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Parametric estimation for Gaussian fields indexed by

graphs

T. Espinasse, F. Gamboa and J-M. Loubes

March 21, 2012

Abstract

In this paper, using spectral theory of Hilbertian operators, we study ARMA Gaus-

sian processes indexed by graphs. We extend Whittle maximum likelihood estimation

of the parameters for the corresponding spectral density and show their asymptotic

optimality.
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Introduction

In the past few years, much interest has been paid to the study of random fields over graphs.
It has been driven by the growing needs for both theoretical and practical results for data
indexed by graphs. On the one hand, the definition of graphical models by J.N. Darroch,
S.L. Lauritzen and T.P. Speed in 1980 [8] fostered new interest in Markov fields, and many
tools have been developed in this direction (see, for instance [23] and [22]). On the another
hand, the industrial demand linked to graphical problems has risen with the apparition of
new technologies. In very particular, the Internet and social networks provide a huge field
of applications, but biology, economy, geography or image analysis also benefit from models
taking into account a graph structure.

The analysis of road traffic is at the root of this work. Actually, prediction of road traffic
deals with the forecast of speed of vehicles which may be seen as a spatial random field over
the traffic network. Some work has been done without taking into account the particular
graph structure of the speed process (see for example [10] and [16] for related statistical
issues). In this paper, we build a new model for Gaussian random fields over graphs and
study statistical properties of such stochastic processes.

A random field over a graph is a spatial process indexed by the vertices of a graph, namely
(Xi)i∈G, where G is a given graph. Many models already exist in the probabilistic literature,
ranging from Markov fields to autoregressive processes, which are based on two general kinds
of construction. On the one hand, graphical models are defined as Markov fields (see for
instance [14]), with a particular dependency structure. Actually, they are built by specifying
a dependency structure for Xi and Xj , conditionally to the other variables, as soon as the
locations i ∈ G and j ∈ G are connected. For graphical models, we refer for instance to [8]
and references therein. On the other hand, the graph itself, through the adjacency operator,
can provide the dependency. This is the case, for example, of autoregressive models on Z

d

(see [14]). Here, the local form of the graph is strongly used for statistical inference.

More precisely, the usual purpose of graphical models is to design an underlying graph
which reflects the dependency of the data. This method has to be applied when this graph
is not easily known (for instance social networks) or when it plays the role of a model which
helps understanding the correlations between high complex data (for instance for biological
purpose). Our approach differs since, in our case, the graph is known, and we aim at using
a model with stationary properties. Indeed, in the case of road traffic, we can consider
that the correlations of the process depend mainly on the local structure of the network.
This assumption is commonly accepted among professionals of road trafficking speaking of
capacity of the road.

In this paper, we extend some classical results from time series to spatial fields over
general graphs and provide a new definition for regular ARMA processes on graphs. For
this, we will make use of spectral analysis and extend to our framework some classical results
of time series. In particular, the notion of spectral density may be extended to graphs.
This will enable us to construct a maximum likelihood estimate for parametric models of
spectral densities. This also leads to an extension of the Whittle’s approximation (see [12],
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[2]). Actually, many extensions of this approximation have been performed, even in non-
stationary cases (see [7], [19], [11]). The extension studied here concerns general ARMA

processes over graphs. We point out that we will compare throughout all the paper our new
framework with the case G = Z

d, d ≥ 1.

Section 1 is devoted to some definitions of graphs and spectral theory for time series.
Then we state the definition of general ARMA processes over a graph in Section 2. The
convergence of the Whittle maximum likelihood estimate and its asymptotic efficiency are
given in Theorems 3.1 and 3.2 in Section 3. Section 4 is devoted to a short discussion on
potential applications and perspectives. Some simulations are provided in Section 5. The
last section provides all necessary tools to prove the main theorems, in particular Szegö’s
Lemmas for graphs are given in Section 6.1, while the proofs of the technical Lemmas are
postponed in Section 6.3.

1 Definitions and useful properties for spectral analy-

sis and Toeplitz operators

1.1 Graphs, adjacency operator, and spectral representation

In the whole paper, we will consider a Gaussian spatial process (Xi)i∈G indexed by the
vertices of an infinite undirected weighted graph.

We will call G = (G,W ) this graph, where

• G is the set of vertices. G is said to be infinite as soon as G is infinite (but countable).

• W ∈ [−1, 1]G×G is the symmetric weighted adjacency operator. That is, |Wij| 6= 0
when i ∈ G and j ∈ G are connected.

We assume that W is symmetric (Wij = Wji, i, j ∈ G) since we deal only with undirected
graphs.

For any vertex i ∈ G, a vertex j ∈ G is said to be a neighbor of i if, and only if, Wij 6= 0.
The degree deg(i) of i is the number of neighbors of the vertex i, and the degree of the graph
G is defined as the maximum degree of the vertices of the graph G :

deg(G) := max
i∈G

deg(i).

From now on, we assume that the degree of the graph G is bounded :

deg(G) < +∞.

Assume now that W is renormalized : its entries belong to [− 1
deg(G)

, 1
deg(G)

]. This is not
restrictive since re-normalizing the adjacency operator does not change the objects intro-
duced later. In particular, the spectral representation of Hilbertian operator is not sensitive
to a renormalization.

Notice that in the classical case G = Z, the renormalized adjacency operator is

W
(Z)
ij =

1

2
11{|i−j|=1}, (i, j ∈ Z). (1)
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Here, deg(Z) = 2. This case will be used in all the paper as an illustration example.
To introduce the spectral decomposition, consider the action of the adjacency operator

on l2(G) as

∀u ∈ l2(G), (Wu)i :=
∑

j∈G
Wijuj, (i ∈ G).

We denote by BG the set of all bounded Hilbertian operators on l2(G) (the set of square
sommable real sequences indexed by G). The operator space BG will be endowed with the
classical operator norm

∀A ∈ BG, ‖A‖2,op := sup
u∈l2(G),‖u‖2≤1

‖Au‖2 ,

where ‖.‖2 stands for the usual norm on l2(G).
Notice that, as the degree of G and the entries of W are both bounded, W lies in BG,

and we have
‖W‖2,op ≤ 1.

Recall that for any bounded Hilbertian operator A ∈ BG, the spectrum Sp(A) is defined
as the set of all complex numbers λ such that λ Id−A is not invertible (here Id stands for
the identity on l2(G)). Since W is bounded and symmetric, Sp(W ) is a non-empty compact
subset of R [20].

We aim now at providing a spectral representation of any bounded normal Hilbertian
operator. For this, first recall the definition of a resolution of identity (see for example [20]):

Definition 1.1. Let M be a σ-algebra over a set Ω. We call identity resolution (on M) a
map

E : M → BG

such that,

1. E(∅) = 0, E(Ω) = I.

2. For any ω ∈ M, the operator E(ω) is a projection operator.

3. For any ω, ω′ ∈ M, we have

E(ω ∩ ω′) = E(ω)E(ω′) = E(ω′)E(ω).

4. For any ω, ω′ ∈ M such that ω ∩ ω′ = ∅, we have

E(ω ∪ ω′) = E(ω) + E(ω′).

We can now recall the fundamental decomposition theorem (see for example [20])

Theorem 1.1 (Spectral decomposition). If A ∈ BG is symmetric, then there exists a unique
identity resolution E over all Borelian subsets of Sp(A), such that

A =

∫

Sp(A)

λdE(λ).
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From the last theorem, we obtain the spectral representation of the adjacency operator
W thanks to an identity resolution E over the Borelians of Sp(W )

W =

∫

Sp(W )

λdE(λ).

Obviously, we have

W k =

∫

Sp(W )

λkdE(λ), k ∈ N.

Define now, for any i ∈ G, the sequences δi in l2(G) by

δi := (11k=i)k∈G.

For any i, j ∈ G, the sequences δi and δj define the real measure µij by

∀ω ⊂ Sp(W ), µij(ω) := 〈E(ω)δi, δj〉l2(G).

Hence, we can write :

∀k ∈ N, ∀i, j ∈ G,
(

W k
)

ij
=

∫

Sp(W )

λkdµij.

This family of measures µij, i, j ∈ G will be used in the whole paper. They convey
both spectral information of the adjacency operator, and combinatorial information on the
number of path and loops in G. Indeed, the quantity

(

W k
)

ij
is the number of path (counted

with their weights) going from i to j with length k.
Note also that all diagonals measures µii, i ∈ G are probability measures.

1.2 The adjacency operator of Z and its spectral decomposition

In the usual case of Z, an explicit expression for µij can be given.
Denote Tk(X) the kth-Chebychev polynomial (k ∈ N). We can provide the spectral

decomposition of W (Z) (W (Z) has been defined in Equation 1).

∀i, j ∈ Z,
(

(

W (Z)
)k
)

ij
=

1

π

∫

[−1,1]

λk T|j−i|(λ)√
1− λ2

dλ.

This shows that, in this case, and for any i, j ∈ G, the measure dµij is absolutely continuous
with respect to the Lebesgue measure, and its density is given by

dµij

dλ
=

1

π

T|j−i|(λ)√
1− λ2

.

Notice that we recover the usual spectral decomposition pushing forward µij by the
function cos :

∀i, j ∈ G, dµ̂ij(t) :=
1

2π
cos ((j − i)t) dt.

We get

∀i, j ∈ Z,
(

(

W (Z)
)k
)

ij
=

∫

[0,2π]

cos(t)kdµ̂ij(t).
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1.3 Time series, spectral representation, and MA∞

Our aim is to study some kind of stationary processes indexed by the vertices G of the graph
G. To begin with, let us recall the usual case of Z. In particular, let us introduce Toeplitz
operators associated to stationary time series.

Let X = (Xi)i∈Z be a stationary Gaussian process indexed by Z. Since X is Gaussian,
stationarity is equivalent to second order stationarity, that is, ∀i, k ∈ Z,Cov(Xi, Xi+k) does
not depend on i. Thus, we can define

rk := Cov(Xi, Xi+k).

Aassume further that (rk)k∈Z ∈ l1(Z). This leads to a particular form of the covariance
operator Γ defined on l2(Z) by

∀i, j ∈ Z,Γij := ri−j.

Recall that BZ denotes here the set of bounded Hilbertian operators on l2(Z). Notice that,
since (rk)k∈Z ∈ l1(Z), we have Γ ∈ BZ (see for instance [5] for more details). This bounded
operator is constant over each diagonals, and is therefore called a Toeplitz operator (see also
[4] for a general introduction to Toeplitz operators).

As (rk)k∈Z ∈ l1(Z), we have

∀i, j ∈ Z, T (g)ij := Γij =
1

2π

∫

[0,2π]

g(t) cos ((i− j)t) dt,

where g is the spectral density of the process X, defined by

g(t) := 2
∑

k∈N∗

rk cos(kt) + r0.

This expression can be written, using the Chebychev polynomials (Tk)k∈N,

g(t) := 2
∑

k∈N∗

rkTk (cos(t)) + r0T0 (cos(t)) .

Let, for λ ∈ [−1, 1],

f(λ) := 2
∑

k∈N∗

rkTk(λ) + r0T0(λ). (2)

We get, using the family (µ̂ij)i,j∈Z defined above,

∀i, j ∈ Z,Γij =

∫

[0,2π]

f (cos(t)) dµ̂ij(t).

Notice that the last expression may also be written as Γ = f(W (Z)), and the convergence
of the operator valued series defined by Equation 2 is ensured by the boundedness ofW (Z) and
of the Chebychev polynomials (Tk([−1, 1]) ⊂ [−1, 1], ∀k ∈ Z), together with the summability
of the sequence (rk)k∈Z.

We will extend usual MA processes to any graph, using this previous remark. This will
be the purpose of Section 2.
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Let us recall some properties about the moving average representation MA∞ of a process
on Z. This representation exists as soon as the log of the spectral density is integrable (see
for instance [5]). In this case, there exists a sequence (ak)k∈N, with a0 = 1, and a Gaussian
white noise ǫ = (ǫk)k∈Z., such that the process X may be written as

∀i ∈ Z, Xi =
∑

k∈N
akǫi−k.

Defining the function h over the unit circle C by

∀x ∈ C, h(x) =
∑

k∈N
akx

k,

we recover, with a few computations, the spectral decomposition of the covariance operator
Γ of X :

∀i, j ∈ Z,Γij =

∫

[0,2π]

∣

∣h(eit)
∣

∣

2
dµ̂ij(t).

This implies the equality

f (cos(t)) =
∣

∣h(eit)
∣

∣

2
.

Recall that when h is a polynomial of degree p (with non null first coefficient), the process
is said to beMAp. In this case, f is also a polynomial of degree p. Reciprocically, if f is a real
polynomial of degree p, and as soon as f (cos(t)) is even, and non-negative for any t ∈ [0, 2π],

the Fejér-Riesz theorem provides a factorization of f (cos(t)) such that f (cos(t)) = |h(eit)|2
(see for instance [15]). This proves that X is MAp if, and only if, its covariance operator
may be written f(W (Z)), where f is a polynomial of degree p.

This remark is fundamental for the construction we provide in the following section (see
Definition 2.1).

1.4 Whittle maximum likelihood estimation for time series

Here, we recall briefly the Whittle’s approximation for time series. Let Θ be a compact
interval of Rd, d ≥ 1, and (fθ)θ∈Θ be a parametric family of spectral densities. Let θ0 ∈ Θ,
and assume that (Xi)i∈Z is a Gaussian time series whith spectral density fθ0 .

If we observe Xn := (Xi)i=1,···n, n > 0, we can define the maximum lokelihood estimate

θ̂n of θ0 as:
θ̂n := argmaxLn(θ,Xn),

where

Ln(θ,Xn) := −1

2

(

n log(2π) + log det (Tn(fθ)) +XT
n

(

Tn(fθ)
)−1

Xn

)

.

This estimator is consistent as soon as the spectral densities are regular enough, and under
assumptions on the function θ 7→ fθ (see for instance [2]). However, in practical situations,
it is hard to compute. The Whittle’s estimate is built by maximizing an approximation of
the likelihood instead of the likelihood itself:

θ̃n := argmax L̃n(θ,Xn),
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where

L̃n(θ,Xn) := −1

2

(

n log(2π) + n

∫

[0,2π]

log (fθ(λ)) dλ+XT
nTn(

1

fθ
)Xn

)

.

The Whittle estimate is also consistent and asymptotically normal and efficient, as soon
as the spectral densities are regular enough.

The consistency of the Whittle estimate relies on the Szegö’s Lemma, which provide
a bound on the error between 1

n
log det (Tn(fθ)) and

∫

[0,2π]
log (fθ(λ)). There exists many

versions of this Lemma (see for instance [2], [12]).
In this work, we are interested in a weak version given by Azencott and Dacunha-Castelle

in [2]. The lemma relies on the following fondamental inequality: Let f(x) =
∑

k∈N fkx
k and

g(x) =
∑

k∈N gkx
k be two analytics function on the complex unitar disk. Then we have

∑

i,j=1,··· ,N

∣

∣

∣

∣

∣

(

TN(f)TN(g)− TN (fg)

)

ij

∣

∣

∣

∣

∣

≤ 1

2

∑

k∈N
(k + 1)fk

∑

k∈N
(k + 1)gk. (3)

In the following, we aim at developing the same kind of tools for processes indexed by a
graph.

2 Spectral definition of ARMA processes

In this section, we will define moving average and autoregressive processes over the graph
G.

As explained in the last section, since W is bounded and self-adjoint, Sp(W ) is a non-
empty compact subspace of R, and W admits a spectral decomposition thanks to an identity
resolution E, given by

W =

∫

Sp(W )

λdE(λ).

We define here MA and AR Gaussian processes, with respect to the operator W , by
defining the corresponding classes of covariance operators, since the covariance operator
fully characterizes any Gaussian process.

Definition 2.1. Let (Xi)i∈G be a Gaussian process, indexed by the vertices G of the graph
G, and Γ its covariance operator.

If there exists an analytic function f defined on the convex hull of Sp(W ), such that

Γ =

∫

Sp(W )

f(λ)dE(λ),

we will say that X is

• MAq if f is a polynomial of degree q.

• ARp if 1
f
is a polynomial of degree p which has no root in the convex hull of Sp(W ).

• ARMAp,q if f = P
Q

with P a polynomial of degree p and Q a polynomial of degree q

with no roots in the convex hull of Sp(W ).
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Otherwise, we will talk about the MA∞ representation of the process X. We call f the
spectral density of the process X, and denote its corresponding covariance operator by

Γ = K(f).

Remark Actually, this last construction may also be understood as

Γ = K(f) = f(W ),

in the sense of normal convergence of the associated power series. However, the spectral
representation will be useful in the following. Even if we consider only regular processes in
this works, the definition using the spectral representation allows weaker regularity than the
definition using the normal convergence of the associated power series.

This kind of modeling is interesting when the interactions are locally propagated (that
may be for instance a good modeling for traffic problems.).

The notation K(.) has to be understood by analogy with the notation T (.) used for
Toeplitz operators.

Notice that, in the usual case of Z, and for finite order ARMA, we recover the usual
definition as shown in Subsection 1.3. So, the last definition may be seen as an extension
of isotropic ARMA for any graph G. Besides, note that this extension is given by the
equivalence, for any g ∈ L

2 ([0, 2π]), such that
∫

[0,2π]
log(g) < +∞,

∀f ∈ L
2([−1, 1]), (g = f (cos(t)) ⇔ T (g) = K(f)) .

This means that, in the usual case G = Z, the definition of spectral density in our framework
is the usual one, up to an change of variable λ = cos(t) (see Subection 1.3).

Now, we get a representation of moving average processes over any graph G. The fol-
lowing section gives the main result of this paper. It deals with the maximum likelihood
identification.

3 Convergence of maximum approximated likelihood

estimators

In this section as before, G = (G,W ) is a graph with bounded degree. Let also (Xi)i∈G be
a Gaussian spatial process indexed by the vertices of G with spectral density fθ0 (defined in
Section 2) depending on an unknown parameter θ0 ∈ Θ. We aim at estimating θ0. For this,
we will generalize classical maximum likelihood estimation of time series.

We will also develop a Whittle’s approximation for ARMA processes indexed by the
vertices of a graph. We follow here the guidelines of the proof given in [2] for the usual case
of time series.
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3.1 Framework and Assumptions

Let us now specify the framework of our study. Let (Gn)n∈N be a growing sequence of finite
nested subgraphs. This means that if Gn = (Gn,Wn), we have Gn ⊂ Gn+1 ⊂ G and that for
any i, j ∈ Gn, it holds that Wn(i, j) = W (i, j).

Let mn = Card(Gn). We set also

δn = Card {i ∈ Gn, ∃j ∈ G\Gn,Wij 6= 0} .

The sequence (mn)n∈Z may actually be seen as the “volume” of the graph Gn, and δn
as the size of the boundary of Gn. For the special case G = Z

d and Gn = [−n, n]d, we get
mn = (2n+ 1)d and δn = 2d(2n+ 1)d−1.

The ratio δn
mn

is a natural quantity associated to the expansion of the graph that also
appears in isoperimetrical [18] and graph expander issues. We will assume here that this
ratio goes to 0 when the size of the graph goes to infinity. In short, we set

Assumption 3.1. δn = o(mn)

This assumption is a non-expansion criterion. The graph has to be amenable, which is
satisfied for the last examples G = Z

d and Gn = [−n, n]d, but not for a homogeneous tree,
whatever the choice of the sequence of subgraphs (Gn)n∈N is.

We will now choose a parametric family of covariance operators of MA processes as
defined in the last section. First, let Θ be a compact interval of R.

We point out that for sake of simplicity, we choose a one-dimensional parameter space
Θ. Nevertheless, all the results could be easily extended to the case Θ ⊂ R

k, k ≥ 1.
Define F as the set of positive analytic functions over the convex hull of Sp(W ).
Let also (fθ)θ∈Θ be a parametric family of functions of F . They define a parametric set

of covariances on G (see Section 2) by

K(fθ) = fθ(W ).

As in [2], we will need a strong regularity for this family of spectral densities.
Let us introduce a regularity factor for any analytic function

f ∈ F , f(x) =
∑

k

fkx
k (x ∈ Sp(W )) ,

by setting

α(f) :=
∑

k∈N
|fk| (k + 1). (4)

Now, let ρ > 0 and define,

Fρ := {f ∈ F , α(log(f)) ≤ ρ} . (5)

Notice that for any f ∈ Fρ, we have α(f) ≤ eρ, α( 1
f
) ≤ eρ.

We need the following assumption

Assumption 3.2.
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• The map θ → fθ is injective.

• For any λ ∈ Sp(W ), the map θ → fθ(λ) is continuous.

• ∀θ ∈ Θ, fθ ∈ Fρ .

From now on, consider θ0 ∈ Θ̊. Let X be a centered Gaussian MA∞ process over G with
covariance operator K(fθ0) (see Section 2).

We observe the restriction of this process on the subgraph Gn defined before. Our aim
is to compute the maximum likelihood estimator of θ0. Let Xn = (Xi)i∈Gn

be the observed
process and Kn(fθ) be its covariance :

Xn ∼ N (0,Kn(fθ0)) .

The corresponding log-likelihood at θ is

Ln(θ) := −1

2

(

mn log(2π) + log det (Kn(fθ)) +XT
n

(

Kn(fθ)
)−1

Xn

)

.

As discussed before, in the case G = Z, it is usual to maximize an approximation of the
likelihood. The classical approximation is the Whittle’s one ([12]), where

1

n
log det (Tn(g))

is replaced by
1

2π

∫

[0,2π]

log (g (t)) dt.

Back to the general case, we aim at performing the same kind of approximation. For
this, we will need the following assumption to ensure the convergence of log det (Kn(fθ)) (see
Section 1 for the definition of µii) :

Assumption 3.3. There exists a positive measure µ, such that

1

mn

∑

i∈Gn

µii
D−→

n→∞
µ.

Here, D stands for the convergence in distribution

The limit measure µ is classically called the spectral measure of G with respect to the
sequence of subgraphs (Gn)n∈Z (see [17] for example).

Actually, under Assumption 3.1, Assumption 3.3 is equivalent to the convergence of the
empirical distribution of eigenvalues of WGn

(here, WGn
denotes the restriction of W over the

subgraph Gn) That is, if λ
(n)
1 , · · · , λ(n)

mn denote the eigenvalues (written with their multiplicity
orders) of Wgn , Define

µ[1]
n :=

1

mn

mn
∑

i=1

δ
λ
(n)
i

,
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and

µ[2]
n =

1

mn

∑

i∈Gn

µii,

Then, under Assumption 3.1, the convergence of µ
[1]
n to µ (i.e. Assumption 3.3) is equiv-

alent to the convergence of µ
[2]
n to µ.

To prove this equivalence we just have to notice that :
∫

Sp(W )

λkdµ(1)
n (λ) −

∫

Sp(W )

λkdµ(2)
n (λ)

=
1

mn

mn
∑

i=1

(

λ(n)
)k

i
− 1

mn

∑

i∈Gn

(W k)ii

=
1

mn

Tr
(

(WGn
)k
)

− 1

mn

Tr
(

(W k)Gn

)

.

So that, we get the result by Lemma 6.1 (see Section 6.1).
As in the case of time series (for G = Z), we can approximate the log-likelihood. It avoids

an inversion of a matrix and a computation of a determinant. Indeed, we will consider the
two following approximations.

L̄n(θ) := −1

2

(

mn log(2π) +mn

∫

log(fθ(x))dµ(x) +XT
n (Kn(fθ))

−1
Xn

)

.

L̃n(θ) := −1

2

(

mn log(2π) +mn

∫

log(fθ(x))dµ(x) +XT
n

(

Kn

(

1

fθ

))

Xn

)

.

Notice that approximated maximum likelihood estimators are not asymptotically normal
in general (see for instance [13] for Z

d). Indeed, the score associated to the approximated
log-likelihood has to be asymptotically unbiased [2].

To overcome this problem in Z
d, the tapered periodogram can be used (see [14], [13], [6]).

Let us consider graph extensions of standard time series models :

• The MAP case : There exists P > 0 such that the true spectral density fθ0 is a poly-
nomial of degree bounded by P .

• The ARP case : There exists P > 0 such that all the spectral densities (for any θ ∈ Θ)
of the parametric set are such that 1

fθ
is a polynomial of degree bounded by P .

So, to define the good approximated log-likelihood, we first introduce the unbiased peri-
odogram in each of the last cases. Now, let P > 0.

Define a subset VP of signed measures on R as

VP := {µij, i, j ∈ G, dG(i, j) ≤ P} ,

where dG(i, j), i, j ∈ G stands for the usual distance on the graph G, i.e. the length of the
shortest path going from i to j.

We will need the following assumption

12



Assumption 3.4. The set VP of possible local measures over G is finite, and n is large
enough to ensure that

∀v ∈ VP , ∃(i, j) ∈ G2
n, µij = v.

Remark This assumption is quite strong, and holds for instance for quasi-transitive graphs
(i.e. such that the quotient of the graph with its automorphism group is finite). This
assumption may be relaxed, but it is a hard and technical work that will be the issue of a
forthcoming paper.

Define now the matrix B(n) (the dependency on P is omitted, for clarity) by

B
(n)
ij :=

Card {(k, l) ∈ Gn ×G, µkl = µij}
Card {(k, l) ∈ Gn ×Gn, µkl = µij}

, if , dG(k, l) ≤ P

:= 1 if dG(k, l) > P.

The matrix B(n) gives a boundary correction, comparing, for any v ∈ VP the frequency
of the interior couples of vertices with local measure v with the boundary couples of vertices
with local measure v. Actually, this way to deal with the edge effect is very similar to the
one used for G = Z

d (see [6], [13]).
As example, let us now describe the case G = Z

2, for P = 2. In this case W (Z2) is

∀i, j, k, l ∈ Z,W (Z2) ((i, j), (k, l)) :=
1

4
11|i−j|+|k−l|=1.

In this example, we set Gn = [1, n]2, and we can compute the matrix B(n). Indeed, it
only is needed to notice that

µ(i1,j1),(i1+k,j1+l) = µ(i2,j2),(i2+ǫ1k,j2+ǫ2l), i1, i2, j1, j2, k, l ∈ Z, ǫ1, ǫ2 ∈ {−1, 1} .

This means that the local measure of a couple of vertices depends only of their relative
positions (stationarity and isotropy of this set of measure). So, we need to count the con-
figurations given by Figure 1 since we consider only couples of vertices u, v ∈ Z

2 such that
dZ2(u, v) ≤ 2.

We get, for any i, j ∈ Z,

• B
(n)
(i,j),(i,j) =

n2

n2 = 1.

• B
(n)
(i,j),(i,j±1) = B

(n)
(i,j),(i±1,j) =

4n(n−1)
4n2 .

• B
(n)
(i,j),(i±1,j±1) =

4(n−1)2

n2 .

• B
(n)
(i,j),(i,j±2) = B

(n)
(i,j),(i±2,j) =

4n(n−2)
4n2

One can notice that
sup
ij

∣

∣

∣
B

(n)
ij − 1

∣

∣

∣
→

n→∞
0.

Assumption 3.5 ensure that this property holds for the graph we consider.

13



Figure 1: Possible configurations for couple of vertices

Back to the general case, let f ∈ Fρ. We define the unbiased periodogram as

XT
nQn(

1

f
)Xn.

where
Qn(f) := B(n) ⊙Kn(f).

Here, the operation ⊙ denotes the Hadamard product for matrices, that is

∀i, j ∈ Gn,
(

B(n) ⊙Kn(f)
)

ij
=
(

B(n)
)

ij
Kn(f)ij .

Notice that this is actually a way to extend the so called tapered periodogram (see for
instance [13]).

We now define the unbiased empirical log-likelihood, for any θ ∈ Θ

L(u)
n (θ) := −1

2

(

mn log(2π) +mn

∫

log(fθ(x))dµ(x) +XT
n

(

Qn(
1

fθ
)

)

Xn

)

.

We denote by θ̂n, θ̃n, θ̄n, θ
(u) the maximum likelihood estimators associated to Ln, L̃n,

L̄n, L
(u)
n , respectively.

We will need the following assumption,

Assumption 3.5. There exists a positive sequence (un)n∈N such that,

un →
n→∞

0,

and
sup
ij

∣

∣

∣
B

(n)
ij − 1

∣

∣

∣
≤ un.

Notice that the last assumption holds for example in the case G = Z
d, d > 1.

To prove asymptotic normality and efficiency of the estimator θ
(u)
n , we will also need the

following assumption.
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Assumption 3.6. Assume that

• There exists a positive sequence (vn)n∈N such that vn = o( 1√
mn

) and

∀f ∈ Fρ,

∣

∣

∣

∣

1

mn

Tr(KGn
(f))−

∫

fdµ

∣

∣

∣

∣

≤ α(f)vn.

• For any θ ∈ Θ, fθ is twice differentiable on Θ and

d

dθ
(fθ) ∈ Fρ,

d2

dθ2
(fθ) ∈ Fρ.

The first assumption means that the convergence of the empirical distribution of eigen-
values of K(f) to the spectral measure µ is faster than 1√

mn
. It holds for instance for

quasi-transitives graphs, with a suitable sequence of subgraphs. The second assumption is
more classical. For example it is required in the case G = Z (see [2]).

3.2 Convergence and asymptotic optimality

Let ρ > 0. We can now state one of our main result:

Theorem 3.1. Under Assumptions 3.1, 3.2 and 3.3, the sequences (θ̂n)n∈N, (θ̄n)n∈N, (θ̃n)n∈N
converge, as n goes to infinity, Pfθ0

-a.s. to the true value θ0. If moreover Assumption 3.5

holds, this is also true for (θ
(u)
n )n∈N.

Proof. The proof follows the guidelines of [2]. We highlight the main changes performed
here. First, we define the Kullback information on Gn of fθ0 with respect to f ∈ Fρ, by

IKn(fθ0, f) := EPfθ0

[

− log(
dPf

dPfθ0

)

]

.

and the asymptotic Kullback information (on G) by

IK(fθ0, f) = lim
n

1

mn

IKn(fθ0 , f)

whenever it is finite.
The convergence of the estimators of the maximum approximated likelihood is a direct

consequence of the following lemmas :

Lemma 3.1. For any f ∈ Fρ, and under Assumptions 3.1, 3.2 and 3.3, the asymptotic
Kullback information exists and may be written as

IK(fθ0 , f) =
1

2

∫
(

− log(
fθ0
f
)− 1 +

fθ0
f

)

dµ.

Furthermore, if we set ln(θ,Xn) =
1

mn
Ln(θ,Xn), we have that Pfθ0

-a.s.,

ln(θ0, Xn)− ln(θ,Xn) →
n→∞

IK(fθ0 , fθ)

15



uniformly in θ ∈ Θ.
This property also holds for l̄n := 1

mn
L̄n and l̃n := 1

mn
L̃n

Furthermore, for P > 0, and for both the ARP or the MAP case (see above), this also

holds for l
(u)
n := 1

mn
L
(u)
n .

Lemma 3.2. Let fθ0 be the true spectral density, and (ℓn)n∈N be a deterministic sequence of
continuous functions such that

∀θ ∈ Θ, ℓn(θ0)− ℓn(θ) →
n→∞

IK(fθ0 , fθ)

uniformly as n tends to infinity. Then, if θn = argmaxθ ℓn(θ), we have

θn →
n→∞

θ0.

The proofs of these lemmas are postponed in Appendix (Subsection 6.2).

Theorem 3.2. In both the ARP or MAP cases, and and under all previous assumptions
3.1, 3.2, 3.3, 3.4, 3.5, 3.6, the estimator θ

(u)
n of θ0 is asymptotically normal:

√
mn(θ

(u)
n − θ0)

D−→
n→∞

N
(

0,

(

1

2

∫
(

f ′
θ0

fθ0

)2

dµ

)−1)

.

Furthermore, the Fisher information of the model is

J(θ0) :=
1

2

∫
(

f ′
θ0

fθ0

)2

dµ.

Hence, the previous estimator is asymptoticly efficient.

Proof. Here again, we mimic the usual proof by extending the result of [2] to the graph case.
Using a Taylor expansion, we get

(l(u)n )′(θ0) = (l(u)n )′(θ(u)n ) + (θ0 − θ(u)n )(l(u)n )′′(θ̆n),

where θ̆n ∈
]

θ
(u)
n , θ0

[

. As θ
(u)
n = argmax l

(u)
n , we have

(l(u)n )′(θ(u)n ) = 0.

So that,
√
mn(θ0 − θ(u)n ) =

(

(l(u)n )′′(θ̆n)
)−1√

mn(l
(u)
n )′(θ0).

The end of the proof relies on three lemmas :
Lemma 3.3 provides the asymptotic normality for

√
mn(l

(u)
n )′(θ0). Combined with Lemma

3.4, we get the asymptotic normality for
√
mn(θ0−θ

(u)
n ). Finally, Lemma 3.5 gives the Fisher

information.

Lemma 3.3.
√
mn(l

(u)
n )′(θ0)

D−→
n→∞

N
(

0,
1

2

∫
(

f ′
θ0

fθ0

)2

dµ

)

.
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Lemma 3.4.
(

(l(u)n )′′(θ̆n)
)−1

→
n→∞

2

(

∫
(

f ′
θ0

fθ0

)2

dµ

)−1

, Pfθ0
− a.s.

Lemma 3.5. The asymptotic Fisher information is :

J(θ0) =
1

2

∫
(

f ′
θ0

fθ0

)2

dµ.

The proofs of these lemmas are postponed in Appendix (Subsection 6.3)

4 Discussion

Note first that Theorem 3.1 provides consistency of the estimators under weak conditions on
the graph. Indeed, amenability ensures Assumption 3.1, for a suitable sequence of subgraphs.
Assumption 3.3 holds as soon as there is a kind of homogeneity in the graph. The simplest
application is quasi-transitives graph. Note that if G is “close” to be quasi-transitive, As-
sumption 3.3 is still true. We also could adapt notions of unimodularity [1] or stationarity [3]
to our framework and prove the existence of a spectral measure. Furthermore, Assumption
3.3 holds for the real traffic network (this will be explained in a forthcomming paper).

To build the estimator θ
(u)
n , stronger assumptions on the graph G are needed. Let us

discuss two very special cases. First, Theorem 3.2 may be applied in the Zd case with holes,
that is in the presence of missing data, up to the condition that they remain few enough.
Actually, Assumption 3.1 is required, so the boundary of the subgraphs (counting the holes)
has to be small in front of the volume of this subgraphs.

We need furthermore a kind of homogeneity for these holes. For instance, we can assume
that the data are missing completely at random. This particular case is interesting for
prediction issues.

Another strong potential application is quasi-transitive graphs, as mentioned above. In-
deed, take for instance a finite graph (the pattern) and reproduce it at each vertex of an
infinite (amenable) vertex-transitive graph. The final graph is then quasi-transitive, and all
the previous assumptions hold.

This seems to be a natural extension of what happens for Z
d. Furthermore, in this

situation as in Z
d, our work may also be applied to a process with missing values.

Note also that conditions of both amenability of the graphs and regularity of spectral den-
sities seem natural, looking at the Szegö’s Lemmas (see Section 6.1). Indeed, the difference
computed in Lemma 6.1 is only due to edge effects.

Thus, there are two ways for relaxing this conditions. On the one hand, it could be
interesting to deal with lower regularity (for instance to study long memory processes) for
the spectral densities. On the other hand, it could be also interesting to relax conditions on
the graph, for instance for more regular densities. In particular, we could investigate the case
of random graphs, and try to pick up homogeneity conditions into the random structure. As
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mentioned above, another natural extension of this work could be done to graphs “close” to
be quasi-transitive.

These two limits of our present work are actually two of our main perspectives in this
framework.

5 Simulations

In this section, we give some simulations over a very simple case, where the graph G is built
taking some rhombus connected by a simple edge both on the left and right (see Figure 2).

Figure 2: Graph G

The sequence of nested subgraphs chosen here is the growing neighborhood sequence (we
chose a point x and we take Gn = {y ∈ G, dG(x, y) ≤ n}). We study an AR2 model, where,

Θ = ]−1, 1[ ,

fθ(x) =

(

1

1− θx

)2

(θ ∈ Θ).

Here, we take forW the adjacency operator of G normalized in order to get supi,j∈GWij ≤
1

deg(G)
. We choose θ0 = 1

2
, mn = 724. We approximate the spectral measure of G by the

spectral measure of a very large graph (around 10000 vertices) built in the same way. Figure
3 shows the empirical spectrum of the graph G with respect to the sequence of subgraphs
(Gn)n∈N.

To compute (Kn(fθ))
−1, we use the power series representation of fθ, and truncate this

expression after the 15 first coefficient. This choice ensures that the simulation errors are
neglectible with respect to the theoretical ones.

Figure 4 gives the empirical distribution of

√
mn

√

∫

Sp(A)

(

f ′
θ

fθ

)2
(

θ̃n − θ0

)

.
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Figure 3: Empirical spectrum
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6 Appendix

6.1 Szegö’s Lemmas

Szegö’s Lemmas [12] are useful in time series analysis. Indeed, they provide good approxi-
mations for the likelihood. As explained in Section 3, these approximations of the likelihood
are easier to compute.

In this section, we generalize a weak version of the Szegö Lemmas, for a general graph,
under Assumption 3.1 (non expansion criterion for Gn), and Assumption 3.3 (existence of
the spectral measure µ).

For any matrix (Bij)i,j∈Gn
, we define the block norm

bN (B) =
1

δN

∑

i,j∈GN

|Bij | .

We can state the equivalent version of the first Szegö lemma for time-series

Lemma 6.1. Asymptotic homomorphism
Let k, n be positive integers, and let g1, · · · , gk be analytic functions over [−1, 1] having

finite regularity factors (i.e. α(gi) < +∞, i = 1, · · · , k). Then,

bn (Kn(g1) · · ·Kn(gk)−Kn(g1 · · · gk)) ≤
k − 1

2
α(g1) · · ·α(gk).

Corollary 6.1. For any g ∈ Fρ (see the first page of Subsection 3.1 for the definition), and
under Assumptions 3.1 and 3.3,

1

mn

log det(Kn(g)) →
n→∞

∫

log(g)dµ.

Proof. of Lemma 6.1 This proof follows again the one of [2]. We will prove the result by
induction on k.

First we deal with the case k = 2. Let f and g analytic functions over [−1, 1] such that
α(f) < +∞ and α(g) < +∞. We write

bn(Kn(f)Kn(g)−Kn(fg))

=
1

δn

∑

i,j∈Gn

∣

∣

∣

∣

∣

∑

k∈Gn

(Kn(f))ik (Kn(g))kj −
∑

k∈G
(Kn(f))ik (Kn(g))kj

∣

∣

∣

∣

∣

=
1

δn

∑

i,j∈Gn

∑

k∈G\Gn

|K(f)ik| |K(g)kj| .

Using K(g) =
∑∞

h=0 ghW
h, Fubini’s theorem gives, since all the previous sequences are
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in l1(G),

bn(Kn(f)Kn(g)−Kn(fg))

≤ 1

δn

∑

i,j∈Gn

∑

k∈G\Gn

∣

∣

∣
(Kn(f))ik (Kn(g))kj

∣

∣

∣

≤
(

sup
k∈G\Gn

∑

i∈Gn

|K(f)ik|
)

× 1

δn

∑

k∈G\Gn

∑

j∈Gn

∞
∑

h=0

|gh|
∣

∣(W h)kj
∣

∣

≤
(

sup
k∈G

∑

i∈G
|K(f)ik|

)

×
∞
∑

h=0

|gh|
1

δn

∑

k∈G\Gn

∑

j∈Gn

∣

∣(W h)kj
∣

∣ .

Introducing

∆h = sup
N∈N

1

δN

∑

k∈G\GN

∑

j∈GN

∣

∣

∣

(

W h
)

kj

∣

∣

∣
,

we get

bn(Kn(f)Kn(g)−Kn(fg)) ≤ sup
k∈G

∑

i∈G
|K(f)ik|

∞
∑

h=0

|gh|∆h.

The coefficient ∆h is a porosity factor. It measures the weight of the paths of length h

going from the interior of Gn to outside.
Note that ∆h ≤ h + 1, so we get

∞
∑

h=0

|gh|∆h ≤ α(g).

Now, we define another norm on BG :

‖B‖∞,in := sup
k∈G

∑

i∈G
|Bik| , (B ∈ BG) .

We thus obtain

‖K(f)‖∞,in = sup
k∈G

∑

i∈G
|K(f)ik|

≤
∞
∑

h=0

|fh|
∥

∥W h
∥

∥

∞,in

≤
∞
∑

h=0

|fh| ‖W‖h∞,in

≤
∞
∑

h=0

|fh| := ‖f‖1,pol .

Finally, we get

bn(KGn
(f)KGn

(g)−KGn
(fg)) ≤ ‖f‖1,pol α(g).
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To conclude the proof of the lemma, by symmetrization of the last inequality, and since
1 ≤ (h+ 1), we have,

bn (Kn(f)Kn(g)−Kn(fg)) ≤
1

2
α(f)α(g). (6)

To perform the inductive step, we need the following inequalities [21]:

α(fg) ≤ α(f)α(g),

bn(BC) ≤ ‖B‖∞,in bn(C),

bn(B + C) ≤ bn(B) + bn(C),

‖Kn(f)‖∞,in = ‖f‖1,pol ≤ α(f).

Let k > 1, and assume that for all j ≤ k − 1, Lemma 6.1 holds. Under the previous
assumptions, and the inductive hypothesis for k − 1 we get,

bn (Kn(g1)× · · · ×Kn(gk)− Kn(g1 · · · gk))
≤ ‖Kn(g1)‖∞,in bn (Kn(g2) · · ·Kn(gk)−Kn(g2 · · · gk))

+bn (Kn(g1)Kn(g2 · · · gk)−Kn(g1 · · · gk))

≤ α(g1)
k − 2

2
α(g2) · · ·α(gk) +

1

2
α(g1)α(g2 · · · gk)

≤ k − 1

2
α(g1) · · ·α(gk),

which completes the induction step and proves the result.

Proof. of Corollary 6.1
Let g ∈ Fρ, and k be a positive integer. Using Lemma 6.1, we have

Tr
(

Kn(g)
k −Kn(g

k)
)

≤ δn

mn

bn
(

Kn(g)
k −Kn(g

k)
)

. (7)

Thus, we have, thanks to Assumption 3.1

1

mn

Tr
(

Kn(g)
k −Kn(g

k)
)

→
n→+∞

0.

Denote µ
[1]
g the real measure whose kth-moment is given by

∫

xkdµ[1]
g = lim

n

1

mn

Tr
(

Kn(g)
k
)

,

and µ
[2]
g the real measure whose kth-moment is given by

∫

xkdµ[2]
g = lim

n

1

mn

Tr
(

Kn(g
k)
)

.

Notice that both of these measures have support between inf g ≥ e−ρ > 0 and sup g ≤
eρ < +∞, since α(log(g)) < ρ (see Section 3). Therefore, the equality of the moments given

by Equation 7 gives the equality of the measures µ
[1]
g and µ

[2]
g .
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So that, we get

1

mn

log (det (Kn(g)))−
1

mn

Tr (Kn (log(g))) →
n→+∞

0. (8)

Assumption 3.3 completes the proof of the Corollary since it implies that

1

mn

Tr (Kn (log(g))) →
n→+∞

∫

log(g)dµ.

The following lemma enables to replace Kn(g) by the unbiased version Qn(g) (see Section
3 for the definition).

Lemma 6.2. Under Assumptions 3.1,3.3, 3.4 and 3.5, and if f or g is a polynomial having
degree less than or equal to P , we have

∣

∣

∣

∣

1

mn

Tr ((Kn(f)Kn(g))
p − (Kn(f)Qn(g))

p)

∣

∣

∣

∣

≤ 2punα(f)
pα(g)p.

Proof. We define, for any f ,

fabs(x) =
∑

k

|fk| xk.

Actually, the proof is based of the following idea: as soon as f or g is a polynomial having
degree less than or equal to P , we have to control only the number of paths of length less
than or equal to P (counted with their weights).

Let p be a positive number. Recall that Qn(
1
g
) = B(n) ⊙Kn(

1
g
) (see Section 3), we have,
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1
mn

∣

∣

∣

∣

Tr

((

Kn(f)Kn(
1

g
)

)p

−
(

Kn(f)Qn(
1

g
)

)p)∣
∣

∣

∣

≤ 1

mn

∣

∣

∣

∣

∣

∣

∑

i∈Gn

∑

i0=i,i1,··· ,i2p=i

∏

l=0···p
B

(n)
i2li2l+1

Kn(
1

g
)i2li2l+1

Kn(f)i2l+1i2l+2

− 1

mn

∑

i∈Gn

∑

i0=i,i1,··· ,i2p=i

∏

l=0···p
Kn(

1

g
)i2li2l+1

Kn(f)i2l+1i2l+2

∣

∣

∣

∣

∣

∣

≤ 1

mn

sup
i1,i2,··· ,i2p+1

∣

∣

∣

∣

∣

∏

l=0···p−1

B
(n)
i2l+1i2l+2

− 1

∣

∣

∣

∣

∣

×
∑

i∈Gn

∑

i0=i,i1,··· ,i2p=i

∏

l=0···p

∣

∣

∣

∣

Kn(
1

g
)i2li2l+1

Kn(f)i2l+1i2l+2

∣

∣

∣

∣

≤ 1

mn

sup
i1,i2,··· ,i2p+1

∣

∣

∣

∣

∣

∏

l=0···p−1

B
(n)
i2l+1i2l+2

− 1

∣

∣

∣

∣

∣

×
∑

i∈Gn

∑

i0=i,i1,··· ,i2p=i

∏

l=0···p
Kn((

1

g
)abs)i2li2l+1

Kn(fabs)i2l+1i2l+2

≤ sup
i1,i2,··· ,i2p+1

∣

∣

∣

∣

∣

∏

l=0···p−1

B
(n)
i2l+1i2l+2

− 1

∣

∣

∣

∣

∣

∥

∥

∥

∥

(

KGn
(fabs)KGn

((
1

g
)abs)

)p∥
∥

∥

∥

2,in

≤ sup
i1,i2,··· ,i2p+1

∣

∣

∣

∣

∣

∏

l=0···p−1

B
(n)
i2l+1i2l+2

− 1

∣

∣

∣

∣

∣

α(f)pα(
1

g
)p.

Using Assumption 3.5, we get,

1
mn

∣

∣

∣

∣

Tr

((

Kn(f)Kn(
1

g
)

)p

−
(

Kn(f)Qn(
1

g
)

)p)∣
∣

∣

∣

≤ |(1 + un)
p − 1|α(f)pα(1

g
)p

≤
∣

∣(1 + un − 1)
(

(1 + un)
p−1 + (1 + un)

p−2 + · · ·+ 1
)
∣

∣α(f)pα(
1

g
)p

≤ |un (2
p − 1)|α(f)pα(1

g
)p

≤ un2
pα(f)pα(

1

g
)p.

This ends the proof of the Lemma.

Finally, the following lemma explains the choice of B(n). The unbiased quadratic form
Qn is no more than a correction of the error between Kn(f)Kn(g) and Kn(fg).
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Lemma 6.3 (Exact correction). Let f, g ∈ Fρ, and assume that either f or g is a polynomial
of degree less than or equal to P (see Section 3). Then, the unbiased quadratic form Qn(fθ)
verify

Tr (Kn(f)Qn(g)) = Tr (Kn(fg)) .

Proof. of Lemma 6.3
First, notice that

Tr (Kn(f)Qn(g)) =
∑

i,j∈Gn

Kn(f)ijKn(g)ijB
(n)
ij .

Since this expression is symmetric on f, g, we can now consider the case where f is a poly-
nomial of degree less than or equal to P .

Actually, since f is a polynomial, Kn(f)ij = 0 as soon as d(i, j) > P (i, j ∈ G). Then, if
i, j, k, l ∈ G are such that µij = µkl, we have

Kn(f)ijKn(g)ij = Kn(f)klKn(g)kl.

So that, we may here denote, for convenience, K(f)µij
.

Using Assumption 3.4, this leads to

Tr (Kn(f)Qn(g)) =
∑

i,j∈Gn

Kn(f)ijKn(g)ijB
(n)
ij

=
∑

v∈VP

∑

i,j∈Gn
µij=v,dG(i,j)≤P

Kn(f)vKn(g)vB
(n)
v

=
∑

v∈VP

Kn(f)vKn(g)vCard {(i, j) ∈ Gn ×Gn, µij = v}

× Card {(i, j) ∈ Gn ×G, µij = v}
Card {(i, j) ∈ Gn ×Gn, µij = v} ,

=
∑

v∈VP

∑

(i,j)∈Gn×G,

µij=v,dG(i,j)≤P

Kn(f)vKn(g)vB
(n)
v

=
∑

(i,j)∈Gn×G

Kn(f)ijKn(g)ijB
(n)
ij

= Tr (Kn(fg)) .

That ends the proof of Lemma 6.3.

6.2 Proofs of the lemmas of Theorem 3.1

Recall that the theorem relies on two lemmas. Lemma 3.2 states a condition on deterministic
sequences to provide the convergence of the maximizer of these sequences.

Proof. of Lemma 3.2 Recall that fθ0 denotes the true spectral density. Let (ℓn)n∈N be a
deterministic sequence of continuous functions such that

∀θ ∈ Θ, ℓn(θ0)− ℓn(θ) →
n→∞

1

2

∫
(

− log(
fθ0
fθ

)− 1 +
fθ0
fθ

)

dµ. (9)
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uniformly as n tends to infinity. Denotes moreover θn = argmaxθ ℓn(θ). We aim at proving
that

θn →
n→∞

θ0.

Using the compactness of Θ, let θ∞ be an accumulation point of the sequence (θn)n∈N,
and (θnk

)k∈N be a subsequence converging to θ∞. As the function

θ 7→ 1

2

∫
(

− log(
fθ0
fθ

)− 1 +
fθ0
fθ

)

dµ

is continuous on Θ, and the convergence of (ℓn(θ0)− ℓn(θ))n∈N is uniform in θ, we have

ℓnk
(θ0)− ℓnk

(θnk
)

k→∞−−−→ 1

2

∫

− log(
fθ0
fθ∞

)− 1 +
fθ0
fθ∞

dµ. (10)

But we can notice that, thanks to the definition of θn, ℓnk
(θ0) − ℓnk

(θnk
) ≤ 0 So, since the

function x 7→ − log(x) + x − 1 is non negative and vanishes if, and only if, x = 1, we get
that fθ0 = fθ∞ . By injectivity of the function θ → fθ, we get θ∞ = θ0, for any accumulation
point θ∞ of the sequence (θn)n∈N, which ends the proof of this first lemma.

Lemma 3.1 provides the uniform convergence of the contrasts of maximum likelihood and
approximated maximum likelihood to the Kullback information. The proof may be cut into
several lemmas.

Proof. of Lemma 3.1
First, notice that by construction, we have, for any θ ∈ Θ,

IK(fθ0, fθ) = lim
n

E

[

1

mn

(Ln(fθ0 , Xn)− Ln(fθ, Xn))

]

, (11)

when it exists. Then, we can compute

ln(fθ0 , Xn)− ln(fθ, Xn) = − 1

2mn

(log det(Kn(fθ0))− log det(Kn(fθ)))

− 1

2mn

(

XT
nKn(fθ0)

−1Xn −XT
nKn(fθ)

−1Xn

)

Corollary 6.1 of Lemma 6.1 provides the following convergence

1

mn

(log det(Kn(fθ0))− log det(Kn(fθ))) →
n→∞

∫

log

(

fθ0
fθ

)

dµ. (12)

To prove the existence of IK(fθ0 , fθ), it only remains to prove the Pfθ0
-a.s. convergence

of 1
mn

XT
nKn(fθ)

−1Xn to
∫ fθ0

fθ
dµ as n goes to infinity.

This is ensured by the following Lemma.

Lemma 6.4 (Convergence lemma). For respectively Λ = Kn(
1
fθ
), Λ = (Kn(fθ))

−1 or Λ =

Qn(
1
fθ
), we have,

1

mn

XT
nΛXn →

n→∞

∫

fθ0
fθ

dµ,Pfθ0
− a.s..
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Lemma 6.4 combined with Corollary 6.1 ensures the Pfθ0
− a.s. convergence of l̃n(fθ0)−

l̃n(fθ), l̄n(fθ0)− l̄n(fθ) to IK(fθ0, fθ). It provides also the Pfθ0
−a.s. convergence of l

(u)
n (fθ0)−

l
(u)
n (fθ) to IK(fθ0 , fθ) in the ARP or MAP cases (see Section 3). To complete the assertion
of Lemma 3.1, it only remains to show the uniform convergences on Θ of the last quantities.
This will be done using an equicontinuity argument given by the following Lemma.

Lemma 6.5 (Equicontinuity lemma). For all n ≥ 0, the sequences of functions

(ln(fθ0 , Xn)− ln(fθ, Xn))n∈N

is an Pfθ0
-a.s. equicontinuous sequence on ({fθ, θ ∈ Θ} , ‖.‖∞).This property also holds for

l̄n,l̃n. Furthermore, the sequence
(

l
(u)
n (fθ0 , Xn − l

(u)
n (fθ, Xn)

)

n∈N
is also Pfθ0

-a.s. equicontin-

uous, on
(

{fθ, θ ∈ Θ} , ‖.‖1,pol
)

.

We can now end the proof of Lemma 3.1:
First, notice that the space {fθ, θ ∈ Θ} is compact for the topology of the uniform conver-

gence. This also holds for
(

{fθ, θ ∈ Θ} , ‖.‖1,pol
)

. So, there exists a dense sequence (fθp)p∈N.

Then, using Lemma 6.1 and Corollary 6.1, the sequence
(

ln(fθ0, Xn)− ln(fθp, Xn)
)

n∈N con-
verges Pfθ0

-a.s. to IK(fθ0 , fθp).
If a sequence of functions is equicontinuous and converges pointwise on a dense subset of

its domain, and if its co-domain is a complete space, then the sequence converges pointwise
on all the domain [20].

Using this well known property, we obtain, Pfθ0
-a.s., the pointwise convergence of

(ln(fθ0 , Xn)− ln(fθ, Xn))n∈N

to IK(fθ0 , fθ), for any θ ∈ Θ.
Furthermore, if a sequence of functions is equicontinuous and converges pointwise on its

domain, then this convergence is uniform on any compact subspace of the domain [20].
Thus, we get, Pfθ0

-a.s., the uniform convergence on Θ of the sequence

(ln(fθ0 , Xn)− ln(fθ, Xn))n∈N

to IK(fθ0 , fθ).

Using the same kind of arguments, this uniform convergence also holds for l̄n,l̃n and l
(u)
n .

This concludes the proof of Lemma 3.1.

6.3 Proof of the technical lemmas

Proof. of Lemma 6.4

Let θ ∈ Θ. First, consider the case Λn = Kn

(

1
fθ

)

. We aim at proving that

1

mn

XT
nΛnXn →

n→∞

∫

fθ0
fθ

dµ,Pfθ0
− a.s..
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To do that, we make use of classical tools of large deviation (see [9]). We compute the
Laplace transform of XT

nΛnXn :

EPfθ0

[

e
λXT

n Kn(
1
fθ

)Xn

]

=
1

(
√
2π)mn

√

det(Kn(fθ0))

∫

e
1
2
XT

n

(

(Kn(fθ0 ))
−1−2λKn(

1
fθ

)
)

Xn

=
1

√

det(Kn(fθ0))

√

√

√

√det

(

[

(Kn(fθ0))
−1 − 2λKn(

1

fθ
)

]−1
)

=
1

√

det
(

IGn
− 2λKn(fθ0)

1
2Kn(

1
fθ
)Kn(fθ0)

1
2

)

.

These last equalities hold as soon as IGn
− 2λKn(fθ0)

1
2Kn(

1
fθ
)Kn(fθ0)

1
2 is positive. This is

true whenever λ ≤ 0 or small enough.
Now, for λ ≤ 0, define

φn(λ) :=
1

mn

log ( EPfθ0

[

e
λXT

n Kn(
1
fθ

)Xn

])

,

This function verifies

φn(λ) = − 1

2mn

log det

(

IGn
− 2λKn(fθ0)

1
2Kn(

1

fθ
)Kn(fθ0)

1
2

)

.

Define also

φ(λ) = lim
n

φn(λ),

We get, using Corollary 6.1,

φ(λ) = −1

2

∫

log

(

1− 2λ
fθ0
fθ

)

.

We can also compute

φ′′(λ) =

∫ 2(
fθ0
fθ
)2

(1− 2λ
fθ0
fθ
)2
dµ > 0.

As very usual, we define the convex conjugate of φ by

φ∗(t) := sup
λ∈R−

[λt− φ(λ)] , t ∈ R.

As soon as φ is strictly convex, φ∗(t) > φ(0) = 0, for any t 6= φ′(0) =
∫

f

g
dµ.
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We can now write, for λ ≤ 0,

1

mn

log(P(
1

mn

XT
nΛnXn ≥ t)) =

1

mn

log(P(eλX
T
n ΛnXn ≥ emnλt))

≤ 1

mn

log
(

e−mnλt
)

+
1

mn

log
(

E[eλX
T
n ΛnXn ]

)

≤ −λt + φn(λ).

Then we get, ∀t >
∫

f

g
dµ,

lim sup
n

(

1

mn

log(P(
1

mn

XT
nΛnXn ≥ t))

)

≤ −λt + φ(λ)

So that, taking the infimum on λ, we get

lim sup
n

(

1

mn

log(P(
1

mn

XT
nΛnXn ≥ t))

)

≤ −φ∗(t) < 0

We can obtain the same bound for t <
∫

f

g
dµ. By Borel-Cantelli theorem, we get the

Pfθ0
-almost sure convergence of 1

mn
XT

nΛnXn to
∫

f

g
dµ. To prove the same convergence with

Λn = (Kn(fθ))
−1, we have to show that the difference between the spectral empirical measure

of Kn(fθ0)
1
2Kn(

1
fθ
)Kn(fθ0)

1
2 and Kn(fθ0)

1
2Kn(fθ)

−1Kn(fθ0)
1
2 converges weakly to zero. It is

sufficient to control the convergence of every moment, because these two last measures both
have compact support.

For this, we make use of the Schatten norms. For any A,B matrices of Mmn
(R), we

define

‖A‖Sch,p =
(

∑

sk(A)
p
)

1
p

,

where sk(A) are the singular values of A.
Note that

|Tr(AB)| ≤ ‖AB‖Sch,1 ≤ ‖A‖Sch,1 ‖B‖Sch,∞ .

Recall that since fθ ∈ Fρ, we have e−ρ ≤ fθ ≤ eρ. Hence, for any p ≥ 1,

1

mn

∣

∣

∣

∣

Tr
(

Kp
n(

1

fθ
)Kp

n(fθ0)− K−p
n (fθ)Kp

n(fθ0)
)
∣

∣

∣

≤ 1

mn

∥

∥Kn(fθ)
−pKp

n(fθ0)
∥

∥

Sch,∞

∥

∥

∥

∥

(

Kp
n(
1

θ
)Kp

n(fθ)− IGn

)
∥

∥

∥

∥

Sch,1

≤ δn

mn

e2ρp

e−2ρp
α(fθ)

2pα(
1

fθ
)2p →

n→∞
0.

To obtain the same bound with Λn = Qn(
1
fθ
), we have to prove that the difference between

the spectral empirical measures of Kn(fθ0)
1
2Kn(

1
fθ
)Kn(fθ0)

1
2 and Kn(fθ0)

1
2Qn(

1
fθ
)Kn(fθ0)

1
2

converge weakly to zero. This last assertion is a direct consequence of Lemma 6.2. So,
we get

1

mn

XT
nΛnXn →

∫

fθ0
fθ

,Pfθ0
− a.s.
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Proof. of Lemma 6.5
Recall that we aim at proving that, Pfθ0

-a.s., the sequence of functions

(ln(fθ0 , Xn)− ln(fθ, Xn))n∈N

is equicontinuous on {fθ, θ ∈ Θ}, and that this property also holds for l̄n,l̃n and l
(u)
n .

First, we will prove the equicontinuity of the sequence

(

1

mn

log det(Kn(fθ))

)

n∈N
.

Let θ, θ′ ∈ Θ.
Denote λi the eigenvalues of Kn(fθ′)

−1 (Kn(fθ′)−Kn(fθ)). Since fθ ∈ Fρ, we have e−ρ ≤
fθ ≤ eρ.

Notice that we have

sup
i=1,··· ,n

|λi| =
∥

∥Kn(fθ′)
−1 (Kn(fθ′)−Kn(fθ))

∥

∥

2,op

≤ eρ ‖fθ′ − fθ‖∞ .

So that, to prove the equicontinuity, we may assume that θ is close enough to θ′ to ensure
that supi=1,··· ,n |λi| ≤ 1

2
.

We have

1

mn

∣

∣

∣
log det(Kn(fθ′))− log det(Kn(fθ))

∣

∣

∣

=
1

mn

∣

∣log det
(

IGn
−Kn(fθ0)

−1 (Kn(fθ′)−Kn(fθ))
)
∣

∣

≤ 1

mn

∑

i∈Gn

|log(1 + λi)|

≤ 1

mn

sup
i∈Gn

|log(1 + λi)|

≤ 2 log(2) sup
i∈Gn

|λi|

≤ 2 log(2)eρ ‖fθ′ − fθ‖∞ .

Furthermore, the sequence (
∫

log(fθ)dµ)n∈N is also equicontinuous since, using a Taylor
formula,

∫
∣

∣

∣

∣

log(fθ′)dµ−
∫

log(fθ)dµ

∣

∣

∣

∣

≤ eρ ‖fθ′ − fθ‖∞ .

Now we tackle the equicontinuity of the sequences

(

XT
nKn(fθ)

−1Xn

)

n∈N ,

(

XT
nKn(

1

fθ
)Xn

)

n∈N
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and
(

XT
nQn(

1

fθ
)Xn

)

n∈N
.

Notice first that, for any matrix B ∈ Mn(R),

1

mn

∣

∣XT
nBXn

∣

∣ ≤ 1

mn

‖B‖2,op
∣

∣XT
nXn

∣

∣ .

It is thus sufficient to prove the equicontinuity of the sequences

(Kn(fθ)
−1)n∈N,

(Kn(
1

fθ
))n∈N

and
(Qn(fθ)

−1)n∈N,

for the norm ‖.‖2,op
Note that

∥

∥

∥

∥

Kn(
1

fθ′
)−Kn(

1

fθ
)

∥

∥

∥

∥

2,op

≤
∣

∣

∣

∣

1

fθ′
− 1

fθ

∣

∣

∣

∣

∞

≤ e2ρ ‖fθ′ − fθ‖∞ .

Then,

∥

∥(Kn(fθ′))
−1 − (Kn(fθ))

−1
∥

∥

2,op
≤
∥

∥(Kn(fθ′))
−1(Kn(fθ))

−1
∥

∥

2,op
‖(Kn(fθ′))− (Kn(fθ))‖2,op

≤ e2ρ ‖fθ′ − fθ‖∞ .

Then, recall that, for any symmetric matrix B ∈ Mn(R), we have

‖B‖2,op ≤ ‖B‖∞,op .

Recall also that Qn(fθ) = B(n) ⊙Kn(fθ). Denote

∥

∥

∥

∥

Qn(
1

fθ′
)−Qn(

1

fθ
)

∥

∥

∥

∥

2,op

≤
∥

∥

∥

∥

Qn(
1

fθ′
)−Qn(

1

fθ
)

∥

∥

∥

∥

∞,op

≤ sup
i,j=1,···n

∣

∣

∣
B

(n)
ij

∣

∣

∣

∥

∥

∥

∥

Kn(
1

fθ′
)−Kn(

1

fθ
)

∥

∥

∥

∥

∞,op

≤ (1 + un)

∥

∥

∥

∥

1

fθ′
− 1

fθ

∥

∥

∥

∥

1,pol

(see Assumption 3.5).

Since the map fθ 7→ 1
fθ

is continuous over Fρ, which is compact, we get the uniform

equicontinuity of the map fθ 7→ XT
nQn(

1
fθ
)Xn (for the norm ‖.‖1,pol).

This concludes the proof of Lemma 6.5
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Proof. of Lemma 3.3
We aim at proving the asymptotic normality of

√
mn(l

(u)
n )′(θ0).

Using the Fourier transform, it is sufficient to prove that

lim
n

E
[

exp
(

i
√
mnt

(

(l(u)n )′(θ0)
))]

= exp

(

−
∫

1

4
t2
(f ′

θ0
)2

f 2
θ0

(t)dµ(t)

)

Recall that we have

(l(u)n )′(θ) = −1

2

∫

f ′
θ

fθ
dµ+

1

2mn

XT
nQn(

f ′
θ

f 2
θ

)Xn.

We can compute

√
mnE

[

(l(u)n )′(θ0)
]

=
√
mn

(

−1

2

∫

f ′
θ0

fθ0
dµ+

1

2mn

Tr

(

Kn(fθ0)Qn(
f ′
θ

f 2
θ

)

))

=
√
mn

(

−1

2

∫

f ′
θ0

fθ0
dµ+

1

2mn

Tr

(

Kn

(

fθ0
f ′
θ0

f 2
θ0

)))

(see Lemma 6.3)

≤ Cvn
√
mn →

n→∞
0 (see Assumption 3.6).

If we define

Zn = t
1

2mn

XTQn(
f ′
θ

f 2
θ

)X,

and

Z = t
1

2

∫

f ′
θ

fθ
dµ,

the last equality means that √
mn (E [Zn]− Z) → 0.

This holds only if fθ0 is a polynomial, or if all the fθ, θ ∈ Θ are polynomials. This brings
out that the second theorem holds for the ARP or MAP case. It also explains the term
’unbiased estimator’ used for θ(u).

Then, it is sufficient to show

lim
n

E [exp (i
√
mn (Zn − E [Zn]))] = exp

(

−
∫

1

4
t2
(f ′

θ0
)2(t)

f 2
θ0
(t)

dµ(t)

)

.

If τk denotes the eigenvalues of the symmetric matrix

Mn :=
t

2
Kn(fθ0)

1
2Qn(

f ′
θ0

f 2
θ0

)Kn(fθ0)
1
2 ,

then we can write

Zn =
1

mn

mn
∑

k=1

τkY
2
k .

where (Yk)k∈Gn
has the standard Gaussian distribution on R

mn .
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The independence of Yk leads to

log (E [exp (i
√
mn (Zn − E [Zn]))]) = −

mn
∑

k=1

(

i
τk√
mn

+
1

2
log(1− 2i

τk√
mn

)

)

.

The τk are bounded, thanks to the following inequality:

‖Mn‖2,op =

∥

∥

∥

∥

t

2
Kn(fθ0)

1
2Qn(

f ′
θ0

f 2
θ0

)Kn(fθ0)
1
2

∥

∥

∥

∥

2,op

≤
∥

∥

∥

∥

t

2
Kn(fθ0)

1
2

∥

∥

∥

∥

2,op

∥

∥

∥

∥

Qn(
f ′
θ0

f 2
θ0

)

∥

∥

∥

∥

2,op

∥

∥

∥
Kn(fθ0)

1
2

∥

∥

∥

2,op

≤
∥

∥

∥

∥

t

2
Kn(fθ0)

1
2

∥

∥

∥

∥

2,op

∥

∥

∥

∥

Qn(
f ′
θ0

f 2
θ0

)

∥

∥

∥

∥

1,op

∥

∥

∥
Kn(fθ0)

1
2

∥

∥

∥

2,op

≤ eρα(f ′
θ0
)α(fθ0)

2(1 + un).

The Taylor expansion of log(1− 2 τk√
mn

) gives

log (E [exp (i
√
mn (Zn − E [Zn]))]) = − 1

mn

mn
∑

k=1

τ 2k +Rn.

With |Rn| ≤ C 1
mn

√
mn

∑mn

k=1 |τk|
3

Since the τk are bounded the assertion will be proved if we show that

1

mn

Tr(M2
n) =

1

mn

mn
∑

k=1

τ 2k
n→∞−−−→

∫

1

4
t2
(f ′

θ0
)2(t)

f 2
θO
(t)

dµ(t).

This last convergence is a consequence of Lemmas 6.1 and 6.2.
This provides the asymptotic normality of

√
mn(l

(u)
n )′(θ0) and concludes the proof of

Lemma 3.3:
√
mn(l

(u)
n )′(θ0) →

n→∞
N (0,

1

2

∫
(

f ′
θ0

fθ0

)2

dµ).

Proof. of Lemma 3.4
We aim now at proving the Pfθ0

-a.s. following convergence:

(

(l(u)n )′′(θ̆n)
)−1

→
n→∞

1

2

(
∫

(f ′
θ0
)2

f 2
θ0

dµ

)−1

We have

(l(u)n )′′(θ) = − 1

2mn

(
∫

f ′′
θ fθ − (f ′

θ)
2

f 2
θ

dµ+XT
nQn

(

2(f ′
θ)

2 − f ′′
θ fθ

f 3
θ

)

Xn

)

,
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which leads to

(l(u)n )′′(θ) →
n→∞

1

2

∫

(

f ′′
θ fθ − (f ′

θ)
2

f 2
θ

+
fθ0
(

2(f ′
θ)

2 − f ′′
θ fθ
)

f 3
θ

)

dµ, Pfθ0
-a.s.

Since the sequence l
(u)
n is equicontinuous and θ̆n →

n→∞
θ0, we obtain the desired convergence :

(l(u)n )′′(θ̆n) →
n→∞

1

2

∫
(

(f ′
θ0
)2

f 2
θ0

)

dµ, Pfθ0
-a.s.

Proof. of Lemma 3.5
We want to compute the asymptotic Fisher information. As usual, it is sufficient to

compute
1

mn

Var (L′
n(θ0)) = lim

n

1

2mn

Tr(Mn(θ0)
2),

where Mn(θ) = Kn(fθ)
−1Kn(f

′
θ)Kn(fθ)

−1Kn(fθ0).
This leads, together with Lemma 6.1, and Assumption 3.3 to

1

mn

Var (L′
n(θ0)) →

1

2

∫

(f ′
θ0
)2

f 2
θ0

dµ.

This ends the proof of the last lemma.
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