158 research outputs found

    Retinoic Acid and Rapamycin Differentially Affect and Synergistically Promote the Ex Vivo Expansion of Natural Human T Regulatory Cells

    Get PDF
    Natural T regulatory cells (Tregs) are challenging to expand ex vivo, and this has severely hindered in vivo evaluation of their therapeutic potential. All trans retinoic acid (ATRA) plays an important role in mediating immune homeostasis in vivo, and we investigated whether ATRA could be used to promote the ex vivo expansion of Tregs purified from adult human peripheral blood. We found that ATRA helped maintain FOXP3 expression during the expansion process, but this effect was transient and serum-dependent. Furthermore, natural Tregs treated with rapamycin, but not with ATRA, suppressed cytokine production in co-cultured effector T cells. This suppressive activity correlated with the ability of expanded Tregs to induce FOXP3 expression in non-Treg cell populations. Examination of CD45RA+ and CD45RA− Treg subsets revealed that ATRA failed to maintain suppressive activity in either population, but interestingly, Tregs expanded in the presence of both rapamycin and ATRA displayed more suppressive activity and had a more favorable epigenetic status of the FOXP3 gene than Tregs expanded in the presence of rapamycin only. We conclude that while the use of ATRA as a single agent to expand Tregs for human therapy is not warranted, its use in combination with rapamycin may have benefit

    Distinct Effects of IL-18 on the Engraftment and Function of Human Effector CD8+ T Cells and Regulatory T Cells

    Get PDF
    IL-18 has pleotropic effects on the activation of T cells during antigen presentation. We investigated the effects of human IL-18 on the engraftment and function of human T cell subsets in xenograft mouse models. IL-18 enhanced the engraftment of human CD8+ effector T cells and promoted the development of xenogeneic graft versus host disease (GVHD). In marked contrast, IL-18 had reciprocal effects on the engraftment of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in the xenografted mice. Adoptive transfer experiments indicated that IL-18 prevented the suppressive effects of Tregs on the development of xenogeneic GVHD. The IL-18 results were robust as they were observed in two different mouse strains. In addition, the effects of IL-18 were systemic as IL-18 promoted engraftment and persistence of human effector T cells and decreased Tregs in peripheral blood, peritoneal cavity, spleen and liver. In vitro experiments indicated that the expression of the IL-18Rα was induced on both CD4 and CD8 effector T cells and Tregs, and that the duration of expression was less sustained on Tregs. These preclinical data suggest that human IL-18 may have use as an adjuvant for immune reconstitution after cytotoxic therapies, and to augment adoptive immunotherapy, donor leukocyte infusions, and vaccine strategies

    Fundamental social motives measured across forty-two cultures in two waves

    Get PDF
    How does psychology vary across human societies? The fundamental social motives framework adopts an evolutionary approach to capture the broad range of human social goals within a taxonomy of ancestrally recurring threats and opportunities. These motives—self-protection, disease avoidance, affiliation, status, mate acquisition, mate retention, and kin care—are high in fitness relevance and everyday salience, yet understudied cross-culturally. Here, we gathered data on these motives in 42 countries (N = 15,915) in two cross-sectional waves, including 19 countries (N = 10,907) for which datawere gathered in both waves. Wave 1 was collected from mid-2016 through late 2019 (32 countries, N = 8,998; 3,302 male, 5,585 female; Mage = 24.43, SD = 7.91). Wave 2 was collected from April through November 2020, during the COVID-19 pandemic (29 countries, N = 6,917; 2,249 male, 4,218 female; Mage = 28.59, SD = 11.31). These data can be used to assess differences and similarities in people’s fundamental social motives both across and within cultures, at different time points, and in relation to other commonly studied cultural indicators and outcomes

    Up-regulation of expression and lack of 5' CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas

    Get PDF
    BACKGROUND: High risk type human papilloma viruses (HR-HPV) induce carcinomas of the uterine cervix by expressing viral oncogenes E6 and E7. Oncogene E7 of HR-HPV disrupts the pRb/E2F interaction, which negatively regulates the S phase entry. Expression of tumor suppressor p16(ink4a )drastically increases in majority of HR-HPV associated carcinomas due to removal of pRb repression. The p16(ink4a )overexpression is an indicator of an aberrant expression of viral oncogenes and may serve as a marker for early diagnostic of cervical cancer. On the other hand, in 25–57% of cervical carcinomas hypermethylation of the p16 INK4a promoter has been demonstrated using a methylation-specific PCR, MSP. To evaluate a potential usage of the p16 INK4a 5' CpG island hypermethylation as an indicator of tumor cell along with p16(ink4a )overexpression, we analyzed the methylation status of p16 INK4a in cervical carcinomas METHODS: Methylation status of p16 INK4a was analyzed by MSP and by bisulfite-modified DNA sequencing. The expression of p16(ink4a )was analyzed by RT-PCR and by immunohistochemical technique. RESULTS: The extensive methylation within p16 INK4a 5' CpG island was not detected either in 13 primary cervical carcinomas or in 5 cancer cell lines by bisulfite-modified DNA sequencing (including those that were positive by MSP in our hands). The number and distribution of rare partially methylated CpG sites did not differ considerably in tumors and adjacent normal tissues. The levels of the p16 INK4a mRNA were increased in carcinomas compared to the normal tissues independently of the number of partially methylated CpGs within 5'CpG island. The transcriptional activation of p16 INK4a was accompanied by p16(ink4a )cytoplasmic immunoreactivity in the majority of tumor cells and presence of a varied number of the p16 positive nuclei in different tumors. CONCLUSION: Hypermethylaion of the p16INK4a 5' CpG island is not a frequent event in HR-HPV-positive cervical carcinomas and cannot be an effective marker of cancer cells with up-regulated expression of p16(ink4a). Our data confirm other previous studies claiming specific p16INK4a up-regulation in the majority of cervical carcinomas at both the protein and mRNA levels. Cytoplasmic accumulation of p16(ink4a )is a feature of cervical carcinomas

    G protein-coupled receptor-mediated calcium signaling in astrocytes

    Get PDF
    Astrocytes express a large variety of G~protein-coupled receptors (GPCRs) which mediate the transduction of extracellular signals into intracellular calcium responses. This transduction is provided by a complex network of biochemical reactions which mobilizes a wealth of possible calcium-mobilizing second messenger molecules. Inositol 1,4,5-trisphosphate is probably the best known of these molecules whose enzymes for its production and degradation are nonetheless calcium-dependent. We present a biophysical modeling approach based on the assumption of Michaelis-Menten enzyme kinetics, to effectively describe GPCR-mediated astrocytic calcium signals. Our model is then used to study different mechanisms at play in stimulus encoding by shape and frequency of calcium oscillations in astrocytes.Comment: 35 pages, 6 figures, 1 table, 3 appendices (book chapter

    Developing in vitro expanded CD45RA<sup>+</sup> regulatory T cells as an adoptive cell therapy for Crohn's disease

    Get PDF
    BACKGROUND AND AIM: Thymus-derived regulatory T cells (T(regs)) mediate dominant peripheral tolerance and treat experimental colitis. T(regs) can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. T(reg) cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of T(regs) expanded from Crohn's blood is unknown. The potential for adoptively transferred T(regs) to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to T(reg)-mediated suppression in active CD. The capacity for expanded T(regs) to home to gut and lymphoid tissue is unknown. METHODS: To define the optimum population for T(reg) cell therapy in CD, CD4(+)CD25(+)CD127(lo)CD45RA(+) and CD4(+)CD25(+)CD127(lo)CD45RA(−) T(reg) subsets were isolated from patients’ blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. RESULTS: T(regs) can be expanded from the blood of patients with CD to potential target dose within 22–24 days. Expanded CD45RA(+) T(regs) have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA(−) T(regs). CD45RA(+) T(regs) highly express α(4)β(7) integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA(+) T(regs) also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA(+) T(regs). These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. CONCLUSIONS: CD4(+)CD25(+)CD127(lo)CD45RA(+) T(regs) may be the most appropriate population from which to expand T(regs) for autologous T(reg) therapy for CD, paving the way for future clinical trials

    The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia

    Get PDF
    The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4αPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4αPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Fundamental social motives measured across forty-two cultures in two waves.

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Code availability: All code used to process and visualize the data, including information on software packages used, is freely available in the OSF projectHow does psychology vary across human societies? The fundamental social motives framework adopts an evolutionary approach to capture the broad range of human social goals within a taxonomy of ancestrally recurring threats and opportunities. These motives-self-protection, disease avoidance, affiliation, status, mate acquisition, mate retention, and kin care-are high in fitness relevance and everyday salience, yet understudied cross-culturally. Here, we gathered data on these motives in 42 countries (N = 15,915) in two cross-sectional waves, including 19 countries (N = 10,907) for which data were gathered in both waves. Wave 1 was collected from mid-2016 through late 2019 (32 countries, N = 8,998; 3,302 male, 5,585 female; Mage = 24.43, SD = 7.91). Wave 2 was collected from April through November 2020, during the COVID-19 pandemic (29 countries, N = 6,917; 2,249 male, 4,218 female; Mage = 28.59, SD = 11.31). These data can be used to assess differences and similarities in people's fundamental social motives both across and within cultures, at different time points, and in relation to other commonly studied cultural indicators and outcomes.National Science FoundationFAPESP (São Paulo Research Foundation)Czech Science FoundationCzech Science FoundationInstitute of Psychology, Czech Academy of SciencesUniversidad de la FronteraAberystwyth Universit
    corecore