378 research outputs found

    Evolution of Neogene Mammals in Eurasia: Environmental Forcing and Biotic Interactions

    Get PDF
    The relative weights of physical forcing and biotic interaction as drivers of evolutionary change have been debated in evolutionary theory. The recent finding that species, genera, clades, and chronofaunas all appear to exhibit a symmetrical pattern of waxing and waning lends support to the view that biotic interactions shape the history of life. Yet, there is similarly abundant evidence that these primary units of biological evolution arise and wane in coincidence with major climatic change. We review these patterns and the process-level explanations offered for them. We also propose a tentative synthesis, characterized by interdependence between physical forcing and biotic interactions. We suggest that species with evolutionary novelties arise predominantly in "species factories" that develop under harsh environmental conditions, under dominant physical forcing, whereas exceptionally mild environments give rise to "oases in the desert," characterized by strong competition and survival of relics

    Seizure burden in severe earlyĂą life epilepsy: Perspectives from parents

    Full text link
    ObjectivesSeizure burden is typically measured by seizure frequency yet it entails more than seizure counts, especially for people with severe epilepsies and their caregivers. We aimed to characterize the multiñ faceted nature of seizure burden in young people and their parents who are living with severe earlyñ life epilepsies.MethodsA oneñ day workshop and a series of teleconferences were held with parents of children with severe, refractory epilepsy of earlyñ life origin and providers for children with epilepsy. The workshop sessions were structured as focus groups and aimed to identify components of seizure burden and their impact from the perspective of parents and providers. Data were gathered, organized, and refined during the workshop using an iterative 4ñ step process that drew upon grounded theory.ResultsThree primary components of seizure burden were identified: frequency, severity, and unpredictability, which was as important if not more important at times than frequency and severity. Caregivers noted that the impacts of seizures were experienced as acuteñ immediate consequences, longerñ term consequences, and as chronic effects that develop and evolve over time. The severity of the child’s neurological and medical status as well as where in the disease journey a family was represented additional contextual factors that influenced the experience of seizure burden.SignificancePatientñ reported and patientñ centered outcomes are increasingly incorporated into the evaluation of treatment effectiveness. Without understanding how the disease creates burden for the patient (or family), it is difficult to know how to assess the impact of treatment. Our preliminary findings indicate seizure burden is a complex construct and unpredictability can be as important as frequency and severity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149509/1/epi412319_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149509/2/epi412319.pd

    NEMO: A Project for a km3^3 Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea

    Full text link
    The status of the project is described: the activity on long term characterization of water optical and oceanographic parameters at the Capo Passero site candidate for the Mediterranean km3^3 neutrino telescope; the feasibility study; the physics performances and underwater technology for the km3^3; the activity on NEMO Phase 1, a technological demonstrator that has been deployed at 2000 m depth 25 km offshore Catania; the realization of an underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200

    Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    Get PDF
    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared with Monte Carlo simulations.Comment: Astrop. Phys., accepte

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure
    • 

    corecore