305 research outputs found

    Protein–protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2

    Get PDF
    Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum f. sp. lycopersici resistance protein of the CC-NB-LRR family, were identified. Sequence analysis revealed that I2I-1 belongs to the Formin gene family (SlFormin) whereas I2I-2 has homology to translin-associated protein X (SlTrax). SlFormin required only the N-terminal CC I-2 domain for binding, whereas SlTrax required both I-2 CC and part of the NB-ARC domain. Tomato plants stably silenced for these interactors were not compromised in I-2-mediated disease resistance. When extended or mutated forms of I-2 were used as baits, distinct and often opposite, interaction patterns with the two interactors were observed. These interaction patterns correlated with the proposed activation state of I-2 implying that active and inactive R proteins adopt distinct conformations. It is concluded that the yeast two hybrid system can be used as a proxy to monitor these different conformational states

    The fitness of African malaria vectors in the presence and limitation of host behaviour

    Get PDF
    <p>Background Host responses are important sources of selection upon the host species range of ectoparasites and phytophagous insects. However little is known about the role of host responses in defining the host species range of malaria vectors. This study aimed to estimate the relative importance of host behaviour to the feeding success and fitness of African malaria vectors, and assess its ability to predict their known host species preferences in nature.</p> <p>Methods Paired evaluations of the feeding success and fitness of African vectors Anopheles arabiensis and Anopheles gambiae s.s in the presence and limitation of host behaviour were conducted in a semi-field system (SFS) at Ifakara Health Institute, Tanzania. In one set of trials, mosquitoes were released within the SFS and allowed to forage overnight on a host that was free to exhibit natural behaviour in response to insect biting. In the other, mosquitoes were allowed to feed directly on from the skin surface of immobile hosts. The feeding success and subsequent fitness of vectors under these conditions were investigated on 6 host types (humans, calves, chickens, cows, dogs and goats) to assess whether physical movements of preferred host species (cattle for An. arabiensis, humans for An. gambiae s.s.) were less effective at preventing mosquito bites than those of common alternatives.</p> <p>Results Anopheles arabiensis generally had greater feeding success when applied directly to host skin than when foraging on unrestricted hosts (in five of six host species). However, An. gambiae s.s obtained blood meals from free and restrained hosts with similar success from most host types (four out of six). Overall, the blood meal size, oviposition rate, fecundity and post-feeding survival of mosquito vectors were significantly higher after feeding on hosts free to exhibit behaviour, than those who were immobilized during feeding trials.</p> <p>Conclusions Allowing hosts to move freely during exposure to mosquitoes was associated with moderate reductions in mosquito feeding success, but no detrimental impact to the subsequent fitness of mosquitoes that were able to feed upon them. This suggests that physical defensive behaviours exhibited by common host species including humans do not impose substantial fitness costs on African malaria vectors.</p&gt

    Comparative Field Evaluation of Combinations of Long-Lasting Insecticide Treated Nets and Indoor Residual Spraying, Relative to Either Method Alone, for Malaria Prevention in an Area where the main Vector is Anopheles Arabiensis.

    Get PDF
    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly used together in the same households to improve malaria control despite inconsistent evidence on whether such combinations actually offer better protection than nets alone or IRS alone. Comparative tests were conducted using experimental huts fitted with LLINs, untreated nets, IRS plus untreated nets, or combinations of LLINs and IRS, in an area where Anopheles arabiensis is the predominant malaria vector species. Three LLIN types, Olyset®, PermaNet 2.0® and Icon Life® nets and three IRS treatments, pirimiphos-methyl, DDT, and lambda cyhalothrin, were used singly or in combinations. We compared, number of mosquitoes entering huts, proportion and number killed, proportions prevented from blood-feeding, time when mosquitoes exited the huts, and proportions caught exiting. The tests were done for four months in dry season and another six months in wet season, each time using new intact nets. All the net types, used with or without IRS, prevented >99% of indoor mosquito bites. Adding PermaNet 2.0® and Icon Life®, but not Olyset® nets into huts with any IRS increased mortality of malaria vectors relative to IRS alone. However, of all IRS treatments, only pirimiphos-methyl significantly increased vector mortality relative to LLINs alone, though this increase was modest. Overall, median mortality of An. arabiensis caught in huts with any of the treatments did not exceed 29%. No treatment reduced entry of the vectors into huts, except for marginal reductions due to PermaNet 2.0® nets and DDT. More than 95% of all mosquitoes were caught in exit traps rather than inside huts. Where the main malaria vector is An. arabiensis, adding IRS into houses with intact pyrethroid LLINs does not enhance house-hold level protection except where the IRS employs non-pyrethroid insecticides such as pirimiphos-methyl, which can confer modest enhancements. In contrast, adding intact bednets onto IRS enhances protection by preventing mosquito blood-feeding (even if the nets are non-insecticidal) and by slightly increasing mosquito mortality (in case of LLINs). The primary mode of action of intact LLINs against An. arabiensis is clearly bite prevention rather than insecticidal activity. Therefore, where resources are limited, priority should be to ensure that everyone at risk consistently uses LLINs and that the nets are regularly replaced before being excessively torn. Measures that maximize bite prevention (e.g. proper net sizes to effectively cover sleeping spaces, stronger net fibres that resist tears and burns and net use practices that preserve net longevity), should be emphasized

    Comparative evaluation of four mosquitoes sampling methods in rice irrigation schemes of lower Moshi, northern Tanzania

    Get PDF
    Adult malaria vector sampling is the most important parameter for setting up an intervention and understanding disease dynamics in malaria endemic areas. The intervention will ideally be species-specific according to sampling output. It was the objective of this study to evaluate four sampling techniques, namely human landing catch, pit shelter, indoor resting collection and odour-baited entry trap. These four sampling methods were evaluated simultaneously for thirty days during October 2008, a season of low mosquitoes density and malaria transmission. These trapping methods were performed in one village for maximizing homogeneity in mosquito density. The cattle and man used in odour-baited entry trap were rotated between the chambers to avoid bias. A total of 3,074 mosquitoes were collected. Among these 1,780 (57.9%) were Anopheles arabiensis and 1,294 (42.1%) were Culex quinquefasciatus. Each trap sampled different number of mosquitoes, Indoor resting collection collected 335 (10.9%), Odour-baited entry trap-cow 1,404 (45.7%), Odour-baited entry trap-human 378 (12.3%), Pit shelter 562 (18.3%) and HLC 395 (12.8%). General linear model univariate analysis method was used, position of the trapping method had no effect on mosquito density catch (DF = 4, F = 35.596, P = 0.78). Days variation had no effect on the collected density too (DF = 29, F = 4.789, P = 0.09). The sampling techniques had significant impact on the caught mosquito densities (DF = 4, F = 34.636, P < 0.0001). The Wilcoxon pair-wise comparison between mosquitoes collected in human landing catch and pit shelter was significant (Z = -3.849, P < 0.0001), human landing catch versus Indoor resting collection was not significant (Z = -0.502, P = 0.615), human landing catch versus odour-baited entry trap-man was significant (Z = -2.687, P = 0.007), human landing catch versus odour-baited entry trap-cow was significant (Z = -3.127, P = 0.002). Odour-baited traps with different baits and pit shelter have shown high productivity in collecting higher densities of mosquitoes than human landing catch. These abilities are the possibilities of replacing the human landing catch practices for sampling malaria vectors in areas with An. arabiensis as malaria vectors. Further evaluations of these sampling methods need to be investigated is other areas with different species

    Larval habitats of Anopheles gambiae s.s. (Diptera: Culicidae) influences vector competence to Plasmodium falciparum parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The origin of highly competent malaria vectors has been linked to productive larval habitats in the field, but there isn't solid quantitative or qualitative data to support it. To test this, the effect of larval habitat soil substrates on larval development time, pupation rates and vector competence of <it>Anopheles gambiae </it>to <it>Plasmodium falciparum </it>were examined.</p> <p>Methods</p> <p>Soils were collected from active larval habitats with sandy and clay substrates from field sites and their total organic matter estimated. <it>An. gambiae </it>larvae were reared on these soil substrates and the larval development time and pupation rates monitored. The emerging adult mosquitoes were then artificially fed blood with infectious <it>P. falciparum </it>gametocytes from human volunteers and their midguts examined for oocyst infection after seven days. The wing sizes of the mosquitoes were also measured. The effect of autoclaving the soil substrates was also evaluated.</p> <p>Results</p> <p>The total organic matter was significantly different between clay and sandy soils after autoclaving (P = 0.022). A generalized liner model (GLM) analysis identified habitat type (clay soil, sandy soil, or lake water) and autoclaving (that reduces presence of microbes) as significant factors affecting larval development time and oocyst infection intensities in adults. Autoclaving the soils resulted in the production of significantly smaller sized mosquitoes (P = 0.008). Autoclaving clay soils resulted in a significant reduction in <it>Plasmodium falciparum </it>oocyst intensities (P = 0.041) in clay soils (unautoclaved clay soils (4.28 ± 0.18 oocysts/midgut; autoclaved clay soils = 1.17 ± 0.55 oocysts/midgut) although no difference (P = 0.480) in infection rates was observed between clay soils (10.4%), sandy soils (5.3%) or lake water (7.9%).</p> <p>Conclusion</p> <p>This study suggests an important nutritional role for organic matter and microbial fauna on mosquito fitness and vector competence. It shows that the quality of natural aquatic habitats of mosquito larvae may influence malaria parasite transmission potential by <it>An. gambiae</it>. This information can be important in targeting larval habitats for malaria control.</p

    Design of the Quality of Life in Motion (QLIM) study: a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of a combined physical exercise and psychosocial training program to improve physical fitness in children with cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood cancer and its treatment have considerable impact on a child's physical and mental wellbeing. Especially long-term administration of chemotherapy and/or radiotherapy impairs physical fitness both during and after therapy, when children often present with muscle weakness and/or low cardiorespiratory fitness. Physical exercise can improve these two elements of physical fitness, but the positive effects of physical exercise might be further increased when a child's wellbeing is simultaneously enhanced by psychosocial training. Feeling better may increase the willingness and motivation to engage in sports activities. Therefore, this multi-centre study evaluates the short and long-term changes in physical fitness of a child with a childhood malignancy, using a combined physical exercise and psychosocial intervention program, implemented during or shortly after treatment. Also examined is whether positive effects on physical fitness reduce inactivity-related adverse health problems, improve quality of life, and are cost-effective.</p> <p>Methods</p> <p>This multi-centre randomized controlled trial compares a combined physical and psychosocial intervention program for children with cancer, with care as usual (controls). Children with cancer (aged 8-18 years) treated with chemotherapy and/or radiotherapy, and who are no longer than 1 year post-treatment, are eligible for participation. A total of 100 children are being recruited from the paediatric oncology/haematology departments of three Dutch university medical centres. Patients are stratified according to pubertal stage (girls: age ≤10 or >10 years; boys: ≤11 or >11 years), type of malignancy (haematological or solid tumour), and moment of inclusion into the study (during or after treatment), and are randomly assigned to the intervention or control group.</p> <p>Discussion</p> <p>Childhood cancer patients undergoing long-term cancer therapy may benefit from a combined physical exercise and psychosocial intervention program since it may maintain or enhance their physical fitness and increase their quality of life. However, the feasibility, patient need, and effectiveness of such a program should be established before the program can be implemented as part of standard care.</p> <p>Trial registration number</p> <p>NTR1531 (The Netherlands National Trial Register)</p

    Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria

    Get PDF
    The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour

    Dominance, reproductive behaviours and female mate choice in sterilised versus non-sterilised invasive male crayfish

    Get PDF
    © 2020, The Author(s). Many methods of controlling invasive crayfishes have limited success because they fail to target all life stages of the population, notably by capturing only large adults that can result in increased juvenile recruitment by removing intraspecific predation. An alternative approach uses the sterile male release technique that involves the mass release of sterile males into the environment, which then mate with fertile females, resulting in unfertilised eggs and, ultimately, reduced juvenile recruitment. This does, however, rely on the sterilised males exhibiting behaviours similar to non-sterilised (entire) males and remaining attractive to females during mate choice. Post-copulatory male guarding behaviour and female promiscuity might also be affected by male sterilisation. To test for the presence of normal reproductive behaviours in sterilised male American signal crayfish Pacifastacus leniusculus, a two-stage experiment examined how sterilisation affects female mate choice and promiscuity, male hierarchical status (relative dominance) and post-copulation guarding. Sterilised males showed similar reproductive behaviours to entire males and remained as attractive to females, with no differences in relative dominance. Post-copulation, guarding behaviours were also unaffected. Females did not display promiscuous behaviour and this was unaffected by whether males were entire or sterilised. The results demonstrated that sterilised males were equally as capable as entire males of achieving dominance and winning mates. In combination, these findings suggest that male sterilisation could be an effective control technique to help reduce juvenile recruitment in wild P. leniusculus populations by reducing reproductive success

    Genetics of Resistance to the Rust Fungus Coleosporium ipomoeae in Three Species of Morning Glory (Ipomoea)

    Get PDF
    We examined the genetic basis of resistance to the rust pathogen Coleosporium ipomoea in three host species: Ipomoea purpurea, I. hederacea, and I. coccinea (Convolvulaceae). In crosses between resistant and susceptible individuals, second-generation selfed offspring segregated in ratios that did not differ statistically from the 3∶1 ratio indicative of single-gene resistance with the resistant allele dominant. One out of three crosses between resistant individuals from two different populations revealed that resistance loci differed in the two populations, as evidenced by the production of susceptible individuals among the S2 generation. These results suggest that gene-for-gene interactions contribute substantially to the dynamics of coevolution in this natural pathosystem. They also suggest that evolution of resistance to the same pathogen strain may involve different loci in different Ipomoea populations
    corecore