9 research outputs found

    High-resolution and low-background 163^{163}Ho spectrum: interpretation of the resonance tails

    Get PDF
    The determination of the effective electron neutrino mass via kinematic analysis of beta and electron capture spectra is considered to be model-independent since it relies on energy and momentum conservation. At the same time the precise description of the expected spectrum goes beyond the simple phase space term. In particular for electron capture processes, many-body electron-electron interactions lead to additional structures besides the main resonances in calorimetrically measured spectra. A precise description of the 163^{163}Ho spectrum is fundamental for understanding the impact of low intensity structures at the endpoint region where a finite neutrino mass affects the shape most strongly. We present a low-background and high-energy resolution measurement of the 163^{163}Ho spectrum obtained in the framework of the ECHo experiment. We study the line shape of the main resonances and multiplets with intensities spanning three orders of magnitude. We discuss the need to introduce an asymmetric line shape contribution due to Auger–Meitner decay of states above the auto-ionisation threshold. With this we determine an enhancement of count rate at the endpoint region of about a factor of 2, which in turn leads to an equal reduction in the required exposure of the experiment to achieve a given sensitivity on the effective electron neutrino mass

    The electron capture in 163^{163}Ho experiment – ECHo

    Get PDF
    Neutrinos, and in particular their tiny but non-vanishing masses, can be considered one of the doors towards physics beyond the Standard Model. Precision measurements of the kinematics of weak interactions, in particular of the 3^{3}H β-decay and the 163^{163}Ho electron capture (EC), represent the only model independent approach to determine the absolute scale of neutrino masses. The electron capture in 163^{163}Ho experiment, ECHo, is designed to reach sub-eV sensitivity on the electron neutrino mass by means of the analysis of the calorimetrically measured electron capture spectrum of the nuclide 163^{163}Ho. The maximum energy available for this decay, about 2.8 keV, constrains the type of detectors that can be used. Arrays of low temperature metallic magnetic calorimeters (MMCs) are being developed to measure the 163^{163}Ho EC spectrum with energy resolution below 3 eV FWHM and with a time resolution below 1 μs. To achieve the sub-eV sensitivity on the electron neutrino mass, together with the detector optimization, the availability of large ultra-pure 163^{163}Ho samples, the identification and suppression of background sources as well as the precise parametrization of the 163^{163}Ho EC spectrum are of utmost importance. The high-energy resolution 163^{163}Ho spectra measured with the first MMC prototypes with ion-implanted 163^{163}Ho set the basis for the ECHo experiment. We describe the conceptual design of ECHo and motivate the strategies we have adopted to carry on the present medium scale experiment, ECHo-1K. In this experiment, the use of 1 kBq 163^{163}Ho will allow to reach a neutrino mass sensitivity below 10 eV/c2^{2}. We then discuss how the results being achieved in ECHo-1k will guide the design of the next stage of the ECHo experiment, ECHo-1M, where a source of the order of 1 MBq 163^{163}Ho embedded in large MMCs arrays will allow to reach sub-eV sensitivity on the electron neutrino mass

    A White Paper on keV Sterile Neutrino Dark Matter

    Get PDF
    We present a comprehensive review of keV-scale sterile neutrino Dark Matter,collecting views and insights from all disciplines involved - cosmology,astrophysics, nuclear, and particle physics - in each case viewed from boththeoretical and experimental/observational perspectives. After reviewing therole of active neutrinos in particle physics, astrophysics, and cosmology, wefocus on sterile neutrinos in the context of the Dark Matter puzzle. Here, wefirst review the physics motivation for sterile neutrino Dark Matter, based onchallenges and tensions in purely cold Dark Matter scenarios. We then round outthe discussion by critically summarizing all known constraints on sterileneutrino Dark Matter arising from astrophysical observations, laboratoryexperiments, and theoretical considerations. In this context, we provide abalanced discourse on the possibly positive signal from X-ray observations.Another focus of the paper concerns the construction of particle physicsmodels, aiming to explain how sterile neutrinos of keV-scale masses could arisein concrete settings beyond the Standard Model of elementary particle physics.The paper ends with an extensive review of current and future astrophysical andlaboratory searches, highlighting new ideas and their experimental challenges,as well as future perspectives for the discovery of sterile neutrinos

    A White Paper on keV sterile neutrino Dark Matter

    Get PDF
    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos

    The electron capture in 163Ho experiment – ECHo

    Full text link

    Recent Results for the ECHo Experiment

    No full text
    The Electron Capture in 163Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in 163Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the 163Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure 163Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the 163Ho ion-implantation was performed using a high-purity 163Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about 1000Bq of high-purity 163Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c2 (90 % C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity
    corecore