364 research outputs found
Learning based automatic face annotation for arbitrary poses and expressions from frontal images only
Statistical approaches for building non-rigid deformable models, such as the active appearance model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases
New neonatal porcine diarrhoea syndrome in Danish pigs. Characterisation of viral findings in diseased and healthy control animals
Hadronic Contributions to the Muon Anomaly in the Constituent Chiral Quark Model
The hadronic contributions to the anomalous magnetic moment of the muon which
are relevant for the confrontation between theory and experiment at the present
level of accuracy, are evaluated within the same framework: the constituent
chiral quark model. This includes the contributions from the dominant hadronic
vacuum polarization as well as from the next--to--leading order hadronic vacuum
polarization, the contributions from the hadronic light-by-light scattering,
and the contributions from the electroweak hadronic vertex.
They are all evaluated as a function of only one free parameter: the
constituent quark mass. We also comment on the comparison between our results
and other phenomenological evaluations.Comment: Several misprints corrected and a clarifying sentence added. Three
figures superposed and two references added. Version to appear in JHE
Implications of LHC Searches on SUSY Particle Spectra: The pMSSM Parameter Space with Neutralino Dark Matter
We study the implications of LHC searches on SUSY particle spectra using flat
scans of the 19-parameter pMSSM phase space. We apply constraints from flavour
physics, g_mu-2, dark matter and earlier LEP and Tevatron searches. The
sensitivity of the LHC SUSY searches with jets, leptons and missing energy is
assessed by reproducing with fast simulation the recent CMS analyses after
validation on benchmark points. We present results in terms of the fraction of
pMSSM points compatible with all the constraints which are excluded by the LHC
searches with 1 fb^{-1} and 15 fb^{-1} as a function of the mass of strongly
and weakly interacting SUSY particles. We also discuss the suppression of Higgs
production cross sections for the MSSM points not excluded and contrast the
region of parameter space tested by the LHC data with the constraints from dark
matter direct detection experiments.Comment: 14 pages, 13 figures. v2: increased statistics, to appear in EPJ
Looking into the matter of light-quark hadrons
In tackling QCD, a constructive feedback between theory and extant and
forthcoming experiments is necessary in order to place constraints on the
infrared behaviour of QCD's \beta-function, a key nonperturbative quantity in
hadron physics. The Dyson-Schwinger equations provide a tool with which to work
toward this goal. They connect confinement with dynamical chiral symmetry
breaking, both with the observable properties of hadrons, and hence provide a
means of elucidating the material content of real-world QCD. This contribution
illustrates these points via comments on: in-hadron condensates; dressed-quark
anomalous chromo- and electro-magnetic moments; the spectra of mesons and
baryons, and the critical role played by hadron-hadron interactions in
producing these spectra.Comment: 11 pages, 7 figures. Contribution to the Proceedings of "Applications
of light-cone coordinates to highly relativistic systems - LIGHTCONE 2011,"
23-27 May, 2011, Dallas. The Proceedings will be published in Few Body
System
Invasion is a community affair: clandestine followers in the bacterial community associated to green algae, Caulerpa racemosa, track the invasion source
Biological invasions rank amongst the most deleterious components of global change inducing alterations from genes to ecosystems. The genetic characteristics of introduced pools of individuals greatly influence the capacity of introduced species to establish and expand. The recently demonstrated heritability of microbial communities associated to individual genotypes of primary producers makes them a potentially essential element of the evolution and adaptability of their hosts. Here, we characterized the bacterial communities associated to native and non-native populations of the marine green macroalga Caulerpa racemosa through pyrosequencing, and explored their potential
role on the strikingly invasive trajectory of their host in the Mediterranean. The similarity of endophytic bacterial communities from the native Australian range and several Mediterranean locations confirmed the origin of invasion and revealed distinct communities associated to a second Mediterranean variety of C. racemosa long reported in the Mediterranean. Comparative analysis of these two groups demonstrated the stability of the composition of bacterial communities through the successive steps of introduction and invasion and suggested the vertical transmission of some major bacterial OTUs. Indirect inferences on the taxonomic identity and associated metabolism of bacterial lineages showed a striking consistency with sediment upheaval conditions associated to the expansion of their invasive host and to the decline of native species. These results demonstrate that bacterial communities can be an
effective tracer of the origin of invasion and support their potential role in their eukaryotic host’s adaptation to new
environments. They put forward the critical need to consider the 'meta-organism' encompassing both the host and associated micro-organisms, to unravel the origins, causes and mechanisms underlying biological invasions
Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater
Axenic gametes of the marine green macroalga Ulva mutabilis Foyn (Ria Formosa, locus typicus) exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseo-bacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens), which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal) at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida) were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions) regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation) was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal growth factors in a shallow water body separated from the open ocean by barrier islands might have strong implications to, for example, the wide usage of natural coastal seawater in algal (land based) aquacultures of Ulva
Explainable Depression Detection via Head Motion Patterns
While depression has been studied via multimodal non-verbal behavioural cues, head motion behaviour has not received much attention as a biomarker. This study demonstrates the utility of fundamental head-motion units, termed kinemes, for depression detection by adopting two distinct approaches, and employing distinctive features: (a) discovering kinemes from head motion data corresponding to both depressed patients and healthy controls, and (b) learning kineme patterns only from healthy controls, and computing statistics derived from reconstruction errors for both the patient and control classes. Employing machine learning methods, we evaluate depression classification performance on the BlackDog and AVEC2013 datasets. Our findings indicate that: (1) head motion patterns are effective biomarkers for detecting depressive symptoms, and (2) explanatory kineme patterns consistent with prior findings can be observed for the two classes. Overall, we achieve peak F1 scores of 0.79 and 0.82, respectively, over BlackDog and AVEC2013 for binary classification over episodic thin-slices, and a peak F1 of 0.72 over videos for AVEC2013
From individual to group-level emotion recognition: Emoti W 5.0
Research in automatic affect recognition has come a long way. This paper describes the fifth Emotion Recognition in the Wild (EmotiW) challenge 2017. EmotiW aims at providing a common benchmarking platform for researchers working on different aspects of affective computing. This year there are two sub-challenges: A) Audio-video emotion recognition and b) group-level emotion recognition. These challenges are based on the acted facial expressions in the wild and group affect databases, respectively. The particular focus of the challenge is to evaluate method in 'in the wild' settings. 'In the wild' here is used to describe the various environments represented in the images and videos, which represent real-world (not lab like) scenarios. The baseline, data, protocol of the two challenges and the challenge participation are discussed in detail in this paper
Hadronic contribution to the muon g-2: a Dyson-Schwinger perspective
We summarize our results for hadronic contributions to the anomalous magnetic
moment of the muon (), the one from hadronic vacuum-polarisation (HVP)
and the light-by-light scattering contribution (LBL), obtained from the
Dyson-Schwinger equations (DSE's) of QCD. In the case of HVP we find good
agreement with model independent determinations from dispersion relations for
as well as for the Adler function with deviations well
below the ten percent level. From this we conclude that the DSE approach should
be capable of describing with similar accuracy. We also
present results for LBL using a resonance expansion of the quark anti-quark
T-matrix. Our preliminary value is .Comment: Contribution to the proceedings of 'International school of nuclear
physics, 33rd course', Erice-Sicily: 16 - 24 September 201
- …
