161 research outputs found

    Effect of Fuel Type on Flame Ignition by Transient Plasma Discharges

    Full text link
    Rise and delay times of mixtures of methane, propane, n-butane, iso-butane and iso-octane mixed with air ignited by transient plasma discharge were investigated and compared with spark discharge ignition. Multi-ignition site effect and high electron energy are suggested to contribute to shortening of rise and delay times

    Performance Evaluation of Components Using a Granularity-based Interface Between Real-Time Calculus and Timed Automata

    Get PDF
    To analyze complex and heterogeneous real-time embedded systems, recent works have proposed interface techniques between real-time calculus (RTC) and timed automata (TA), in order to take advantage of the strengths of each technique for analyzing various components. But the time to analyze a state-based component modeled by TA may be prohibitively high, due to the state space explosion problem. In this paper, we propose a framework of granularity-based interfacing to speed up the analysis of a TA modeled component. First, we abstract fine models to work with event streams at coarse granularity. We perform analysis of the component at multiple coarse granularities and then based on RTC theory, we derive lower and upper bounds on arrival patterns of the fine output streams using the causality closure algorithm. Our framework can help to achieve tradeoffs between precision and analysis time.Comment: QAPL 201

    Improved Dynamic Mechanical Properties of Modified PTFE Jet Penetrating Charge with Shell

    No full text
    A modified polytetrafluoroethylene (PTFE) was produced by the addition of copper powder to improve the mechanical properties and penetration performance of conventional PTFE. Static compression and split Hopkinson pressure bar test analyses verified the improved mechanical properties of the modified PTFE. Shaped charge structure was designed with by applying modified PTFE to liner material, the formation of modified PTFE jet and the process of jet penetrating shell charge were researched by numerical simulation. As compared to Teflon, results demonstrated that the mechanical properties of the modified PTFE have been significantly improved to achieve greater consistency of jet formation, stronger penetration, broadened pore size, and increased damage performance in the absence of a charge shell explosion

    Design and optimisation of wheel-rail profiles for adhesion improvement

    Get PDF
    This paper describes a study for the optimisation of the wheel profile in wheel-rail system to increase the overall level of adhesion available at the contact interface, in particular to investigate how the wheel and rail profile combination may be designed to ensure the improved delivery of tractive/braking forces even in poor contact conditions. The research focuses on the geometric combination of both wheel and rail profiles to establish how the contact interface may be optimised to increase the adhesion level, but also to investigate how the change in the property of the contact mechanics at the wheel-rail interface may also lead to changes in the vehicle dynamic behavior

    Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions

    Get PDF
    The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume "Dynamics and Thermodynamics with Nuclear Degrees of Freedo

    Energy resolution and energy-light response of CsI(TI) scintillators for charged particle detection

    Full text link
    This article describes the crystal selection and quality control utilized to develop and calibrate a high resolution array of CsI(TI) scintillator crystals for the detection of energetic charged particles. Alpha sources are used to test the light output variation due to thallium doping gradients. Selection of crystals with better than 1% non-uniformity in light output is accomplished using this method. Tests with 240 MeV alpha beam reveal that local light output variations within each of the tested CsI(TI) crystals limit the resolution to about 0.5%. Charge and mass dependences in the energy - light output relationship are determined by calibrating with energetic projectile fragmentation beams.Comment: 24 pages, 7 figure

    d-alpha Correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV

    Get PDF
    The interplay of the effects of geometry and collective motion on d-α\alpha correlation functions is investigated for central Xe+Au collisions at E/A=50 MeV. The data cannot be explained without collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte-Carlo model, where thermal emission is superimposed on collective motion. Both the emission volume and the competition between the thermal and collective motion influence significantly the shape of the correlation function, motivating new strategies for extending intensity interferometry studies to massive particles.Comment: Accepted for publication on Physics Letters
    corecore