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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50533997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01014022


A KRIGING PROCEDURE FOR PROCESSES INDEXED BY

GRAPHS

T. ESPINASSE & J-M. LOUBES

INSTITUT DE MATHÉMATIQUES DE TOULOUSE, FRANCE

Abstract. We provide a new kriging procedure of processes on graphs. Based on
the construction of Gaussian random processes indexed by graphs, we extend to
this framework the usual linear prediction method for spatial random fields, known
as kriging. We provide the expression of the estimator of such a random field at
unobserved locations as well as a control for the prediction error.

Keywords: Gaussian process, graphs, kriging.

Introduction

Data presenting an inner geometry, among them data indexed on graphs are grow-
ing tremendously in size and prevalence these days. High dimensional data often
present structural links that can be modeled through a graph representation, for
instance the World Wide Web graph or the social networks well studied in history
or geography [9], or molecular graphs in biology or medicine for instance. The defi-
nition and the analysis of processes indexed by such graphs is of growing interest in
the statistical community. In particular, the definition of graphical models by J.N.
Darroch, S.L. Lauritzen and T.P. Speed in 1980 [5] fostered new interest in Markov
fields, and many tools have been developed in this direction (see, for instance [11]
and [10]). When confronted to missing data or to forecast the values of the process
at unobserved sites, many prediction methods have been proposed in the statistics
community over the past few years. Among them, we focus in this paper on a new
method extending the kriging procedure to the case of a Gaussian process indexed
by a graph.

Kriging is named for the mining engineer Krige, whose paper [8] introduced the
method. For background on kriging see [1] or [3]. Gaussian process models also
called Kriging models are often used as mathematical approximations of expensive
experiments. Originally presented in spatial statistics as an optimal linear unbiased
predictor of random processes, its interpretation is usually restricted to the conve-
nient framework of Gaussian Processes (GP). It is based on the computation of the
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2 A KRIGING PROCEDURE FOR PROCESSES INDEXED BY GRAPHS

conditional expectancy, which requires a proper definition of the covariance structure
of the process. For this, we will use the spectral definition of a covariance operator
based on the adjacency operator. Inspired by [7], we define Gaussian fields on graphs
using their spectral representation (see for instance in [2]). Then, we extend to this
case the usual method of prediction using the Kriging method. For this we will use
blind prediction technics generalizing to graphs process the procedure for time series
presented in [6].

The paper falls into the following parts. Section 1 is devoted to the definitions
of a graph and the presentation of the problem. The forecast problem is tackled in
Section 2. The proofs are postponed to the Appendix.

1. Preliminary notations and definitions

1.1. Random processes indexed by graphs. In this section, we introduce both
the context and the objects considered in the whole paper.

First, assume that G is a graph, that is a set of vertices G and a set of edges
E ⊂ G×G. In this work, G is assumed to be infinite (but countable).

Two vertices i, j ∈ G are neighbors if (i, j) ∈ E. The degree d(i) of a vertex i ∈ G

is the number of neighbors and the degree of the graph G is defined as the maximum
degree of the vertices of the graph G :

deg(G) := max
i∈G

deg(i).

From now on, we assume that the degree of the graph G is bounded, that is

∃dmax > 0, ∀i ∈ G, d(i) ≤ dmax.

Furthermore, the graph G is endowed with the natural distance dG, that is the
length of the shortest path between two vertices.

In the following, we will consider the renormalized adjacency operator A of G. So
its entries belong to [− 1

deg(G)
, 1
deg(G)

]. It is defined as

Aij =
1

dmax

11i=j.

We denote by BG the set of all bounded Hilbertian operators on l2(G) (the set of
square sommable real sequences indexed by G).

To introduce the spectral decomposition, consider the action of the adjacency
operator on l2(G) as

∀u ∈ l2(G), (Au)i :=
∑

j∈G

Aijuj, (i ∈ G).
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The operator space BG will be endowed with the classical operator norm

∀T ∈ BG, ‖T‖2,op := sup
u∈l2(G),‖u‖2≤1

‖Tu‖2 ,

where ‖.‖2 stands for the usual norm on l2(G).
Notice that, as the degree of G and the entries of A are both bounded, A lies in

BG, and we have

‖A‖2,op ≤ 1.

Finally we get that A is a symmetric bounded normal Hilbertian operator. Recall
that for any bounded Hilbertian operator A ∈ BG, the spectrum Sp(A) is defined as
the set of all complex numbers λ such that λ Id−A is not invertible (here Id stands
for the identity on l2(G)). So the spectrum of the normalized adjacency operator A
is a non-empty compact subset of R.

Using the spectral representation of the graph, we proved in [7] that we can define
Gaussian processes indexed on graphs whose covariance structure relies only on the
geometry of the graph via its spectrum. For this, for any bounded positive function f ,
analytic on the convex hull of Sp(A), note first that f(A) defines a bounded positive
definite symmetric operator on l2(G). Then we can define a Gaussian process (Xi)i∈G
indexed by the vertices G of the graph G with covariance operator Γ defined as

Γ =

∫

Sp(A)

f(λ)dE(λ).

Such graph analytical processes extend the notion of time series to a graph indexed
process. So using this terminology, we will say that X is

• MAq if f is a polynomial of degree q.
• ARp if 1

f
is a polynomial of degree p which has no root in the convex hull of

Sp(A).
• ARMAp,q if f = P

Q
with P a polynomial of degree p and Q a polynomial of

degree q with no roots in the convex hull of Sp(A).

Otherwise, we will talk about the MA∞ representation of the process X. We call
f the spectral density of the process X, and denote its corresponding covariance
operator by

Γ = K(f) = f(A)

So the spectral analysis f the graph enables to define a class of admissible covari-
ances for stationary Gaussian processes with associated spectral density f . Hereafter
we tackle the issue of prediction of such processes.
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1.2. Blind prediction problem. We can now introduce our prediction problem on
this framework.

The problem comes from practical issues. In real life problems, it is usual to own
a single sample, which has to be used for both estimation and prediction.

Let f be a bounded positive function, analytic over Sp(A), and (Xi)i∈G be a
Gaussian zero-mean process indexed by G of covariance operator K(f).

We will observe the process on a growing sequence of subgraphs of G, but with
missing values we aim at predicting. Let (O,B) be a partition of G. The set O

will denote the set of indexes for all the possibly observed values while B denotes
the ”blind” missing values index set. In all the following, the set B where the
observations should be forecast, is assumed to be finite.

Let (GN)N∈N be a growing sequence of induced subgraphs of G. This means that
we have at hand a growing sequence of vertices and consider as the observed graph all
the existing edges between the vertices that are observed. From now on, we assume
that N is large enough to ensure B ⊂ GN . The observation index set will be denoted
ON := O ∩GN .
Hence, we consider the restriction XON

:= (Xi)i∈ON
, which stands for the data

we have at hand at step N . We consider the asymptotic framework where the
observations ON fill the space between the blind part and the graph, in the sense
that the distance between the blind locations B and the non observed graph G \ON

increases, i.e

mN :=
1

dG(B,G \ON)
−→ 0, whenN → +∞.

This corresponds to the natural case where the blind part of the graph becomes
more and more surrounded by the observations without any gap. So the non observed
locations of the process tend to be closer to observations of the process, which implies
that forecasting the values at the blind locations become possible and relies on the
rate at which such gap is filled, namely mN .

In the following, we will make the assumption that we can dispose of a consistent
estimation procedure f̂N for f , such that there exists a decreasing sequence rN → 0,
with is a rate of convergence of the spectral density when N goes to infinity, providing
the controls on the following estimation errors

Assumption. Preliminar consistent estimate for the spectral density

• E

[

∥

∥

∥
f̂N − f

∥

∥

∥

2

∞

] 1
2

≤ rN .

• E

[

∥

∥

∥
f̂N − f

∥

∥

∥

4

∞

]
1
4

≤ rN .
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Our aim is, observing only one realization XON
, to perform both estimation and

prediction of any variable ZB defined as a linear combination of the process taken at
unobserved locations, i.e of the following form

ZB = aTBXB,

with aB ∈ R
B, ‖aB‖2 = 1.

Hereafter, we will write, for sake of simplicity, extracted operators like block ma-
trices even if they are of infinite size

∀U, V ⊂ G,KUV (f) = (K(f)ij)i∈U,j∈V

∀V ⊂ G,KV (f) = (K(f)ij)i,j∈V

Recall (see for instance in [1]) that the best linear predictor of ZB (which is also
the best predictor in the Gaussian case) can be written as

Z̄B = P[XON
](f)ZB := aTBKBON

(f) (KON
(f))−1

XON
.

KBON
(f) is the covariance between the observed process and the blind part, while

KON
(f) corresponds to the covariance of the process restricted to the observed data

points. Note that this projection term is well defined. Indeed since f is positive,
K(f) is invertible, and therefore, KON

(f) is also invertible, as a principle minor.
However, since f is unknown we can not use this as a direct estimator.

Then, remark that, asymptotically, in the sense N → +∞, we may observe the
process at all locations, XO. We thus can introduce the best linear prediction of ZB

knowing all the possible observations XO as

Z̃B := P[XO](f)ZB := aTBKBO(f) (KO(f))
−1

XO.

Finally, the blind forecasting problem can be formulated as a two step procedure
mixing the estimation of the projector operator and the prediction using the esti-
mated projector. It can be thus decomposed as follows

• Estimation step: estimate P[XON
](f) by P̂[XON

](f) := P[XON
](f̂).

• Prediction step: build ẐB := P[XON
](f̂)ZB.

Therefore, it seems natural, in order to analyze the forecast procedure, to consider
an upper bound on the risk defined by

RN = sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

ZB − ẐB

)2
] 1

2

.
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But we can see that this risk admits the following decomposition

RN = sup
ZB=aT

B
XB

‖aB‖2=1

(

E

[

(

ZB − Z̃B

)2
]

1
2

+ E

[

(

Z̃B − ẐB

)2
]

1
2

)

.

Then, notice that the first term of this sum does not decrease to 0 when N goes
to infinity. Actually it is an innovation type term. Therefore, we consider the upper
bound

RN ≤ sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

ZB − Z̃B

)2
]

1
2

+ sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̃B − Z̄B

)2
]

1
2

+ sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤ sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

ZB − Z̃B

)2
]

1
2

+RN ,

where we have set

RN := sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̃B − Z̄B

)2
]

1
2

+ sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

.

The first term does not depend on the estimation procedure, hence our main issue is
to compute the rate of convergence towards 0 of the two last terms of the previous
sum. That is the reason why, RN plays the role of the estimation risk, that will be
controlled in the whole paper.

2. Prediction of a graph process with independent observations

In this section, we assume that another sample Y independent of X and drawn
with the same distribution, is available. We will use Y to perform the estimation,
and plug this estimation in order to predict ZB.

More precisely, assume that for p ≥ 1, f̂N is build using the sample Y observed
on ON and that X is observed on another subsample of the graph Op. These nested
collection of subgraphs fulfills the condition that 1

mp
= dG (B, (G \Op)) goes to

infinity. In this first part, we thus have two independent asymptotics. The first one
with respect to N controls how close the estimated spectral density will be from the
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true one while the second with respect to p deals with the accuracy of the linear
projector onto Op.

We want to control the prediction of ZB using the estimation f̂N .
To give an upper bound, we need to assume regularity for the spectral density

f . First, we assume that the process has short range memory through the following
assumption:

Assumption (A1). There exists M > 0 such that

∀t ∈ Sp(A), m ≤ f(t) ≤ M.

Actually, we will assume that all the estimators should verify the same inequality,
that is, for all N ∈ N,

Assumption (A2).

∀t ∈ Sp(A), m ≤ f̂N(t) ≤ M.

We will need another regularity assumption on f to control high-frequency behav-
ior.

Assumption (A3). The function f(x) =
∑

fkx
k. is analytic on a the compact disk

D̄(0, 1) and verifies
∑

k|fk| ≤ M.

Note that this assumption ensures that 1
f
is absolutely convergent in 1 and that,

if 1
f
(x) =

∑

( 1
f
)kx

k,
∑

k|( 1
f
)k| ≤

M

m2
.

The following theorem provides an upper bound for the risk RN,p

Theorem 1. Assume that two independent samples are available. Under Assump-
tions (A1), (A2) and (A3), the risk admits the following upper bound

RN,p ≤
√
M(m+M)

m2
rN +

M

m4

(

M
5
2

m
+M

3
2

)

mp.

The prediction risk RN,p is made of two separate terms which go to zero indepen-
dently when p and N increase. The first term is entirely governed by the accuracy
of the estimation of the spectral density. The second term depends on the decay

of
∑

k≥dG(B,(G\Gp))

∣

∣

∣
( 1
f
)k

∣

∣

∣
. This sum is the remaining term of a convergent sum and

thus vanishes when p growths large. Note that using Assumption (A3), we obtain a
bound in mp. Adding more regularity on the function f of the type

∑

k2s|( 1
f
)k| ≤

M

m2
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for a given s > 0 would improve this rate by replacing mp by ms
p.

Proof. The proof consists in bounding the two terms in the decomposition of the risk
RN,p.
The following lemmas give the rate of convergence of each of these terms.

Lemma 1. The following upper bound holds:

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤
√
M(m+M)

m2
rN .

Lemma 2. The following upper bound holds:

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − Z̃B

)2
] 1

2

≤ M

m4

(

M
5
2

m
+M

3
2

)

mp.

The proofs of these Lemmas are postponed to the Appendix
�

3. The blind case

Assume now that there is only one sample X available, observed on ON . In this
case, the two previous estimation steps are linked and the asymptotics between the
estimation of the spectral density and the projection step must be carefully chosen.

In particular, we must pay a special attention to the behavior of the variance
term to balance the two errors. Indeed, to perform the prediction, we will use the
whole available sample for the estimation, but then chose a window Op(N) ⊂ ON ,
for a suitable p(N) to make the prediction. Doing this, we may go beyond the
dependency problem induced by the fact that the same sample has to be used for
both estimation and filtering.

The following theorem provides the rate of convergence of the error term.

Theorem 2. Assume that f̂p(N) is built with the observation sample X and that
Assumptions [A1] and [A2] holds. The risk admits the following upper bound

RN,p(N) ≤
m+M

m2
E









∑

i∈Op(N)

X2
i





2



1
4

rN +
M

m4

(

M
5
2

m
+M

3
2

)

mp(N).
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We point out that we obtain two terms alike those in Theorem 1. The main
difference comes from the extra term

E









∑

i∈Op(N)

X2
i





2



1
4

,

which corresponds to the price to pay to use the same observation sample. Using
E[X2

i X
2
j ] ≤ 3E[X2

i ]E[X
2
j ], leads to the following upper bound

E









∑

i∈Op(N)

X2
i





2



1
4

≤ 3
∑

i∈Op(N)

(

E
[

X2
i

])2

≤ (♯Op(N))
2.,

where ♯ denotes the cardinal of a set. Finally, we see that the two error terms are
linked in an opposite way such that the window parameter p(N) must be chosen to
balance the bias and the variance by minimizing with respect to p(N) the quantity

(1)
m+M

m2

√

♯Op(N)rN +
M

m4

(

M
5
2

m
+M

3
2

)

mp(N).

For instance, consider the special case of a process defined on Z
2. Assume that

B is a finite subset of Z2, and that the we have at hand the following sequence of
nested sub graphs GN = [−N,N ]2. Then we get the following approximations for
the quantities of Equation 1, for some constants C, k,

• ♯ON is of order 4N2

• rN is of order C
N

(see for instance [4])

• mp is of order 1
p−k

.

Then minimizing (1) implies minimizing

C1
p(N)

N
+ C2

1

p(N)− k
,

which is achieved for p(N) ≈
√
N . Therefore the error is such that

RN,p(N) = O

(

1√
N

)

.

Here, the blind case leads with this method to an important loss since the error in
the case of the independent sample would have been of order 1

N
. A lower bound

would be necessary to fully clarify this result, however obtaining such a bound seems
a very difficult task which falls beyond the scope of this paper. Nevertheless, to our
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knowledge, the blind prediction of a graph indexed random process has never been
tackled before.

Proof. The only thing which remains to be calculated is given by the following lemma.

Lemma 3. The following upper bound holds:

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤ m+M

m2
E









∑

i∈Op(N)

X2
i





2



1
4

rN .

The proof is postponed in Appendix
�

4. Appendix

Proof. of Lemma 1
First, denote

AN,p

(

f, f̂N

)

= KBOp
(f̂N)

(

KOp
(f̂N)

)−1

−KBOp
(f)
(

KOp
(f)
)−1

,

and note that, PX ⊗ PY -a.s.,

(

ẐB − Z̄B

)2

= aTB

(

AN,p

(

f, f̂N

))T

XOp
XT

Op
AN,p

(

f, f̂N

)

aB

Then, notice that

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤






sup

supp(aB)⊂B

‖aB‖2=1

EPY

[

aTB

(

AN,p

(

f, f̂p

))T

KOp
(f)AN,p

(

f, f̂N

)

aB

]







1
2

≤ EPY






sup

supp(aB)⊂B

‖aB‖2=1

aTB

(

AN,p

(

f, f̂N

))T

KOp
(f)AN,p

(

f, f̂N

)

aB







1
2

.

Thus,
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sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤ EPY

[

∥

∥

∥

∥

(

AN,p

(

f, f̂N

))T

KOp
(f)AN,p

(

f, f̂N

)

∥

∥

∥

∥

2,op

]
1
2

.

Furthermore, it holds, PY -a.s., that
∥

∥

∥

∥

(

AN,p

(

f, f̂N

))T

KOp
(f)AN,p

(

f, f̂N

)

∥

∥

∥

∥

2,op

≤
∥

∥

∥
AN,p

(

f, f̂N

)∥

∥

∥

2

2,op

∥

∥KOp
(f)
∥

∥

2,op

But,
∥

∥

∥
AN,p

(

f, f̂N

)∥

∥

∥

2,op
≤
∥

∥

∥

∥

KBON
(f̂N)

(

KOp
(f̂N)

)−1

−KBOp
(f)
(

KOp
(f̂N )

)−1
∥

∥

∥

∥

2,op

+

∥

∥

∥

∥

KBOp
(f)
(

KOp
(f̂N)

)−1

−KBOp
(f)
(

KOp
(f)
)−1

∥

∥

∥

∥

2,op

≤
∥

∥

∥

∥

(

KOp
(f̂N )

)−1
∥

∥

∥

∥

2,op

∥

∥

∥
KBOp

(f̂N)−KBOp
(f)
∥

∥

∥

2,op
+
∥

∥KBOp
(f)
∥

∥

2,op

×
∥

∥

∥

(

KOp
(f)
)−1
∥

∥

∥

2,op

∥

∥

∥

∥

(

KOp
(f̂N)

)−1
∥

∥

∥

∥

2,op

∥

∥

∥
KOp

(f̂N)−KOp
(f)
∥

∥

∥

2,op

≤ 1

m

∥

∥

∥
f − f̂N

∥

∥

∥

∞
+

M

m2

∥

∥

∥
f − f̂N

∥

∥

∥

∞

Here we used the inequality

‖K(f)‖2,op ≤ ‖f‖∞
We get

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤
√
M(m+M)

m2
EPY

[

∥

∥

∥
f − f̂N

∥

∥

∥

2

∞

]
1
2

.

≤
√
M(m+M)

m2
rN

�

Proof. of Lemma 2
First, define for all A ⊂ G, the operator pA by

∀i, j ∈ G, (pA)ij = 11i∈A11i=j.

To compute the rate of convergence of the bias term Z̄B − Z̃B, we can compute
directly,
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sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − Z̃B

)2
]

1
2

≤
∥

∥

∥KBOp
(f)
(

KOp
(f)
)−1

pOp
−KBO(f) (KO(f))

−1
∥

∥

∥

2,op
‖KO(f)‖

1
2
2,op

Note that, since B ∪ O = G, we have immediately that (KB∪O(f))
−1 = K( 1

f
).

Using a Schur decomposition, we get

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − Z̃B

)2
]

1
2

≤
√
M

∥

∥

∥

∥

∥

KBOp
(f)
(

KOp
(f)
)−1

+

(

KB(
1

f
)

)−1

KBO(
1

f
)

∥

∥

∥

∥

∥

2,op

≤
√
M

∥

∥

∥

∥

∥

KBOp
(f)
(

KOp
(f)
)−1

+

(

KB(
1

f
)

)−1

KBOp
(
1

f
)

∥

∥

∥

∥

∥

2,op

+
√
M

∥

∥

∥

∥

∥

(

KB(
1

f
)

)−1
∥

∥

∥

∥

∥

2,op

∥

∥

∥

∥

KB(O\Op)(
1

f
)

∥

∥

∥

∥

2,op

≤
√
M

∥

∥

∥

∥

KB(
1

f
)KBOp

(f) +KBON
(
1

f
)KOp

(f)

∥

∥

∥

∥

2,op

×
∥

∥

∥

(

KOp
(f)
)−1
∥

∥

∥

2,op

∥

∥

∥

∥

∥

(

KB(
1

f
)

)−1
∥

∥

∥

∥

∥

2,op

+M
3
2

∥

∥

∥

∥

KB(O\Op)(
1

f
)

∥

∥

∥

∥

2,op

≤ M
3
2

m

∥

∥

∥

∥

−KB(O\Op)(
1

f
)K(O\Op)Op

(f)

∥

∥

∥

∥

2,op

+M
3
2

∥

∥

∥

∥

KB(O\Op)(
1

f
)

∥

∥

∥

∥

2,op

This leads to
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sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − Z̃B

)2
]

1
2

≤
(

M
5
2

m
+M

3
2

)

∥

∥

∥

∥

KB(O\Op)(
1

f
)

∥

∥

∥

∥

2,op

(2)

Moreover, we can write

∥

∥

∥

∥

KB(O\Op)(
1

f
)

∥

∥

∥

∥

2,op

≤
∑

k≥0

∣

∣

∣

∣

(
1

f
)k

∣

∣

∣

∣

∥

∥

∥

(

Ak
)

B(O\Op)

∥

∥

∥

2,op

≤
∑

k≥dG(B,(O\Op))

∣

∣

∣

∣

(
1

f
)k

∣

∣

∣

∣

≤
∑

k≥dG(B,(G\Gp))

∣

∣

∣

∣

(
1

f
)k

∣

∣

∣

∣

≤ 1

dG (B, (G \Gp))

∑

k≥dG(B,(G\Gp))

k

∣

∣

∣

∣

(
1

f
)k

∣

∣

∣

∣

≤ M

m2
mp

�

Proof. of Lemma 3
For sake of simplicity, let us denote Op instead of Op(N) in the whole proof.
We still denote

AN,p

(

f, f̂N

)

= KBOp
(f̂N)

(

KOp
(f̂N)

)−1

−KBOp
(f)
(

KOp
(f)
)−1

,
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Then, notice that

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤






sup

supp(aB)⊂B

‖aB‖2=1

E

[

Tr

(

aTB

(

AN,p

(

f, f̂N

))T

XOp
XT

Op
AN

(

f, f̂N

)

aB

)]







1
2

≤






sup

supp(aB)⊂B

‖aB‖2=1

E

[

Tr

(

XOp
XT

Op
AN,p

(

f, f̂N

)

aBa
T
B

(

AN,p

(

f, f̂N

))T
)]







1
2

Applying Cauchy Schwartz inequality, we get

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤
(

E

[

Tr

(

(

XOp
XT

Op

)2
)]

× sup
supp(aB)⊂B

‖aB‖2=1

E

[

Tr

(

(

AN,p

(

f, f̂N

)

aBa
T
B

(

AN,p

(

f, f̂N

))T
)2
)])

1
4

But, on the one hand, we have

E

[

Tr

(

(

XOp
XT

Op

)2
)]

= E

[

Tr

(

(

XT
Op
XOp

)2
)]

= E









∑

i∈Op

X2
i





2



And on the other hand, we can write
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sup
supp(aB)⊂B

‖aB‖2=1

E

[

Tr

(

(

AN

(

f, f̂N

)

aBa
T
B

(

AN,p

(

f, f̂N

))T
)2
)]

≤ sup
supp(aB,bB)⊂B

‖aB‖2=‖bB‖2=1

E

[

Tr

(

aTB

(

AN,p

(

f, f̂N

))T

AN,p

(

f, f̂N

)

× bBb
T
B

(

AN,p

(

f, f̂N

))T

AN,p

(

f, f̂N

)

aB

)

]

≤ sup
supp(bB)⊂B

‖bB‖2=1

E

[

∥

∥

∥
AN,p

(

f, f̂N

)∥

∥

∥

4

2,op

∥

∥bBb
T
B

∥

∥

2,op

]

≤ E

[

∥

∥

∥
AN,p

(

f, f̂N

)∥

∥

∥

4

2,op

]

≤
(

m+M

m2

)4

E

[

∥

∥

∥
f − f̂N

∥

∥

∥

4

∞

]

Thus,

sup
ZB=aT

B
XB

‖aB‖2=1

E

[

(

Z̄B − ẐB

)2
]

1
2

≤ m+M

m2
E









∑

i∈Op

X2
i





2



1
4

rN

�
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