gravity anomaly.

As a practical example of the utility of these methods we consider the

study of an Atlantic type continental margin. In the transition between the

deep sea and the continental margin of Nova Scotia in Eastern Canada, the

ocean bottom changes in depth by five kilometers. Likewise the

ocean surface changes in height by six meters (Figure 6!. T his change in

geoid height has been determined from the GEOS-3 satellite. A natural question

arises `hen, what is the cause of this change in geoid height? To help answer

this question, a two dimensional density model of the Nova Scotia margin has

been constructed (Figure 6). This is a simple three component model with water,

crust, and mantle material. It is fully compensated in an Airy manner. Util-

izing the two dimensional technique described in this section, we have calcu-

lated the geoid anomaly over this model. As Figure 6 indicates, the calculated

N. a

88



ra

W AI

O	 C	 N	 M

On
W

v.

u

a
C.3

a)
CV
u

z

o~
w^

M J
W
=

^ o
W Q
(D O

<W
U (D

t^fcp	 O

S83131N
tD	 O

Sa313W

Figure 6

Geoid anomaly across Nova Scotia margin, left end of GEOS-3 profile

is at 44.5 6N, 63.25°W and right end is at 40 0 N, 58.10W.
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geoid height is in good agreement with the observed GEOS-3 data. It can be

concluded that a simple density model of the Nova Scotia margin which is in

isostatic equilibrium is capable of successfully modeling the observed GEOS-3

data. Due to the noise level of the data a more elaborate model was believed

unjustified.
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Geoid Calculations For Three Dimensional Bodies

While the two dimensional approximation has a certain utility, more

realistic geophysical modeling requires thr computation of the geoid anomaly

due to bodies of arbitrary shape and density in three dimensions. In the

method now developed the shape of the body is prescribed to be a polyhedron.

Any shape can be approximated by this method by simply including sufficient

detail with many facets. This same technique was developed in gravity

modeling by Coggon (1976), Paul (1974), and Barnett (1976).

In Figure 7a we illustrate a polyhedron which is assumed to have constant

density. To calculate the geoid height for this body the fundamental integral

formula 3 has to be solved. Conceptually our method of solution is quite

simple. This volume integral is converted to a surface integral by the

divergence theorem. For each facet of the polyhedron this surface integral

can be solved by conversion to a line integral via Stokes' theorem. Thus

the total volume integral is calculated by a summation of surface integrals,

one for each polygonal facet. Each surface integral -is calculated by a

summation of line integrals, one for each line segment on a given facet.

This is an exact analytic technique and is accurate for any sha pe which can

be approximated as a polyhedron.

Rewriting equation 3 in the form

N=^ fla  
 v ( r)dv
V

where r is the unit vector in the
radial direction

91



(D
2

U4	 U4 perpendicular to facet
S.

...........

Z

THREE DIMENSIONAL POLYHEDRON

0
. _,.._>3

'0** #'04

U2

I

Calculation of geoid anomaly over a three dimensional poly . hedron.

Figure 7

92

Iq

A

U

RETROla-,	
TTIp

ORIG IN AT,	 I



r n (x - x') x + (y - y'	 + (z	 Z') z

[(x - x') 2 + (Y - Y') 2 + (z - z')2]1

and v is the vector del operator

We see that it can be changed to a surface integral with the divergence theorem.

Thus:

N n G^^l^r - u4 ds
Y

s

or n 6_

tot A

 [(x - x') u41 + (Y - Y') u42 + 
(z - z') u43 ] ds

Yj
s	 [(x - x

1
) 2 + (y - y') 2 + (z - z')2]

where u4 is a unit vector normal to the element of surface area ds, and has

components 
(u4l' u42 , u43).

This equation now is a surface integral and mu; )e solved for each

individual facet upon which the unit normal vector uq is constant. After this

integral is computed for each face, the results are summed for all facets

thereby calculating the geoid anomalt due to the entire body. Thus

N	 z I	 where I i is equation 29 evaluated for

the ith facet of the polyhedron. 	 (30)

Solution of this integral for each face of the polyhedron requires a coordinate

transformation, rotating the facet until it is normal to cne of the

new axes. This technique was originally used for solving integrals in gravity

and magnetic computations by Barnett (1976) and Also Paul (174).

This coordinate transformation involves a rotation and translation. To

construct the necessary rotation matrix, three unit vectors must be first cal-

cu 1ated. For a giver. facet (Figure 7b) these three vectors are determined in

the following way. Each vertex in the facet is numbered in counter clockwise

order when looking into the body. Unit vector u l extends from point 1 to pint

(29)
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2, and unit vector u 2 extends from point 2 to point 3. Given this numbering

scheme u l x u 2 (vector cross product) is the outward facing normal for the

facet. With these vectors, two additional unit vectors can be calculated

	

u4 = u l x u2	 where u4 is the

	

u 3 = u4 x al	 outward unit normal

An orthogonal rotation matrix is constructed from these unit vectors.

	

u ll	 u 12	 u13

Jul =	 u 31	 u 32	 u33

	

U 41	 u42	 u43

where uij is the jth component

of the unit vector ui.

A coordinate translation is also applied so that the observation point (x', y', z')

becomes located at the new zero origin. The complete coordinate transformation

changes the (x, y, z) coordinates to a new (;, n, e) system, in which

	

(x', y', z') becomes (0, 0, 00. 	 •

Thus

	

u11	 u 12	 u 13	 x

n	 =	 u 31	 u 32	 u 33 y	
-	 n'	 (31)

9	 u41
	 u42	

u 43	 z	 e'

where

{' =u11 x1 
+u12y'+u13z

n' = u31 x' + 
u32 y' + u33 z'

e' = u 41 x' + u42 y' + u43 z'

After coordinate transformation the integral 29 for the i'th facet changes

to the simpler form:

I i = G,	 1	 ei d c d	 (32)
Y	 2' [ C2 + n2 + e2  I 

s
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In order to solve this surface integral for the i'th face, we change it to

a line integral over the sides of the polygonal facet via Stokes' theorem.

M
I i = G_p 	 ei logef-- + Ir. + n 2 + 8, 2] Idn	 (33)

Y

where  the integration is counter

clockwise (when looking into the body)

around the line segments bounding the

i'th face of the polyhedron. It must be

a closed contour.

Each side of the facet is a line segment with an equation

C - mjn + cio 	(34)

where mj is the slope of the j'th line segment

mj = cj+i - 9

nj+i - nj

and also c! = c - mj nj
j

Thus the total integral for the i'th facet is a sum of line integrals over

all of the bounding line segments.

I i = j L i j	 (35)

and	 nj+l
L ij - G ,p	 ei loge fmi n + c^) +	 (36)

Y	 2
nj

Yx

Emjn + cj )z + n2 + ei	
do

and Li is the line integral for the j'th line segment of the i'th facet of

the polyhedron.

This assumes that mj is finite . If it is not then do is zero and consequently

s,	 s L3. Also if e i is zero, then Ii is zero. After integration of equation
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36 and summation over all line segments of all facets, the final result is

oatained. (See appendix).

N=6p

	

ei

	 n loge f(min + ^^ j +

1 
2	

j
	

(37)

0 2 2 2^
C(mj" + ;3 ) + n + ei]	 j loge f[(Mjln + ;*) 2 + n2 + ei]

+mjIN 

1i	 nj+l

+ n ^l + mj + mj ^3	 + ei Tan- 1 	 (mje i - can)

Cluj J	 ei C(mjn +
	

+ '^^ e

nj

This expression then, in conjunction with the coordinate transformation

of equation 31, when evaluated, gives the geoid anomaly over an arbitrary

polyhedron. As a.practical matter, it is difficult to specify the coordin-

ates of the body in the orderly manner required. To simplify matters all

faces could be triangles and the body would be assembled in the manner des-

cribed by Barnett (1976). Also it should be noted that both the two dimen-

sional and three dimensional solutions to geoid anomaly modeling are exact

analytic expressions. This is in contrast to the asymptotic expansion

technique for geoid anomaly modeling developed by Ockendon and Turcotte (1977),

which although easier to evaluate requires the body to be very thin. Another

modeling technique was utilized in a study of a seamount region by Fisher (1976).

In many studies of geoid anomalies it will be necessary to compute the resultant

anomaly on a spherical earth. The three dimensional method developed here

can be utilized for that purpose, as long as it is realized that the connecting

segments between points on the polygon are linear. An alternative approach

would 5e to utilize the method developed by Johnson and Litehiser (1972),

who give an expression for the potential due to a body on a spherical earth.
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Their method in combination with Brun's formula would be a good numerical

solution to geoid modeling on a spherical earth. Another numerical technique

for computing geoid anomalies on a spherical earth was developed and applied

in a study by Bowin et. al. (1975).

As a geophysical example, this three dimensional modeling technique is

utilized to study a geoid anomaly which has been observed above the Truk Islands

(part of the Caroline Islands in the western Pacific). This geoid anomaly is

5 meters in amplitude and is above a seamount which is 4 km high . Quite

simply this geoid high can be explained as due to the excess mass of the

seamount itself, and the deficit mass of its compensating body. To model this

anomaly the topography was digitized and a polyhedral body was constructed•

In addition a polyhedral compensating mass was calculated. An Airy type crust

with a compensation depth of 30 km was utilized. In Figure 8 a cross section

of this model is depicted, along with both the calculated and observed geoid

height. From the good agreement of the two, it can be said that this geoid

anomaly is explained by an isostatic model of this seamount.

W-1
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Y(F
9 H

)

Y

^F9v) • i sgn (k)

Y

of the vertical.

(40)

k- i

Techniques in the Frequency Domain

A different understanding of the geoid is possible in the wavenumber

domain. This is done by examining the relationship between the Fourier

transform of gravity and the Fourier transform of the geoid. In other words,

what is the transfer function between gravity and the geoid? Our derivation

is analagous to the derivation of formula 21, but is done in the frequency

domain.

Given the vertical component of gravity due to a two dimensional body

we go to the wavenumber domain via the Fourier transform.

+a,

%(F 9 v)
	

F 9 v (Y) a
-iky dy	 (38)

To obtain the Fourier transform of the horizontal component of gravity we

Hilbert transform j1r(F9v)

5r (F 	 ' Y(F*jv) • i -sgn (k)	 (39)

where multiplication by i sgn (k) is

the Hilbert transformation (Papoulis, 1962)

also sgn (k) _ +1 k > 0	 and i	 [--13

-1 k< 0

This procedure can be verified by comparing the Fourier transforms of the

vertical and horizontal components of gravity due to an infinite mass line.

After division by normal gravity we get the Fourier transform of the deflection

Utilizing the integration theorem in the frequency domain the Fourier transform

of the geoid is obtained. This is because the geoid is the integral of deflection
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of the vertical.

%(N) . 3r(Fgv) i s n k)
i— Y k	 (41)

or	 Y[N (y)] n 1	 T[F 
9v (Y)]y Ik I

Thus given the Fourier transform of gravity we multiply by a transfer funct..n,

5(k ) to obtain the Fourier transform of the geoid. For the two dimensional

case:

	

S(k ) a 
Y^I	 (42)

This transfer function shows that a geoid anomaly over a body will have

the same phase spectra as the gravity anomaly. In simpler words this is our

previous observation. A geoid anomaly over a body has the same general shape.

Any maximum in the geoid occurs exactly where a gravity maximum does. However

the geoid anomaly for a given wavelength is changed in amplitude by the factor

( 1/1 Q). Thus for long wavelengths ( k«1) the geoid anomaly will be

magnified, while at short wavelengths ( k»1) diminished. This is our

observation that geoid anomalies are "wider".
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Conclusions

In this paper we have been concerned with developing the techniques

necessary for the interpretation of geoid anomalies. There are mathematical

formulas which for a given geological model can be utilized to compute the

resultant geoid anomaly. If the model is considered two dimensional then

densities for a polygon in two dimensions are specified and using formulas

24 and 25 the geoid heights are calculated. In this method only the relative

heights are important. Any geologic body can be modeled with a polyhedral

shape in three dimensions. If density is variable within the body several

polyhedra may be utilized. After specifying densities for this, formula 37

is utilized to calculate the resultant geoid anomaly. To understand geoid

anomalies, it is seen that they basically havc the same shape as gravity

anomalies, but with the long wavelength components amplified. Techniques

such as these are only tools. Their real importance is in enabling the

interpretation of observed geoid anomalies, such as are detected by GEOS-3.
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Geoid Anomalies over Oceanic Features

In using satellite altimeter measurements to study the Earth's interior

a simple question can be asked. What is the shape of the ocean surface over

bathymetric features? Physically such features would be expected to have

related geoid anomalies because there is a large density contrast between

oceanic crust and the surrounding water. At the bottom of the ocean floor

there are certain types of large structures; seamoun^s, continental margins,

fracture zones, mid-ocean ridges, and deep sea trenches. Over each one of

these features there are characteristic undulations of the ocean surface.

Being directly related to the density structure, these measured shapes can

be utilized to infer the internal lateral density variations within the

Earth. Using the GEOS-3 radar altimeter geoid anomalies have been identified

•	 'over these structures.

Bordering the continents in the Atlantic ocean are passive continental

margins. Detailed geophysical studies of these regions usually involve the

study of several important questions; location of the ocean-continent

boundary, nature of the mechanism of isostasy, and history of subsidence

along the margin. Of these questions, geoid measurements may be of

assistance with the first two. As an example of a passive margin consider

the East Coast United States. Across this margin the geoid has a 6 meter

step similar in sense to bottom topography (Figure 1). In placis this

anomaly is quite distinct, as off Nova Scotia; further south the increase

is quite gradual. An important area of research would be to ascertain why

this shape varies along the coast. This study would probably be concerned

with isostatic geoid anomalies.
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At many of the co y *inental margins in the Pacific Ocean active

subduction of the lithosphere occurs at deep sea trenches. These are

active continental margins. At these margins there is a characteristic

geoid anomaly. With GEOS-3 data we see that above the trench axis the

ocean surface forms deep valleys up to -20 m in amplitude. Over the Aleutian

Trench the sea surface has a depression of -13 m, while at the Mariana

trench the geoid dips by almost -20 m (Figure 2). Seaward of the Aleutian

Trench there is a long wavelength increase in the geoid towards the Aleutians.

This anomaly is concave downward and continues to increase landward of the

trench where the depths are shallower. Because it is the nature of the

geoid to show long wavelength anomalies it is expected to be most sensitive

to deep density inhomogeneities rather than crustal structures. As the

downgoing slab is a large and deep inhomogeneity, any anomaly caused by

it would be more evident in the geoid rather than in gravity.

Another primary type of geoid anomaly is above mid-ocean ridges

where accretion of the lithosphere occurs. One example of this type

anomaly is across the Southwest Indian Ridge in Figure 3. Gravity and

topography profiles are from a nearby ship track; the geoid data are from

the GEOS-3 satellite. Although gravity data show little of a long wavelength

anomaly, the geoid has a distinct anomaly centered over the ridge axis.

This is about 7 meters in amplitude and at least 1000 km wide. A track

chart of altimeter data acquired over both the Southwest Indian and Southeast

Indian Ridge is illustrated in Figure 4. Other geoid profiles across the

Southwest Indian Ridge are shown in Figure 5. Each of these six profiles

shows a higher region to the sout^,east of the ridge axis followed by a sudden

change in slope directly at the axis. As there appears to be a broad

regional slope to the data a linear trend has been removed from each profile.
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These profiles are in Figure 6. Each profile over the Southwest Indian

Ridge after removal of a linear trend shows a characteristic geoid anomaly

similar to the one in Figure 4. This anomaly is maximum at the ridge axis

and almost 10 m in amplitude. It is 1800 km wide. Profiles across the

Southeast Indian Ridge show a much larger regional background as shown in

Figure 7. After removal of a linear trend the characteristic ridge anomaly

is evident in Figure 8. This anomaly has a 6 meter amplitude and 2000 km

width. Presumably this ridge anomaly is the result of density anomalies

due to creation and evolution of the lithosphere. A detailed study of

this and other ridge anomalies should be undertaken to ascertain any

dependence upon spreading rate and any possible asymmetry. Using a thermal

model of the lithosphere, Haxby and Turcotte (1978) have modeled the ridge

anomaly in the North Atlantic.

Other smaller oceanic structures have shorter wavelength geoid

anomalies. Above islands there is a geoid anomaly several meters high.

For example 6 meters over Bermuda (Figure 1) and 4 meters over the Caroline

Islands (Figure 9). At fracture zones where the crust has a significant

age difference on either side there will be a difference in depth which

causes a geoid anomaly. Over the Romanche Fracture Zone the geoid has

a step of 4 or 5 meters (Figure 10). With similar large fracture zones it

will be possible to use geoid height measurements to trace fracture zones

where ship measurements are scarce. Another type geoid anomaly occurs over

the Bismarck Sea. This is a small marginal basin several kilometers shallower

than adjacent ocean. Above this region the ocean surface forms a broad high,

450 km wide and 7 m high (Figure 2).
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Chapter V

Geoid Corrections in Marine Gravimetry
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Introduction

Due to undulations of the geoid free-air gravity anomalies measured

at sea are caused both by lateral changes in mass distribution and also

by changes in height above or below the reference ellipsoid. In those

gravity modeling studies which do not consider the latter effect of height

changes, there may sometimes be serious misinterpretation. The required

correction term to eliminate this effect is at most ±27 mgal and most

significant when studying the geophysical implications of the long wave-

length gravitational field.

To understand the need for this correction, consider the standard

procedure in gravity modelinc; a density model of the anomalous mass is

used to calculate the vertical component of gravitational attraction

which is then compared with the free-air gravity anomaly. This procedure

implicitly assumes the equivalence between free-air gravity anomalies and the

gravitational attraction (in the vertical direction) of the anomalous mass.

This assumption is only an approximation; due to geoid undulations there

can be substantial errors in this procedure. This approximation is well

known to geodesists (Bomford, 1962) but is not commonly acknowledged in

geophysical studies.

For models of localized mass anomalies or short wavelength features

this approximation is probably valid. For regional studies, however, with

the objective of interpreting longer wavelength components of the gravity

field the importance of correcting the free-air gravity anomaly for geoidal

undulations is greatly increased.

For example, in a study of the North Atlantic regional gravity field

the effect of this approximation was not discussed by Cochran and Talwani

(1978). In this work there would have been a correction term of up to
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approximately 20 mgal added to their observed free-air gravity prior to

interpretation. Other studies in the Japan sea and Izu-Bonin region

(Segawa and Tomoda, 1976) and the Aleutian arc (Grow, 1973) have similarly

not considered this additional correction. A modeling study of mid-ocean

ridges (Lambeck, 1972) was one of very few to include this indirect effect

in the theoretical calculations. Due to the extensive neglect of this

effect in geophysical studies we briefly discuss its origin and then indicate

the types of physical situations in which it is most significant.

Origin of Error

When measurements of gravity are made aboard ship at sea they are of

course actually being made on the surface of the geoid. In some cases,

in order to properly utilize this data for geophysical interpretation, it

is necessary to correct for the undulations of the geoid surface. Consider the

standard method for obtaining the gravity anomaly. After measurement of

gravity on the geoid, the normal gravity on the ellipsoid is subtracted thus

yielding the Gravity anomaly.

A 9 0 gobs - Yn	
where ng is free-air gravity anomaly

gobs is measured gravity on the geoid

Yn is gravitational attraction of the

ellipsoid, on the surface of that ellipsoid

It is important to note that for determining the free-air gravity anomaly,

these two gravitational attractions are measured with respect to different

references. The geoid is the reference for the observed gravity and the

ellipsoid the reference for theoretical gravity. The difference in height

between the ellipsoid and geoid (Figure 1) contributes to the difference in

gravitational attraction between what is measured 
(gobs) 

and what is calculated

(Yn ), and thus the resulting gravity anomaly is not solely due to an anomalous

mass. To see the need for this additional correction consider the following

M-
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Measurements of gravity 
(gobs) 

are made on the geoid which is at a

height N above the reference ellipsoid. Attraction of the ellipsoid

(Yh) is calculated at a different height, on the surface of that

ellipsoid. This height difference is the reason for the geoid

correction term.
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expression which simply equates forces of gravitational attraction:

pg = g	 - Y = i " A + gravitational effect of mass between geoid
obs	 n ar

and ellipsoid + gravitational effect of anomalous mass

where 74)rr—" 
is radial gradient of normal gravity

N	 is height of the geoid above the

reference ellipsoid - in meters.

On the right side of this equation the first term is a free-air correction,

and the second term a Bouguer correction. The free-air term is -.3086 mgal/

meter and using a planar approximation the Bouguer correction is

+.043 mgal/meter assuming a water density of 1.03 gm/cm 3 . Correction for

the Bouguer term subtracts the effect of excess water mass for positive

geoid height and adds in a gravitational effect of the missing water mass

for negative geoid height. Thus to obtain the gravitational effect of

the anomalous mass:

gravitational effect of anomalous mass (in mgal) = ng + .2656*N

This equation is obtained by transferring the free-air and Bouguer terms

to the other side of the previous equation. The term which is added to the

gravity anomaly can be designated the geoid correction term. This term

is numerically equal to .2656*N. This geoid correction term is added to

the free-air anomaly (og) in order to obtain the ,gravitational attraction

of anomalous mass , - in mgal.

Significance of Correction

This correction will be at most ±27 mgal, corresponding to the fact

that geoid height (N) is rarely above or below 100 meters. To consider the

importance of this correction it is necessary to understand the properties
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of the geoid. Undulations of this surface are very smooth, with very long

wavelengths. For many regions the corresponding geoid correction will only

appear as a constant offset in the data, which in gravity studies is not

always important. However, when considering the long wavelength gravitational

field (wavelengths longer than approximately 500 km) this correction becomes

of greater significance in geophysical studies. At the present time, scientists

are beginning to investigate the long wavelength components of the gravi-

tational field, and it is in these studies that the geoid correction in

marine gravity must be considered.

To give an example of how this correction might be applied, we consider

a profile of gravity across the Tonga-Kermadec trench (Figure 2). Above the

bathymetry profile, the gravity anomaly (ng) referred to the geoid is shown.

Utilizing es. ^ates of geoid height from the GEOS-3 satellite we have also

illustrated the zoid height along track.

As theeoic _orrection term is .2656*N it is directly proportional

to geoid height (N). Thus the scale on the top left of Figure 2 is

for geoid height (N) while the scale on the top right is for theeg oid

correction term which is a value in mgal to be added to the free-air

anomaly (Ag). After addition of this correction to the gravity anomaly, the

gravity referred to the ellipsoid is obtained and illustrated in the same

figure. In this case the correction is at most 18 mgals. For this region we

must affirm the existence of a regional gravity high behind the island arc.

This is an important conclusion and directly shows the application of the

geoid correction term.

For the purposes of relatively short wavelength gravity modeling this

correction may not be very significant while, for more regional studies,

failure to take the geoid effect into account may lead to considerable
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misinterpretation. The importance of considering the geoid height correction

for measured gravity is further emphasized as a better definition of the

structure of the earth's crustal layers leads to efforts to determine the

nature of deeper structures. Lateral density heterogeneities in the mantle,

for example, produce gravity variations similar in wavelength to those of

the undulations of the geoid. As an example of the effect of theeg oid

correction term on regional gravity and the consequences for interpretation,

one can examine the regional high associated with marginal basins behind

western Pacific island arcs. The regional free-air gravity anomaly field

landward of the Mariana and Izu Bonin arcs averages approximately +25 mgal

while the Pacific ocean basin has a regional field of approximately zero.

The geoid height above the reference ellipsoid varies from as high as 60 meters

behind these arcs to zero in the Pacific basin thus producing a geoid

correction term of up to 16 mgal. After addition of this term to the

free-air anomaly the gravitational attraction of anomalous mass in the

marginal basin is 40 mgal, over the Pacific ocean basin it is still zero.

This would result in a different interpretation about the extent and density

of deep lateral mass heterogeneities.

Summary

The need for this geoid correction term was stated previously by

Bomford (1962, p 443), and is thus not a new idea. This is only a timely

reminder, since with the determinations of the geoid by the GEOS-3 radar

altimeter the correction is now feasible. Of course it was possible to

implement this correction prior to radar altimetry by using global gravi-

tational field models, however, with GEOS-3 geoid data it can be done with

a higher degree of accuracy. In geophysical studies of the long wavelength
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gravitational field this correction is mandatory, although due to the long

wavelength nature of the geoid it may not be significant in studies of

the shorter wavelength gravitational field.
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Introduction

Measurement of the gravitational field in the world's oceans has

resulted in an increased understanding of the physical processes which

occur in the vicinity of deep sea trenches. It has long been recognized

that island arcs and adjacent trenches are the site of some of the

largest free-air gravity anomalies over the surface of the Earth. Ever

since the development of pendulum measurements of gravity in submarines,

a basic understanding of the primary features of gravity at island arcs

has been possible. With only a few data points in a given transect it

was possible to recognize the existence of a significant low in the free-

air gravity anomaly directly above the trench axis and an adjacent high

over the island arc. Utilizing the Vening Meinesz pendulum apparatus on

the submarine H.M.S. Telemachus, four crossings of the Tonga Trench

indicated this characteristic pattern of gravity anomalies (Talwani, et

al., 1961). On one of the profiles a value of -224 mgal was observed

over the Tonga Trench and a positive free-air anomaly of +153 mgal over

the island arc. On the basis of earlier studies in the Indonesian archi-

pelago Vening Meinesz (1954) observed that significant isostatic gravity

anomalies existed in the region and suggested that,the trench system

existed as a result of horizontally compressive and shear stress.

When it became possible to make continuous gravity measurements on

board a moving surface ship, a wealth of new information about the

Earth's gravitational field became available. With this new data it

became evident that many trenches had a distinct gravity anomaly seaward

of the trench axis. This has been termed the Outer Gravity High (Watts

and Talwani, 1974). One plausible explanation of this anomaly is that
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at a trench the lithosphere undergoes elastic deformation producl-m a

bathymetric ris4 and consequent gravity high.

With plate tectonic theory it became evident that as the litho-

sphere descended into the relatively hot asthenosphere, the slow rate of

heat conduction permitted differences in temperature to be maintained.

These thermal conditions result in a density contrast between the cooler

slab and the surrounding hotter mantle and a consequent gravity anomaly.

It is uncertain what the actual differences in density are, but the

configuration of the descending slab is known from seismic .cudies.

Thus models of the density structure including the downgoing lithosphere

have been possible end were actually c^%.:tructed for the Chile Trench

(Grow and Bowin, 1975), Aleutians (Grow, 1973), and Japan Trench ( Segawa

and Tomoda, 1976). In all of these studies each new develo pment in

instrumentation or theory resulted in a better determination and explanation

of the gravity field in the vicinity of deep sea trenches.

Measurement of the gravitational field in a marine environment has

heretofore been concerned with the radial component of the gravity

vector. However, as the gravitational field is a conservative force

field, it can equally be described in terms of the scalar gravitational

potential. On the Earth the equipetential surface of the gravity field

which coincides with mean sea level is te+med the geoid. In the absence

of noise, determination of the shape of the aeoid over the Earth's

surface would give information on the gravitational field equivalent to

that obtained by gravity vector measurements. In the presence o f noise

geoid height measurements give more useful information for wavelengths

between several hundred and several thousand kilometers (Chapman and

Talwani, 1979). Determination of the shape of the geoid in marine areas

can contribute new and valuable information about the gravitational
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field and the interior densities wit-hin the Earth. In this study

measurements of geoid height in the vicinity of deep sea trenches

enable identification of a characteristic geoid anomaly. For the

Tonga-Kermadec Trench, geoid and gravity values are used to determine

a new model of the density structure. These new measurements give

better constraints on variations in mantle density than were previously

available with only gravity measurements.
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Data Acquisition

Geoid measurements are made by using a radar altimeter mounted

on a spacecraft which orbits the Earth. In utilizing the GEOS-3 satellite

to obtain estimates of geoid height, a certain procedure is used to

collect and process the data. Mounted on board this orbiting spacecraft

is a radar altimeter which is always oriented toward the center of mass

of the Earth. During data acquisition the altimeter emits radar pulses

which are ref':,cted from the ocean surface and received by spacecraft

antennas. In this manner measurements of the satellite altitude are

obtained 100 times per second. When combined with accurate orbital

tracking of the satellite, the height of the instantaneous sea surface

relative to the reference ellipsoid is determined. Due to the existence

of forces other than from the Earth's gravitational field, the sea

surface at any given time may depart from the actual geoid. Such

differences are caused by tides, currents, and other oceanographic

phenomena. In general though, for the deep ocean these discrepancies

can be considered noise which in amplitude is less than approximately

1 meter. After acquisition of the data, it is time averaged over .1024

second intervals; a second smoothing procedure averages the data over

2.2 or 3.3 second intervals. The data which we utilize is an average

value of geoid height over a 14.4 km or 21.6 km distance; the ground

speed of the sub-satellite track is approximately 6.55 km/sec. For all

of the data which we use in this study, a listing of the instrument

type, transmission mode, and date of acquisition is available in Table 1.
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GEOID ANOMALIES OVER DEEP SEA TRENCHES

With the use of this GEOS-3 altimeter data, an extensive study of

geoid heights over island arc regions has been undertaken. As the data

was examined, it became possible to identify a characteristic geoid anom-

aly which exists over all major deep-sea trenches in the world's oceans.

This geoid anomaly is caused by the lateral density differences within

the Earth beneath the island arc region. With aaequate additional

constraints and proper interpretation, it can provide useful information

about the density and structure of the upper mantle and the physical

processes which occur at dee p sea trenches.

To discern the characteristic geoid anomaly over deep sea trenches,

we examine the various trench systems in the Pacific and Indian Oceans.

These are in turn the Aleutian and Kuril Island arc system, the Mariana

and Bonin Island arc-trench region, the Philippine Trench, the Tonga-

Kermadec region, Peru-Chile Trench, and lastly the Java Trench. Over

each of these deep-sea trenches a set of representative geoid profiles

is displayed. Track locations of all the data are illustrated in Figure

1, while instrument and data characteristics are listed in Table 1. For

each of the geoid tracks the data has been projected to a line per-

pendicular to the strike of the trench -.xis; as the original tracks are

fairly linear, this only represents a scale chan ge. Profiles from each

trench region are displayed in Figures 2 through 7. Bathymetry and

gravity data from a nearby ship track is shown along with geoid profiles

from the GEOS-3 satellite.

Geoid profiles from the Aleutian. and Kuril Trench are illustrated

in Figure 2. These data clearly indicate the type of profile which will

be seen as characteristic of all deep sea trenches. Beginning about
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2000 kilometers seaward of the trench axis, the geoid has a constant

increase in height as the axis is approached. This slope is about

20 meters over a distance of 1800 kilometers. Directly above the dee p-

sea trench there is an approximate 13 meter decrease to form a low

150 kilometers in width. Immediately landward of the minimum there is

an approximate 18 meter increase until a maximum is reached directly

above the island arc. Behind the arc there is a gradual decrease in

geoid height of about 10 meters over a 1000 kilometer interval. All of

these tracks show both the deep low over the trench axis and the adja-

cent high above the island arc. Tracks G4263, G3681, and G3138 all have

the gradual decrease behind the arc. Track G4806, however, has a slight

increase and then a step to a higher level. This step in geoid height

occurs at the continental margin southwest of Alaska. This same track

also passes over the Emperor Seamounts and shows the characteristic high

and flanking lows (Watts, 1979). Over the Kuril Trench track G3509 has

the same features as the Aleutian Trench.

An appropriate area to study deep-sea trench anomalies is in the

region of the Philippine Sea. This is the location for the Mariana and

Izu-Bonin, Philippine, Japan, and Ryukyu Trench systems. At the eastern

boundary of the Philippine Plate the Mariana and Bonin Island arc-trench

system has an interesting sequence of geoid undulations. Above the Izu-

Bonin Trench tracks G4824 and G4861 in Figure 3 have an increasing geoid

height as the trench axis is approached from the seaward side. Directly

over the axis of the trench there is a minimum of approximately 5 meter

amplitude. This is followed by an 18 to 25 meter increase to the high

over the Bonin Islands. Adjacent to this Bonin high there is another

minimum which is about 6 to 8 m in amplitude. Landward of the arc the

145



geoid height remains fairly constant with a gradual increase. Further

south above the Mariana Trench the increase in geoid height seaward

:	 of the trench is more evident due to lengthier tracks of data with G5323

and G4841. With these two profiles the increase in geoid height is

35 meters over 1500 km distance. Over the Mariana Trench axis there is

a 10 meter minimum followed by a steep 20 meter increase landward of the

axis. Above the Parece Vela Basin the geoid is fairly constant or has a

gradual increase.

In the western Philippine Sea the plate boundary is marked by the

location of the Philippine Trench. GEOS-3 geoid profiles over this

region are illustrated in Figure 4. In these tracks, as they approach

the trench axis from the West Philippine Basin, the geoid gradually

increases in height by up to 20 m over 1800 km. Over the Philippine

Trench itself there is a 5 to 15 m low, followed by a steep 15 to 25 m

increase to a geoid high landward of the trench. Track G1694 passes

over the Halmahera Ridge which has a 5 m high and two flanking lows. In

the gravity field over this ridge there is a +36 ngal anomaly and an

adjacent -187 ingal low (Watts, 1976).

Some of the clearest examples of the geoid anomaly at deep sea

trenches occur in the region of the Tonga and Kermadec Trench system.

These are illustrated in Figure S. Beginning in the Southwest Pacific

Basin the geoid increases in height as the trench is approached. This

is an increase of almost 40 meters over a 2800 km distance. Similar to

the other trench axes discussed previously, there is a 10 m low over the

axis of the Tonga-Kermadec Trench. This low is followed by a steep

increase of up to 30 m to the high region over the South Fiji Basin.

For GEOS-3 track G2445 the geoid immediately begins to decrease landward

Jr
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of the trench axis; from Figure 1 it is seen that the track almost

immediately is back over the Pacific Basin. For tracks G1989 and G1477

the geoid decreases when the Pacific Basin is similarly reached. Both

tracks G2018 and G1598 cross over the South Fiji Basin and then have a

local high above the Fiji Plateau. Track G1590 has a slight minim

above the South New Hebrides Trench.

On the eastern side of the Pacific Ocean the Peru-Chile Trench is the

location for subduction of the Nasca Plate. This trench also has a

gradually increasing geoid height as the trench axis is approached from

the seaward side. At this trench, however, the increase is very slight--

only about 10 to 20 m over 1500 km (Figure 6). Again, as seen in the

other regions, there is a 5 to 7 m low over the trench axis followed by

a 10 to 15 m step at the continental margin. Due to the presence of

land, no altimeter measurements were made landward of the trench.

Outside of the Pacific Ocean the only major trench system is in the

Indian Ocean, the Java Trench. This region has the steepest geoid

,nomalies seaward of the trench. At this location there is a slope of

about 55 m over a 1500 km distance (Figure 7). Above the trench itself

the low is not as pronounced as in other regions. Here it is only about

2 to 5 m deep. Following the trench low there is a dramatic 30 m

increase to the high region over the Java Sea. This increase in geoid

height continues behind the arc at about the same rate as seaward of the

trench.

After observation of GEOS-3 altimeter data over these active

subduction tones, an important conclusion is possible. Over all major

deep-sea trenches there is a distinct pattern in the geoid. Beginning

anywhere from 1000 to 3000 km seaward of the trench, the geoid increases
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in height until just prior to the trench axis. This very long increase

has a slope of 7 meters per 1000 km (1.4 seconds of arc) at minimum to

37 meters per 1000 km (7.6 seconds of arc) at maximum. In shape this

increase seaward of the trench is in some cases concave downwards

(Aleutiar, Trench); concave upwards (Java Trench); or fairly linear

(Tonga Trench). Directly over the trench axis there is a narrow minimum

in the geoid. This low is from 100 to 200 km in width and in depth

anywhere between 3 m and IS m (measured from the maximum on the seaward

boundary). From the base of the trench axis low there is a steep

increase of up to 30 m to a high region landward of the trJ:--^ch axis. In

sane cases there is a distinct geoid high above the island arc. This is

most obvious with the Bonin Islands and also the Aleutian Arc. Landward

of the island arc the geoid is somewhat variable; behind the Aleutians

there is a gradual lowering of geoid heiaht. However, over the Java

Sea the geoid continues to rise. In other regions the geoid remains

fairly level landward of the trench. These features then are character-

istic of the geoid in the vicinity of deep-sea trenches; a grace -i1 long

increase as the trench is approached from the ocean basin, a narrow low

over the trench axis, and a relative high but with variable slope

landward of the trench.
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Gravitational Field in Vicinity of Deep Sea Trenches

From the GEOS-3 altimeter measurements the characteristic geoid

anomaly over deep sea trenches has been ascertained. In previous work

at the ocean surface marine gravimeters have always been utilized to

measure the gravitational field. These former studies have defined the

free-air gravity anomaly which is characteristic of deep sea trenches.

An early study of the Tonga Trench mapped the major features of the

free-air gravity (Talwani, et al., 1961). In this work pendulum meas-

urements were used to detect the large negative anomalies over the

trench. Above both the Tonga and Kermadec Trench the free-air gravity

has a minimum 100 to 200 km in width and -200 mgal in amplitude. Landward

of the trench over the Tonga Ridge positive gravity anomalies, 100 to

150 mgal in amplitude, were described by Talwani, et al. (1961). This

region has a representative example of the typical free-air gravity

anomaly above the trench and island arc. A gravity and bathymetry

profile from Eltanin 29 is illustrated in Figure 5. For this profile

there is a -220 mgal low over the Kermadec Trench and an adjacent 50 to

100 mgal high above the Lau Ridge and Le Havre Trough. Other regions

have similar gravity profiles, although at the Java Trench there is a

double gravity low with an intermediate high (Figure 7).

Another connon feature of the gravitational field is the existence

of a positive free-air gravity anomaly seaward of deep sea trenches.

This has been designated the Outer Gravity High by Watts and Talwani

(1974). Originally observations of a bathymetric rise seaward of the

Kuril Trench led Hanks (1971) to suggest horizontally compressive

stresses occur in this region. According to his hypothesis, these

stresses acting normal to the trench axis cause elastic deformation
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of the lithosphere resulting in an outer bathymetric rise. This concept

was utilized by Watts and Talwani (1974) to explain the occurrence of the

Outer Gravity High. In their model the elastic flexure of the litho-

sphere causes the crust to bend upwards thus resulting in a positive gravity

anomaly. Gravity and bathymetric profiles from Vema 20-06 in Figure 2

show the outer topographic rise immed'lately seaward of the Aleutian trench

and the associated positive free-air gravity anomaly 50 mqal in amplitude.

A final feature of the gravitational field is the gravity anomaly

landward of the trench. Above marginal basins the free-air values are

near zero or slightly positive. As the crust in this area has a normal

oceanic thickness yet occurs at shallow depths relative to the deep

basin, it is possible to infer the existence of low density upper mantle

(Karig, 1971). Beneath the Fiji Plateau Solomon and Biehler (1969)

discovered a mass deficiency equivalent to a 1% density decrease to

100 km depth located within the mantle. Yoshii (1972) calculated that

low density mantle material occurs beneath the Sea of Japan. And behind

the Izu-Bonin Trench, Segawa and Tomoda (1976) also calculated lower

average mantle densities. What all of these studies indicate is the

presence of lower mantle densities behind deep-sea trenches, when compared

to the deep ocean basins.

Combining all of these observW .Ins together, one can describe the

characteristic free-air gravity in the vicinity of deep sea trenches.

Immediately seaward of some trenches there is often an Outer Gravity

High. This is about 50 mgal in amplitude and several hundred kilometers

in width. Directly above the trench axis there is a narrow low, usually

-150 to -250 mgal in amplitude. In the island arc region there are positive

anomalies over the topographic highs with amplitudes of more than +200 m^i'

Landward of the island arc the free-air gravity anomaly is often close

4
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zero or slightly positive. However, after elimination of crustal effects,

lower average mantle densities are present when compared to the deep

ocean basin region.

N
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Technically, measurement of either the gravity field or geoid gives

all the information possible about density variations within the

Earth. Only one type of measurement is necessary. In a practical

situation, due to the presence of noise, both altimetry and gravimetry

measurements are useful for studying the density heterogeneities; they

provide complementary information. To see why this is true, consider

the nature of the geoid and gravity field. As observed in the previous

figures (2 to 7), the geoid mostly has gradual undulations. Primarily

it has long wavelength information. Free-air gravity anomalies,

however, contain many fine details; in the gravity field short wave-

length information is most evident. Due to the long wavelength char-

acter of the geoid and the high wavenumber nature of the gravity field,

for wavelengths longer than a certain number a radar altimeter will

record the gravitational field with a higher signal to noise ratio; but

at shorter wavelengths a marine gravimeter will perform better. This

is illustrated in a quantitative manner by Chapran and Talwani (1979).

When using data from both an altimeter and gravimeter the best possible

information can be obtained at both shorter and longer wavelengths.

For the Earth's gravitational field quite often long wavelength

anomalies are ascribed to deeper structures while shorter wavelength

features are explained by the more shallow structure. For example,

gravity anomalies less than several hundred kilometers wide are often

modeled by crustal structure as in the study by Talwani et al. (1961).

Long wavelength undulations typically are explained by phenomena within

the mantle. Bott (1971) suggested the mantle transition zone was the

cause of harmonics for wavelengths longer than degree and order 8.
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This practice of relating longer wavelength anomalies is explained

by two principles. If a deep body has detailed structures and consequent

high frequency gravity anomalies locally, these details will be lost due

to attenuation with depth - only long wavelength information will remain.

A second principle is that long wavelength gravity anomalies cannot be

maintained by shallow structures. They would generate stress differen-

ces in excess of the breaking strength of the shallow material. Com-

bining these principles with the previous discussion, it is possible to

see that marine gravity probably gives the best constraints on the shallow

densities while radar altimetry is most useful for determining the

deeper density heterogeneities. When data from these two sources are

combined, there should be useful information about both the deep and

shallow lateral density variations within the Earth.

In using both geoid and gravity data to constrain Earth models,

a problem arises with the gravity values. Very often in the region

landward of the island arc the free-air gravity anomaly is close to

zero, yet the geoid is high. This would appear to make interpretation

quite difficult. It must be realized though that the free-air gravity

anomaly is caused by both mass inhomogeneities and changes in height

of the geoid. Any effect due to geoid height differences is often

termed the 'Indirect Effect'. To insure that gravity values are only

caused by anomalous mass, a geoid correction term should be added to

the free-air gravity. These geoid corrections in marine gravity are

discussed by Bomford (1962) and by Chapman and Bodine (1979). After

correction for this factor both gravity a0 geoid values may then be

properly interpreted.
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To give a concrete example of these ideas, we utilize a previously

published density model. In a thorough study of the Izu-Bonin Trench,

Segawa and Tomoda (1976) used the free-air gravity anomaly and seismic

refraction data to infer the crust and upper mantle density structure.

Their model had an excellent match with the observed free-air gravity

values. A reasonable question to ask then is can this model be used to

calculate geoid heights in agreement with the observed values. To

answer this we utilized their model to com pute the geoid anomaly. The

result is illustrated in Figure 8. Above the calculated geoid height,

the observed values from GEOS-3 are shown. The computed anomaly com-

pares poorly with the observed data. This density model cannot explain

the geoid anomaly over deep sea trenches. This poor agreement is due to

two factors. As the calculated geoid values disagree with the measured

data, there are obviously incorrect densities in their model. From our

previous discussion it may be suggested that these incorrect density

values are within the mantle. This is, however, not certain. Another

important factor is the use by Segawa and Tomoda of the free-air anomaly.

They neglected the 'Indirect Effect'. Landward of the arc, a value of at

most 12 mgal should have been added to the free-air anomaly prior to inter-

pretation. We have used this example to indicate that the use of geoid

data in conjunction with gravity values provides a new and more powerful

constraint on density models. The study of the Izu-Bonin Trench by

Segawa and Tomoda (1976) was one of the most complete and excellent

studies of a trench region; their model had very good agreement with the

data they utilized. At this time, however, new data on geoid heights

are available which would provide additional information to constrain

their density model.
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Possible Causes of the Geoid Undulation

Due to the inherent ambiguity in gravity interpretation, it is

always necessary to first consider the relevant physical processes for a

given region. An understanding of these processes enables the range of

possible density models to be greatly restricted. Existence of a posi-

tive regional free-air gravity anomaly landward of active trenches has

been previously known due to satellite based gravity models (Kaula,

1969). A primary suggestion as to the cause of this anomaly is an

excess mass due to descending lithosphere. While the slab penetrates

into the asthenosphere it gradually heats up due to thermal conduction.

As the rate of heat transfer is quite slow compared to the rate of sub-

duction, the descending slab is in many cases cooler than the surroun-

ding asthenosphere. Due to such thermal differences, the slab is denser

than the adjacent material. This is an excess mass and causes a posi-

tive gravity and geoid anomaly (Griggs, 1972; Hatherton, 1970 and 1969).

In the calculations by Griggs the density contrast between the slab and

surrounding asthenosphere was at some depths greater than .2 gm/cm3.

This generated a gravity anomaly of +100 to +300 mgal in amplitude,

depending upon the model parameters. Griggs also specified an undefined

form of regional compensation. In a study of the crust and upper mantle

beneath the Chile Trench, Grow and Bowin (1975) utilized density contrasts

between .024 and .05 gm/cm3 for the descending lithosphere. For the

Izu-Bonin Trench, Segawa and Tomoda (1976) used a density contrast of

.05 gm/cm3 for the slab. In a discussion on the gravity effect of

downgoing slabs Watts and Talwani (1975) concluded the total are',ity

effect is limited in extent to the island arc-trench region and suggested

that the regional positive anomaly is due to some other mass inhomogeneities.

y:
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In order to analyze the possible effect of a denser slab, a simple

calculation has been made utilizing a two-dimensional technique (Chapman,

1979). The hypothetical slab extends from 100 to 400 km depth where

there is a density contrast of +.04 gm1cm3 with the surrounding mantle

(Figure 9A). For this theoretical example there is a gravity anomaly of

+55 mgal and a geoid undulation of 30 meters. The geoid anomaly is

maximum over the center of the slab and decays downwards on either side.

It should be noted that for all these two-dimensional calculations the

absolute level of geoid height is arbitrary.

Another possible suggestion as to the cause of the trench geoid

anomaly might be the outer bathymetric rise often found seaward of deep

sea trenches. Such a model has been utilized to explain the free-air

gravity seaward of the trench axis (Watts and Talwani, 1974). In the

study of Watts and Talwani the bathymetric rise was considered to be the

result of elastic flexure of the lithosphere due to regional stress

fields. In Figure 9B such a possible model is illustrated. While the

calculated gravity can explain the Outer Gravity High at trenches, the

computed geoid anomaly is only 5 m high and a few hundred kilometers

wide. As the observed geoid anomaly at deep sea trenches is much

wider and larger in amplitude, the outer bathymetric rise would explain

only a minute portion of the observed geoid undulation.

One plausible mechanism to generate the geoid high involves density

changes within the mantle. Gravity studies in the past have indicated

a need for lower mantle densities (relative to the deep ocean basin)

landward of the trench. This observation was made by Karig (1971) after

studying seismic and gravity results at marginal basins. He noticed
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free-air values of gravity were near zero above these basins. Seismic

results showed the crust in these areas to be of standard oceanic

thickness, and yet to occur at shallower depths relative to the deep

ocean basin. Arbitrarily assuming deep ocean basin to be normal, behind

the trench there are higher densities at shallow depths. Relatively

lower densities occur deeper. This is a dipole type, layered mass

distribution. Using the expressions of Ockendon d Turcotte

(1977), this type mass distribution is seen to cause a positive geoid

anomaly above the marginal basin.

There are two possible ways to have lesser average mantle densities:

either lateral changes in thickness or density of a body. Figure 9 C

illustrates the first possibility. In the region landward of the arc

water depths are shallower, yet crustal thickness is everywhere constant.

At these shallow depths there are higher relative densities landward of

the arc, when compared with the deeper ocean basin. Compensation

occurs by having lower density (3.35 gm/cm 3) mantle material at depth.

If compensation is not complete then the geoid and gravity high are

accentuated. This case is also illustrated in Figure 9 C. Figure 9 D

illustrates the second possible type mass distribution. Compensation

occurs by having lower density material throughout the mantle to 100 km

depth. An important observation can be made by comparing Figures 9 C

and 9 D. Both of these models cause virtually identical geoid and

gravity values. Thus utilizing this type of data, the two types of

possibilities are indistinguishable. Additional constraints would

be necessary to differentiate between the two causes.

One final process which might affect geoid undulations is the

presence of phase transformations within the descending lithosphere.

Due to changes in pressure and temperature in the subducting slab, the
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mantle material will undergo changes in phase at various depths (Ringwood,

1976). Due to thermal differences, the transition at 400 Ian would

migrate upwards in the slab with a consequent .2 gm/cm3 increase in

density. If the slab is considered a separate body, then it will

conserve mass and the volume of the slab will decrease due to such phase

changes. Decrease in the slab volume insures that the total excess mass

is constant. After phase transformation the calculated geoid and gravity

anomaly is virtually identical to the values calculated prior to the

change of phase. This is because the total excess mass is unchanged.

Thus any occurence of phase transformAtions within the descending litho-

sphere has no effect on the calculated geoid and gravity anomaly.

There is of course no harm in including phase transitions within the

descending lithosphere, as many authors have done.

After considering all of these physical processes, several obser-

vations are possible. Any effect of the downgoing slab may be signi-

ficant. However, the calculated anomaly is maximum over the center of

the slab and decays to either side. This calculated shape is dissimilar

to the observed geoid undulation over deep sea trenches. The slab

effect may be a contributory cause but cannot be the only mechanism

which is involved. There must be some physical process to generate a

generally high geoid anomaly landward of the trench axis. A probable

mechanism which will explain the geoid high behind the arc is a shallow

crust either partially or totally compensated at depth by a mantle

with variable thickness or density. Any presence of an outer bathy-

metric rise will have only a minor effect on the calculated geoid; phase

transformations within the descending slab will have no effect on the

calculated geoid undulation.

M
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Study of the Tonga-Kermadec Trench

Any attempt to ascertain the cause of the geoid anomaly over deep-

sea trenches is best made by the explicit study of a given region. In

the vicinity of the Tonga-Kermadec Trench the characteristic geoid

undulation is quite evident and suitable data exists to study this

area. One of the earliest studies of the Tonga Trench utilized pendulum

gravity measurements aboard a submarine in combination with seismic

refraction data. In this study by Talwani et al. (1961) a crustal

thickness of 36 km was calculated for the Tonga-Kermadec Ridge. As

part of a comprehensive study of Melanesia extensive two-s1hip seismic

refraction results were reported by Shor et al. (1971). This latter

work is very useful because the seismic results give constraints on

the thickness of the crust and sediments landward of the trench axis.

In this present study gravity data were utilized which had been

obtained on Eltanin cruise 29 from June to August 1967. Gravity

measurements were made with a Graf Askania Sea Gravimeter Gss 2

mounted on an Anschutz stable platform with an electrically erected gyro.

Cross coupling errors were corrected by the use of an analog system.

During this cruise a satellite navigation system in combination with

the ship's electromagnetic log was used to provide accurate locations.

Navigation, bathymetry, gravity and seismic profiles from Eltanin 29

are presented in a report by Mayes et al. (1972).

Profiles of bathymetry, gravity and geoid data across the Kermadec

Trench are illustrated in Figure 10.  The gravity values are the

gravitational attraction of anomalous mass. This is obtained by

addition of a geoid correction term (Chapman and Bodine, 1979) to

0.
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the free-air gravity anomaly. The effect of this correction is to

increase the gravity values landward of the trench by 18 mgals maximum.

Geoid measurements are from the GEOS-3 satellite. Both gravity and

geoid values are referenced to a best fitting ellipsoid with flattening

1./298.255.

With the gravity data there is a 210 mgal high over Osborne Seamount

(Part of Louisville Ridge) immediately seaward of the trench axis.

Directly above the Kermadec Trench the gr-vity minimum is -210 mgal,

while over Lau Ridge and Le Havre Trough gravity values average +70

mgal with peaks up to +140 mgal. Landward of the arc system there is

a regional high of about +35 mgal above the South Fiji Basin. With

data from GEOS-3 track G1477 the geoid anomaly characteristic of deep-

sea trenches is evident. Beginning 1600 kilometers seaward of the

trench axis the geoid is +8 meters; gradually it increases in height

to +36 meters. Over the Kermadec Trench there is a low region in

the geoid which is at a +27 meter level. Landward of the trench

the geoid increases in height up to +56 meters, it remains at this

high level above the South Fiji Basin.

Any model of this region must be able to explain the general

characteristics of the gravity and geoid. The density model must

be able to produce a calculated geoid high landward of the arc, a

local minimum above the trench axis and a gradual decrease in geoid

height progressively seaward of the trench axis. From the bathymetry

it is evident that the South Fiji Basin, Lau Ridge and Le Havre Trough

are shallower than the Southwest Pacific Basin. These shallower

depths must be at least partially compensated otherwise there would be

much higher gravity values Landward of the trench. Of primary interest

then is where the lower average densities must occur.
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A standard assumption in gravity modeling is that variations in

crustal thickness can be the mechanism of compensation. In our model

this was not the sole mechanism. Our final crustal model is illustrated

in Figure 11. The gravity effect of this is also shown in comparison

with observed data. Quite obviously this model produces gravity values

much greater than observed data for the region landward of the trench

axis. This calculation indicates the necessity for lower average

densities to be present in the mantle landward of the trench. A similar

conclusion has been reached by other authors for different trench regions;

for example, Segawa and Tomoda (1976) in the Izu-Bonin region.

This model of the crustal structure was obtained by consideration

of seismic refraction data from Shor et al. (1971) to help constrain

crustal thickness. As their measurements were obtained about 60 nm

to 300 nm south of the Eltanin 29 track, they were projected along strike

to the ship profile. For the Southwest Pacific Basin no refraction data

existed and a standard oceanic crust was assumed. In the standard

model there was 5.5 km water, 2.0 km upper crust with density 2.7 gm/cm 3,

4.0 km lower crust with a 2.9 gm/cm 3 density overlaying mantle material

with density 3.4 gm/cm3 . In the Southwest Pacific "sin any deviations

from the standard model were fully compensated in an Airy manner. After

inclusion of mantle densities, crustal structure landward of the trench

was slightly adjusted until calculated gravity values agreed with

observed data. Even though the refraction data was not perfectly

coincident with the ship track, our final crustal model is in good

agreement with seismic results. Table 2 has a comparison of the density

model and seismic refraction values of Shor et al. (1971).

For both this crustal model and the entire model including the deeper

mantle a spherical Earth method was used. Johnson and L 4 tehiser (1972)

4
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developed a technique for calculation of gravitational potential and

attraction due to a spherical cap with polygonal sides. Geoid height is

computed by dividing anomalous potential by normal gravity. In our

utilization of this method the body is a input in cross section. Each

segment is a spherical lamina which extends perpendicular to the cross

section a certain distance. In our model the width was 2000 kilometers.

Modeling was initially done assuming a plane two dimensional earth,

later modeling oily used spherical earth calculations. It was discovered

that due to neglect of curvature the plane earth models gave erroneous

values seaward of the trench. To insure that anomalous mass was being

used, the gravitational effect of a standard Earth was subtracted. The

standard model contained standard oceanic crust as previously defined and

uppermost mantle 88.5 km thick with density 3.40 gm/cm 3 . Only hori-

zontal differences in density are important thus any effect of adiabatic

compression was neglected. Our model thus contains no information on

vertical density contrasts. All that is important are the lateral

density differences.

Inclusion of mantle structure completes our final density model as

shown in Figure 12. Crustal structure is identical to that which is

illustrated in Figure 11. This model contains structures which were

defined by seismic research. Seismicity studies have shown the presence

of the Benioff zone (Sykes et al., 1969), while seismic velocity and

attenuation anomalies (Mitronovas and Isacks, 1971; Oliver and Isacks,

1967) indicate this zone is caused by descending lithosphere. In our

model `	 location of the descending lithospheric slab is based on the

most recent seismicity study by Billington (1979). Thickness of the

slab was constrained at 55 km down to a depth of 250 km and at 40 km for

depths to 600 km. Studies of attenuation of shear waves indicate the
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presence of a low Q zone above the slab near Tonga (Oliver and Isacks,

1967). Possibly this indicates an anomalous zone, thus a region of low

density material was included between 65 km and 180 km depth beneath the

island arc. This anomalous zone may extend to shallower depth or also

further landward. Because there was no defini •.e seismic evidence concerning

its upper limit, this was not done.

Our procedure in modeling was to first use seismic refraction data

to constrain crustal structure. For the mantle location of a descending

slab and low Q Zone were then fixed, constrained as well as possible by

seismic studies. Density of the uppermost mantle was assumed to be

3.4 gm/an3 while underlaying mantle was fixed at 3.35 gm/an . For the

mantle region densities within the slab and low Q Zone were varied, as

was the thickness of the uppermost mantle landward of the slab. Minor

adjustments in crustal structure were also made until calculated values

of geoid height and gravity agreed with the measurements.

Mantle structure in this final model has the following charac-

teristics. Depth to the lower density mantle landward of the trench is

35 km less than beneath the Southwest Pacific Basin. Thinning of the

uppermost mantle body is the mechanism for generating a mass deficit

within the mantle. This is because density of the lower density mantle

is .05 gin/an 3 less than density of the uppermost mantle body at similar

depth. These lower average densities are the compensating mechanism for

the higher average densities at shallow depths landward of the trench.

However, this model is not fully compensated. At a depth of 100 km

there is a difference in pressure of 60 bars beneath the South Fiji

Basin compared to the Southwest Pacific Basin. There is an excess of

mass amounting to 7.3 x 104 gin/ant in a column beneath the South Fiji

Basin relative to the Pacific Basin. This mass excess would correspond

M
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to a +31 mgal anomaly over the South Fiji Basin, assuming a Bouguer

approximation.

In this model the effect of the slab is relatively small. Compared

to the surrounding mantle the slab has a density contrast of +.02 gm/cm3.

During our modeling procedure it was discovered that if the density

contrast of the slab was +.05 gm/cm 3 or larger there would be no calculated

low in the geoid over the trench axis, although there would still be a

-190 mgal minimum above the axis. Use of the geoid data constrains

the density contrast of the slab to be less than .05 gm/cm 3 relative to

the surrounding material. In order to match the observed data, however,

the density contrast was only +.02 gm/cm3 . Gravitational effect of the

slab is illustrated in Figure 13. Both geoid and gravity are maximum

above the slab with values of +13 m and +24 mgal respectively. Presence

of lesser densities in the low Q zone negate the effect of the slab. Due

to both bodies the total effect is -8 m and -38 mgal at maximum. As

regards the effect of the slab, several conclusions are possible. There

is a maximum density contrast of +.05 gm/cn 3 for the slab, although in

our model it is required to be a lower value, +.02 gm/cm 3 . Calculated

geoid heights and gravity values due to the slab explain only a small

portion of the observed anomaly. Presence of lesser densities in the

low Q zone counteract the influence of the slab and result in a total

effect which is slightly negative. As the net effect of both the slab

and low Q zone explains only a small portion of the observed anomaly, it

might be possible to construct a total model excluding those bodies.

Such a possibility was not tested however, because there is definite

seismic evidence for these bodies. But it is clear that from gravity

and geoid evidence alone, the evidence of a dense slab cannot be inferred.

6
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Summary and Conclusions

After observing GEOS-3 radar altimeter data, a characteristic geoid

anomaly has been identified which occurs over all major deep-sea trenches.

Seaward of the trench there is a gradual increase in geoid height with

higher values near the trench and lower geoid heights progressively seaward.

Slope of this very long increase ranges between 7 meters and 37 meters per

1000 In of distance. This gradual slope begins anywhere between 1000 and

3000 km seaward of the trench. In some regions the slope is concave downward

as at the Aleutian Trench. Other areas have a slope which is fairly linear

(Tonga Trench) or concave upward (Java Trench). Directly above the axis of

trenches the geoid forms a narrow low from 100 to 200 km in width and

anywhere between 3 m and 15 m in depth. Beginning at the base of the trench

axis low there is a steep increase in geoid height of up to 30 m to a high

region landward of the trench axis. Over some island arcs, for example the

Bonin Islands or the Aleutian Arc, there is a distinct ;ioid high. This is

between 5 and 10 m in amplitude. Landward of the trench axis the geoid has

a generally high level relative to the deep sea basins. In this region

however, slope of the geoid is variable. Behind the Aleutians the geoid

has a slow decrease progressively landward, while over the Java Sea there

is a progressive increase. In other regions the geoid remains fairly

constant landward of the trench.

In utilizing data to study the Earth it is best to combine both geoid

and gravity measurements. Gradual undulations of the geoid constrain

densities deep within the Earth while gravity anomalies help determine

crustal density. In using both types of data it is important to correct the

free-air gravity anomaly for undulations of the geoid. Addition of aeg oid

correction term insures that gravity values are equal to the attraction of

r
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the anomalous mass.

A density model of the Tonga-Kermadec region has been constructed

which explains both the observed gravity and geoid values. Occurence

of both a geoid and gravity high landward of the trench is caused by a

dipolar type mass distribution. Landward of the trench axis, water

depths are shallower when compared to the deep ocean basin. Thus at

shallow depths there are higher densities relative to the Southwest

Pacific Basin. An abnormally thick crust is not the mechanism for

compensating these higher relative densities. Rather, in our model,

compensation occurs by thinning of the uppermost mantle body. Beneath the

South Fiji Basin lower density mantle material occurs at a depth 35 km

shallower than beneath the Southwest Pacific Basin. These lower relative

densities do not provide full compensation. At 100 km depth, pressure

beneath the South Fiji Basin is 60 bars greater than beneath the Southwest

Pacific Basin.

Perhaps one could associate the uppermost mantle body (density equal

to 3.4 gm/cO) with lithosphere and the less dense, underlying mantle
body, with asthenosphere. Using this terminology, partial compensation

occurs within the mantle by a thinning of the lithosphere beneath the

South Fiji Basin. according to Watts et al. (1977) age of the ocean

floor in this region is approximately 30 m.y.b.p. If this were normal

oceanic lithosphere, depth to the asthenosphere would be expected to be

approximately 65 km (Forsyth, 1977). This coincides with our model and

is an interesting observation, but most likely fortuitous.

In explaining the geoid anomaly any effect of the descending

lithospheric slab is limited. Density contrast for the slab cannot

exceed .05 gm/cm 3 , but in our model is only .02 gm/cm . In our model
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gravity values due to the slab are +24 mgal at maximum.

In the characteristic geoid anomaly at deep sea trenches there is

an increase in geoid height as the trench is approached from the seaward

side. This gradual sloping of the geoid seaward of the trench is

entirely explained by the mass distribution landward of the trench axis.

No anomalous mass (relative to landward regions) beneath the Pacific Basin

is required to explain the gradual slope in the geoid.

During our modeling, it was found that it was quite difficult to

match both gravity and geoid values. This is a qualitative observation

that they provide complementary information. Also the geoid was quite

sensitive to changes in mantle structure. If the depth to the lower

density mantle material landward of the arc was altered by 5 km, there was a

10 m change in calculated geoid height. Yet in gravity this caused only

a 10 mgal difference.

As in any study of the gravitational field there are limitations to

our model. For example landward of the trench we cannot distinguish

between thinning of an uppermost mantle body or lesser densities within

the uppermost mantle. A thinner mantle body is the mechanism we utilized

to produce a mass deficit at depth, but a seismic study would be nece-

ssary to confirm this conclusion. Similarly for the descending slab a

qualification is necessary. For a slab thickness of 55 km thinning to

40 km, it was found that the density contrast could not be .05 gm/cm 3 or

greater. Otherwise the geoid low above the trench axis could not be

computed. If however a thicker slab were utilized, the density contrast

would decrease. This data would not be able to distinguish between

different thickness of descendinj 1lthospheric slabs. Lastly, in our

model density within the mantle was assumed to have no lateral variation.
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This is an untested assumption, but perhaps seismic surface wave studies

in the ocean basins could detect any such variability within the

mantle.

Study of the Tonga-Kermadec region raises interesting questions.

Can the sloping geoid anomaly seaward of all trenches be explained by

mass distribution landward of ttjl trench axis? As this anomaly is

variable in shape, perhaps mass heterogeneities are also required

beneath the deep ocean basins.

Another enigma is the variability in geoid height landward of the

trench axis. Can a model be constructed which would produce a variable

geoid slope in this region? Our modeling seamed to suggest this would be

possible by varying the horizontal extent of the dipolar type mass

distribution.

Another intriguing result in our model is the excess pressure at

100 km depth landward of the trench. What are the forces required to

sustain this model in equilibrium? Presumably any dynamic model which

can generate such forces, would give rise to a geoid and gravity ano-

maly. In cur model any variation in density within the asthenosphere

was neglected, yet such differences would be required to maintain our

model in equilibrium. Sleep (1975) has suggested a model for flow

beneath island arcs. In his work topography was explained by stresses

amounting to several hundred bars. It would be most interesting to

construct a geophysical model capable of explaining any possible dynamic

flow along with observed geoid and gravity anomalies.

F
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Z2 	^^ x2

N = Go	 loge((x-x') + ((x-x') 2 + (y-y ` ) 2 + (z-z')^	 da
Y

Z1	 X1

This integral is of the form

loge (a + L82 + x2 jdx

letting u2 = B2 + x2 , restricting uu-.> o and integrating by parts we obtain

_ [u 2 - B2141oge (a + u) J [u 2 - 821 du
a +u

and after integrating again

W2 - 
Bdh oge (a + u) - 

[u2 - 
B23^k

W	 v

+ a loge ^^u2 - B^+ u) +(b2 - a2 Sin -1 -1 (b2 + au)

Lb2 - a2l ' 	 a+ul {bI
or finally

f1 oge (a + 52 + x^dx = x 1 og e L a + b2 + x 2]- x

+a loge {x+ ^2+x4

rb2 - a 23Sin -1 -1 fb2 + a [b2 + x21

la+ ^b2+xg*JBI

restricting x > o

B) Two dimensional rectangle

Z2

N = - G vf € (y - y') loge I(y - y') 2 + (z - z') 2] -2y
Y 

Zi

+ 2 ;z - z	 Tan-1	-	
y2 

dz

1z - z'
IYI

restricting (z - z') > o (this is the same integral as.used for the two dimensional

sheet) and integrating
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This last integral is of the form

J z Tan adz
z

Letting w = a
z 

then integrating by parts we find

1 Tan l w dw = - 11 (1 + L) Tan"1(w)+ w

w3	 w2

so finally

N = - G Q	 (Y-y') [(Z-z')  loge t(Y-y ') 2 + (z-z')23
Y
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Y2 z2
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Y1 z1

C) Two dimensional polygon

For the i th side of the polygon we have

ni = A(Y-y ') loge C(Y-y ') 2 + (z-z') 2 ] - 2 (Y-Y')

+ 2 (z -z') Tan-' ^j+-Y')^ dz
z-z T-z ^

and we integrate along a linear line segment defined by z = mi y + bi

assuming mi and 1/mi are not zero we obtain

P
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ni s	 €[(z-Bi)/mi - y '] loge [(Z-B, -y' 2 + (z-z')2

mi

zi-1

y'	 + 2 (z-z') Tan 1	 z-B i - y'	 dz

mi mi

(z-z')

where mi = zi- zi -1
yi - yi -1

Bi - zi - mi yi

First part of the integral is of the form fx loge (a+bx+cx2) dx and is a

-1standard integral. Third part of the integral is of the form fx Tan
[(Cx + D)/x] dx. Letting u = (Cx + 0)/x and integrating by parts, this

becomes

	

- D2 - Tan-1 u +	 du

2	 (u-c)2	 (u-_	 (1+u2)

After the final integration we find for the third part

fx Tan [(Cx+D)/x] = z x 2 Tan-1 [(Cx+D)/x]

- C D2_ loge r	

D

(1+C2) x 2 + 2CDx + 02 
J( , +C 2)22	 i.	 2

+ D x	 + 1-C2	
2 
Tan-1 [(Cx+D)/x]

(1+C 2 )
	 (1+C )

3
Thus formula 23 c..n be integrated to obtain formula (24).

In evaluating the line integral the following special cases are also

important.

Case (a). If m i = 0, then dz is zero and consequently n i is also zero.

Y i
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Case (b). If 1/m i = 0 then y is constant along the line segment and the

line integra; (23) is written as:

fZi
ni =	 E(yi-yl) loge Vyi-y ') 2 + (z-z')2]

Zi-1

-2 (yi-y') + 2 (z-z') Tan -1 (yi -y') Idz

(2-2 )

This is identical in form to the integral for the two dimensional rectangle

and is solved in an identical fashion.

Case (c). If the extension of the line segment passes through the

observation point (when B i/mi + y' - 0) then the line integral (23) is

written as

Zi

^J

/
n i 	/	 Z loge [(1+1/mi 2 ) z2] - 2 z/mi

mi

Zi-1

+ 2 Z Tan 1 (1/mi ) 3 dz

assuming Z' - 0, Z > 0

This is easily integrated to become equation (27).

0)	 Three dimensional polyhedron. For the 3'-th line segment of the

i'th facet we have, after integrating equation 36 by parts and rearranging

ni+l

	

Li = Gp ei	 n logo (mj n+c3) + C(mjn+c3 ) 2 + n2+ei]l)

	

2y	 ni

p...,

ni+l

n 2

_	 S	 n do +J — +8
ni

ni+l

c3 do

ni
C(m n̂+_ ĉ ^^Z+ei ^ %2
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(m e in + ^3e i) do

(n2+e1) EMjn+c3) 2+ n2+eIJ L

ni

The first integral is independent of the path of integration, thus when

L^ is summed over all line segments for a closed path this integral will sum

to zero. Consequently, we ignore this term. The second integral is in a

standard form. To solve the third integral the substitution is made.

n=mi ei -9 X

mi T X+1

'This will transform the last integral into

Ir-

(
128 2+ ° m2e2^°ii^^	 jij d)(	 %

(t°2x2 + mjej) 
CCO2X2 

+ mie i + m1 (miei + ^^2 )^

which is a standard form and can be integrated. This same integral

also been solved for gravity problems by Barnett ( 1976) and Paul



1. Report No. 2. Government Accession No. 3, Recipient's Catalog No.

NASA Q1-156859
4. Title and Subtitle S. Report Date

Shape of the Ocean Surface and Implications
February 1979

6. Performing organization Codefor the Earth's Interior - Final Report of
GEOS-3 Results

7. Authoris) S. Performing Organization Report No.

Michael Edward-Dewey Chapman, Manik Talwani, Hans-Gert Kahle,
10. Work Unit No.John H. Bodine

9. Performing Organization Name and Address

Lamont-Doherty Geological	 Institute 11. Contract or Grant No.
Columbia University
Palisades, flew York	 10964 NAS6-2519

13. Type of Report and Period Covered
Contractor Report12. Sponsoring Agency Name and Address

flational Aeronautics and Space Administration to Sponsoring Agency Code
Wallops Flight Center
Wallops	 Island	 Virginia	 23337

15. Supplementary Notes

16, Abstract
Traditionally, mapping of the marine geoid has utilized gravimetric techniques. 	 For the Indian

Ocean a new set of 1°xl° mean free-air anomalies 	 is used to construct a gravimetric geoid by Stokes'
formula.

Utilizing such 1°xl° geoid comparisons have been made with GEOS-3 radar altimeter estimates of
geoid height.	 fiost commonly there are constant offsets and long wavelength discrepancies between the
two data sets;	 there are many probable causes including radial 	 orbit error,	 scale errors	 in the geoid,
or bias errors	 in altitude determination. 	 Across the Aleutian Trench the 1°xl° gravimetric geoids do
not measure the entire depth of the geoid anomaly due to averaging over 1° squares and subsequent
aliasing of the data.	 After adjustment of GEOS-3 data to eliminate long wavelength discrepancies,
agreement between the altimeter geoid and gravimetric geoid is between 1,7 and 2.7 meters 	 in rms errors
errors.

For purposes of geological 	 interpretation techr,lques are developed to directly compute 	 the geoid
anomaly over models of density within the Earth.

In observing the	 results	 from satellite altimetry it is possible to identify geoid anomalies over
different geologic features	 in the ocean.	 For example, a feature that is characteristic of the geoid
in the vicinity of deep sea trenches 	 includes a gradual	 long increase as	 the trench is approached from
the ocean basin,	 a narl	 4 low over the trench axis, and a high but with 	 variable slope landward of
the trench.

For the Tonga-Kermadec region a modeling study of the densities within the Earth indicates the
following conclusions about the origin of the geoid anomaly. 	 Landward of trench,	 in th i s model, the
ocean depths are shallower than in the deep ocean basin. 	 Thus for Viese depths aver ge densities are
higher relative to the Southwest Pacific Basin. 	 Lower relative densities occur deeper within the
mantle.	 These	 lesser densities	 partially compensate the higher values at shallow depth. 	 This	 is a
dipolar type,	 layered mass distribution and is 	 the	 fundamental	 cau,e of the	 relatively high geoid
values	 landwa-d of the trench.	 The effect of the descending lithosphere 	 is only of secondary import-
ance in explaining this geoid anomaly.	 A gradual	 slope of	 the geoid seaward of the trench axis	 is
explained as simply due to the mass distribution landward of the trench.

17. Key Words (Suggested by Authors)) 18. Distribution Statement

GEOS-3 Unclassified	 -	 unlimited
gravity
geoid STAR category - 42,46,48
a 1 .imetry

19.	 Ser:crity Classif. (of this repert) 20	 Security Class if	 (of this page) 21, No. of Pages 22.	 Price'

Unclassified Unclassified 202

. For ale by the National Technical Information Service, Springfield, Virginia 22151


	1980007186.pdf
	0001A02.TIF
	0001A03.TIF
	0001A04.TIF
	0001A05.TIF
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A13.TIF
	0001A14.TIF
	0001B01.TIF
	0001B02.TIF
	0001B03.TIF
	0001B04.TIF
	0001B05.TIF
	0001B06.TIF
	0001B07.TIF
	0001B08.TIF
	0001B09.TIF
	0001B10.TIF
	0001B11.TIF
	0001B12.TIF
	0001B13.TIF
	0001B14.TIF
	0001C01.TIF
	0001C02.TIF
	0001C03.TIF
	0001C04.TIF
	0001C05.TIF
	0001C06.TIF
	0001C07.TIF
	0001C08.TIF
	0001C09.TIF
	0001C10.TIF
	0001C11.TIF
	0001C12.TIF
	0001C13.TIF
	0001C14.TIF
	0001D01.TIF
	0001D02.TIF
	0001D03.TIF
	0001D04.TIF
	0001D05.TIF
	0001D06.TIF
	0001D07.TIF
	0001D08.TIF
	0001D09.TIF
	0001D10.TIF
	0001D11.TIF
	0001D12.TIF
	0001D13.TIF
	0001D14.TIF
	0001E01.TIF
	0001E02.TIF
	0001E03.TIF
	0001E04.TIF
	0001E05.TIF
	0001E06.TIF
	0001E07.TIF
	0001E08.TIF
	0001E09.TIF
	0001E10.TIF
	0001E11.TIF
	0001E12.TIF
	0001E13.TIF
	0001E14.TIF
	0001F01.TIF
	0001F02.TIF
	0001F03.TIF
	0001F04.TIF
	0001F05.TIF
	0001F06.TIF
	0001F07.TIF
	0001F08.TIF
	0001F09.TIF
	0001F10.TIF
	0001F11.TIF
	0001F12.TIF
	0001F13.TIF
	0001F14.TIF
	0001G01.TIF
	0001G02.TIF
	0001G03.TIF
	0001G04.TIF
	0001G05.TIF
	0001G06.TIF
	0001G07.TIF
	0001G08.TIF
	0001G09.TIF
	0001G10.TIF
	0001G11.TIF
	0001G12.TIF
	0001G13.TIF
	0001G14.TIF
	0002A02.TIF
	0002A03.TIF
	0002A04.TIF
	0002A05.TIF
	0002A06.TIF
	0002A07.TIF
	0002A08.TIF
	0002A09.TIF
	0002A10.TIF
	0002A11.TIF
	0002A12.TIF
	0002A13.TIF
	0002A14.TIF
	0002B01.TIF
	0002B02.TIF
	0002B03.TIF
	0002B04.TIF
	0002B05.TIF
	0002B06.TIF
	0002B07.TIF
	0002B08.TIF
	0002B09.TIF
	0002B10.TIF
	0002B11.TIF
	0002B12.TIF
	0002B13.TIF
	0002B14.TIF
	0002C01.TIF
	0002C02.TIF
	0002C03.TIF
	0002C04.TIF
	0002C05.TIF
	0002C06.TIF
	0002C07.TIF
	0002C08.TIF
	0002C09.TIF
	0002C10.TIF
	0002C11.TIF
	0002C12.TIF
	0002C13.TIF
	0002C14.TIF
	0002D01.TIF
	0002D02.TIF
	0002D03.TIF
	0002D04.TIF
	0002D05.TIF
	0002D06.TIF
	0002D07.TIF
	0002D08.TIF
	0002D09.TIF
	0002D10.TIF
	0002D11.TIF
	0002D12.TIF
	0002D13.TIF
	0002D14.TIF
	0002E01.TIF
	0002E02.TIF
	0002E03.TIF
	0002E04.TIF
	0002E05.TIF
	0002E06.TIF
	0002E07.TIF
	0002E08.TIF
	0002E09.TIF
	0002E10.TIF
	0002E11.TIF
	0002E12.TIF
	0002E13.TIF
	0002E14.TIF
	0002F01.TIF
	0002F02.TIF
	0002F03.TIF
	0002F04.TIF
	0002F05.TIF
	0002F06.TIF
	0002F07.TIF
	0002F08.TIF
	0002F09.TIF
	0002F10.TIF
	0002F11.TIF
	0002F12.TIF
	0002F13.TIF
	0002F14.TIF
	0002G01.TIF
	0002G02.TIF
	0002G03.TIF
	0002G04.TIF
	0002G05.TIF
	0002G06.TIF
	0002G07.TIF
	0002G08.TIF
	0002G09.TIF
	0002G10.TIF

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG




