140 research outputs found

    Polynomial regression under shape constraints

    No full text
    Calculating regression under shape constraints is a problem addressed by statisticians since long. This paper shows how to calculate a polynomial regression of any degree and of any number of variables under shape constraints, which include bounds, monotony, concavity constraints. Theoretical explanations are first introduced for monotony constraints and then applied to ad hoc examples to show the behavior of the proposed algorithm. Two real industrial cases are then detailed and worked out

    Gaussian stationary processes over graphs, general frame and maximum likelihood identification

    Get PDF
    In this paper, using spectral theory of Hilbertian operators, we study ARMA Gaussian processes indexed by graphs. We extend Whittle maximum likelihood estimation of the parameters for the corresponding spectral density and show their asymptotic optimality

    A Kriging procedure for processes indexed by graphs

    Get PDF
    International audienceWe provide a new kriging procedure of processes on graphs. Based on the construction of Gaussian random processes indexed by graphs, we extend to this framework the usual linear prediction method for spatial random fields, known as kriging. We provide the expression of the estimator of such a random field at unobserved locations as well as a control for the prediction error

    Time-dependent visibility modelling of a relativistic jet in the X-ray binary MAXI J1803-298

    Get PDF
    Tracking the motions of transient jets launched by low-mass X-ray binaries (LMXBs) is critical for determining the moment of jet ejection, and identifying any corresponding signatures in the accretion flow. However, these jets are often highly variable and can travel across the resolution element of an image within a single observation, violating a fundamental assumption of aperture synthesis. We present a novel approach in which we directly fit a single time-dependent model to the full set of interferometer visibilities, where we explicitly parameterise the motion and flux density variability of the emission components, to minimise the number of free parameters in the fit, while leveraging information from the full observation. This technique allows us to detect and characterize faint, fast-moving sources, for which the standard time binning technique is inadequate. We validate our technique with synthetic observations, before applying it to three Very Long Baseline Array (VLBA) observations of the black hole candidate LMXB MAXI J1803-298 during its 2021 outburst. We measured the proper motion of a discrete jet component to be 1.37±0.141.37\pm0.14 mas/hr, and thus we infer an ejection date of MJD 59348.080.06+0.0559348.08_{-0.06}^{+0.05}, which occurs just after the peak of a radio flare observed by the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/Sub-Millimeter Array (ALMA), while MAXI J1803-298 was in the intermediate state. Further development of these new VLBI analysis techniques will lead to more precise measurements of jet ejection dates, which, combined with dense, simultaneous multi-wavelength monitoring, will allow for clearer identification of jet ejection signatures in the accretion flow.Comment: 15 pages, 9 figures, 4 tables; Accepted for publication in MNRA

    A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct from Kabuki syndrome

    Get PDF
    Purpose: To investigate if specific exon 38 or 39 KMT2D missense variants (MVs) cause a condition distinct from Kabuki syndrome type 1 (KS1). Methods: Multiple individuals, with MVs in exons 38 or 39 of KMT2D that encode a highly conserved region of 54 amino acids flanked by Val3527 and Lys3583, were identified and phenotyped. Functional tests were performed to study their pathogenicity and understand the disease mechanism. Results: The consistent clinical features of the affected individuals, from seven unrelated families, included choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. None of the individuals had intellectual disability. The frequency of clinical features, objective software-based facial analysis metrics, and genome-wide peripheral blood DNA methylation patterns in these patients were significantly different from that of KS1. Circular dichroism spectroscopy indicated that these MVs perturb KMT2D secondary structure through an increased disordered to ɑ-helical transition. Conclusion: KMT2D MVs located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from KS1. Unlike KMT2D haploinsufficiency in KS1, these MVs likely result in disease through a dominant negative mechanism.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.16-17/10/Newlife - The Charity for Disabled Children FS/13/32/30069/BHF_/British Heart Foundation/United Kingdom 72160007/Chile's National Commission for Scientific and Technological Research MR/K011154/1/MRC_/Medical Research Council/United Kingdom WT_/Wellcome Trust/United Kingdompre-prin

    Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial

    Get PDF
    Background Metastatic castration-resistant prostate cancer is enriched in DNA damage response (DDR) gene aberrations. The TOPARP-B trial aims to prospectively validate the association between DDR gene aberrations and response to olaparib in metastatic castration-resistant prostate cancer. Methods In this open-label, investigator-initiated, randomised phase 2 trial following a selection (or pick-the-winner) design, we recruited participants from 17 UK hospitals. Men aged 18 years or older with progressing metastatic castration-resistant prostate cancer previously treated with one or two taxane chemotherapy regimens and with an Eastern Cooperative Oncology Group performance status of 2 or less had tumour biopsies tested with targeted sequencing. Patients with DDR gene aberrations were randomly assigned (1:1) by a computer-generated minimisation method, with balancing for circulating tumour cell count at screening, to receive 400 mg or 300 mg olaparib twice daily, given continuously in 4-week cycles until disease progression or unacceptable toxicity. Neither participants nor investigators were masked to dose allocation. The primary endpoint of confirmed response was defined as a composite of all patients presenting with any of the following outcomes: radiological objective response (as assessed by Response Evaluation Criteria in Solid Tumors 1.1), a decrease in prostate-specific antigen (PSA) of 50% or more (PSA50) from baseline, or conversion of circulating tumour cell count (from ≥5 cells per 7·5 mL blood at baseline to <5 cells per 7·5 mL blood). A confirmed response in a consecutive assessment after at least 4 weeks was required for each component. The primary analysis was done in the evaluable population. If at least 19 (43%) of 44 evaluable patients in a dose cohort responded, then the dose cohort would be considered successful. Safety was assessed in all patients who received at least one dose of olaparib. This trial is registered at ClinicalTrials.gov, NCT01682772. Recruitment for the trial has completed and follow-up is ongoing. Findings 711 patients consented for targeted screening between April 1, 2015, and Aug 30, 2018. 161 patients had DDR gene aberrations, 98 of whom were randomly assigned and treated (49 patients for each olaparib dose), with 92 evaluable for the primary endpoint (46 patients for each olaparib dose). Median follow-up was 24·8 months (IQR 16·7–35·9). Confirmed composite response was achieved in 25 (54·3%; 95% CI 39·0–69·1) of 46 evaluable patients in the 400 mg cohort, and 18 (39·1%; 25·1–54·6) of 46 evaluable patients in the 300 mg cohort. Radiological response was achieved in eight (24·2%; 11·1–42·3) of 33 evaluable patients in the 400 mg cohort and six (16·2%; 6·2–32·0) of 37 in the 300 mg cohort; PSA50 response was achieved in 17 (37·0%; 23·2–52·5) of 46 and 13 (30·2%; 17·2–46·1) of 43; and circulating tumour cell count conversion was achieved in 15 (53·6%; 33·9–72·5) of 28 and 13 (48·1%; 28·7–68·1) of 27. The most common grade 3–4 adverse event in both cohorts was anaemia (15 [31%] of 49 patients in the 300 mg cohort and 18 [37%] of 49 in the 400 mg cohort). 19 serious adverse reactions were reported in 13 patients. One death possibly related to treatment (myocardial infarction) occurred after 11 days of treatment in the 300 mg cohort. Interpretation Olaparib has antitumour activity against metastatic castration-resistant prostate cancer with DDR gene aberrations, supporting the implementation of genomic stratification of metastatic castration-resistant prostate cancer in clinical practice

    Time-dependent visibility modelling of a relativistic jet in the X-ray binary MAXI J1803-298

    Get PDF
    Tracking the motions of transient jets launched by low-mass X-ray binaries (LMXBs) is critical for determining the moment of jet ejection, and identifying any corresponding signatures in the accretion flow. However, these jets are often highly variable and can travel across the resolution element of an image within a single observation, violating a fundamental assumption of aperture synthesis. We present a novel approach in which we directly fit a single time-dependent model to the full set of interferometer visibilities, where we explicitly parametrize the motion and flux density variability of the emission components, to minimize the number of free parameters in the fit, while leveraging information from the full observation. This technique allows us to detect and characterize faint, fast-moving sources, for which the standard time binning technique is inadequate. We validate our technique with synthetic observations, before applying it to three Very Long Baseline Array (VLBA) observations of the black hole candidate LMXB MAXI J1803−298 during its 2021 outburst. We measured the proper motion of a discrete jet component to be 1.37 ± 0.14 mas h−1, and thus we infer an ejection date of MJD 59348.08+0.05 −0.06, which occurs just after the peak of a radio flare observed by the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/Sub-Millimeter Array (ALMA), while MAXI J1803−298 was in the intermediate state. Further development of these new VLBI analysis techniques will lead to more precise measurements of jet ejection dates, which, combined with dense, simultaneous multiwavelength monitoring, will allow for clearer identification of jet ejection signatures in the accretion flow.CMW acknowledges financial support from the Forrest Research Foundation Scholarship, the Jean-Pierre Macquart Scholarship, and the Australian Government Research Training Program Scholarship. TDR acknowledges financial contribution from the agreement ASI-INAF n.2017-14-H.0. AJT acknowledges support for this work was provided by NASA through the NASA Hubble Fellowship grant #HST–HF2–51494.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5–26555. TMB acknowledges financial contribution from grant PRIN INAF 2019 n.15. FC acknowledges support from the Royal Society through the Newton International Fellowship programme (NIF/R1/211296). RS acknowledges grant number 12073029 from the National Natural Science Foundation of China (NSFC). VT acknowledges support from the Romanian Ministry of Research, Innovation and Digitalization through the Romanian National Core Program LAPLAS VII – contract no. 30N/2023.Peer reviewe

    An evolving jet from a strongly magnetized accreting X-ray pulsar

    Get PDF
    © 2018, Springer Nature Limited. Relativistic jets are observed throughout the Universe and strongly affect their surrounding environments on a range of physical scales, from Galactic binary systems1 to galaxies and clusters of galaxies2. All types of accreting black hole and neutron star have been observed to launch jets3, with the exception of neutron stars with strong magnetic fields4,5 (higher than 1012 gauss), leading to the conclusion that their magnetic field strength inhibits jet formation6. However, radio emission recently detected from two such objects could have a jet origin, among other possible explanations7,8, indicating that this long-standing idea might need to be reconsidered. But definitive observational evidence of such jets is still lacking. Here we report observations of an evolving jet launched by a strongly magnetized neutron star accreting above the theoretical maximum rate given by the Eddington limit. The radio luminosity of the jet is two orders of magnitude fainter than those seen in other neutron stars with similar X-ray luminosities9, implying an important role for the properties of the neutron star in regulating jet power. Our result also shows that the strong magnetic fields of ultra-luminous X-ray pulsars do not prevent such sources from launching jets

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore