716 research outputs found
Numerical and experimental verification of a theoretical model of ripple formation in ice growth under supercooled water film flow
Little is known about morphological instability of a solidification front
during the crystal growth of a thin film of flowing supercooled liquid with a
free surface: for example, the ring-like ripples on the surface of icicles. The
length scale of the ripples is nearly 1 cm. Two theoretical models for the
ripple formation mechanism have been proposed. However, these models lead to
quite different results because of differences in the boundary conditions at
the solid-liquid interface and liquid-air surface. The validity of the
assumption used in the two models is numerically investigated and some of the
theoretical predictions are compared with experiments.Comment: 30 pages, 9 figure
Rotational Cooling of Polar Molecules by Stark-tuned Cavity Resonance
A general scheme for rotational cooling of diatomic heteronuclear molecules
is proposed. It uses a superconducting microwave cavity to enhance the
spontaneous decay via Purcell effect. Rotational cooling can be induced by
sequentially tuning each rotational transition to cavity resonance, starting
from the highest transition level to the lowest using an electric field.
Electrostatic multipoles can be used to provide large confinement volume with
essentially homogeneous background electric field.Comment: 10 pages, 6 figure
LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.We acknowledge “Red Española de Surpercomputación” (RES) for awarding us access to the MareNostrum III machine based in Barcelona, Spain (Ref. FI-2015-2-0026 and FI-2015-3-0011). We also acknowledge PRACE for awarding us access to Fermi and Marconi Supercomputers at Cineca, Italy (Ref. 2015133120). Oriol Lehmkuhl acknowledges a PDJ 2014 Grant by AGAUR (Generalitat de Catalunya). Ugo Piomelli acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada under the Discovery Grant Programme (Grant No. RGPIN-2016-04391). Ricard Borrell acknowledges a Juan de la Cierva postdoctoral grant (IJCI-2014-21034). Ivette Rodriguez, Oriol Lehmkuhl, Ricard Borrell and Assensi Oliva acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ref. ENE2014-60577-R).Peer ReviewedPostprint (author's final draft
Transcriptional regulation of the urokinase receptor (u-PAR) - A central molecule of invasion and metastasis
The phenomenon of tumor-associated proteolysis has been acknowledged as a decisive step in the progression of cancer. This short review focuses on the urokinase receptor (u-PAR), a central molecule involved in tumor-associated invasion and metastasis, and summarizes the transcriptional regulation of u-PAR. The urokinase receptor (u-PAR) is a heavily glycosylated cell surface protein and binds the serine protease urokinase specifically and with high affinity. It consists of three similar cysteine-rich repeats and is anchored to the cell membrane via a GPI-anchor. The u-PAR gene comprises 7 exons and is located on chromosome 19q13. Transcriptional activation of the u-PAR promoter region can be induced by binding of transcription factors (Sp1, AP-1, AP-2, NF-kappaB). One current study gives an example for transcriptional downregulation of u-PAR through a PEA3/ets transcriptional silencing element. Knowledge of the molecular regulation of this molecule in tumor cells could be very important for diagnosis and therapy in the near future
Recommended from our members
Climate impacts on human livelihoods: Where uncertainty matters in projections of water availability
Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models, as well as greenhouse gas scenarios, are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure what is referred to here as AHEAD (Adequate Human livelihood conditions for wEll-being And Development). Based on a trans-disciplinary sample of concepts addressing human well-being and livelihoods, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows for the uncertainty of climate and impact model projections to be identified and differentiated. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions – and where it is not. The results indicate that livelihood conditions are compromised by water scarcity in 34 countries. However, more often, AHEAD fulfilment is limited through other elements. The analysis shows that the water-specific uncertainty ranges of the model output are outside relevant thresholds for AHEAD for 65 out of 111 countries, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. In 46 of the countries in the analysis, water-specific uncertainty is relevant to AHEAD. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy decisions
HAUSGARTEN: Multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean
The marine Arctic has played an essential role in the history of our planet over the past 130 million years and contributes considerably to the present functioning of Earth and its life. The global cycles of a variety of materials fundamental to atmospheric conditions and thus to life depend to a signifi cant extent on Arctic marine processes (Aargaard et al., 1999). The past decades have seen remarkable changes in key Arctic variables. The decrease of sea-ice extent and sea-ice thickness in the past decade is statistically signifi - cant (Cavalieri et al., 1997; Parkinson et al., 1999; Walsh and Chapman, 2001; Partington et al., 2003; Johannessen et al., 2004). There have also been large changes in the upper and intermediate layers of the ocean, which have environmental implications. For instance, the deep Greenland Sea has continued its decadal trend towards warmer and saltier conditions, with a corresponding decrease in oxygen content, refl ecting the lack of effective local convection and ventilation (Dickson et al., 1996; Boenisch et al., 1997). Changes in temperature and salinity and associated shifts in nutrient distributions will directly affect the marine biota on multiple scales from communities and populations to individuals, consequently altering food-web structures and ecosystem functioning (Benson and Trites, 2002; Moore, 2003; Schumacher et al., 2003; Wiltshire and Manly, 2004; Perry et al., 2005). Today, we do not know whether the severe alterations in abiotic parameters represent perturbations due to human impacts, natural long-term trends, or new equilibriums (Bengtson et al., 2004). Because Arctic organisms are highly adapted to extreme environmental conditions with strong seasonal forcing, the accelerating rate of recent climate change challenges the resilience of Arctic life (Hassol, 2004). The entire system is likely to be severely affected by changing ice and water conditions, varying primary production and food availability to faunal communities, an increase in contaminants, and possibly increased UV irradiance. The stability of a number of Arctic populations and ecosystems is probably not strong enough to withstand the sum of these factors, which might lead to a collapse of subsystems. To detect and track the impact of large-scale environmental changes in the transition zone between the northern North Atlantic and the central Arctic Ocean, and to determine experimentally the factors controlling deep-sea biodiversity, the German Alfred Wegener Institute for Polar and Marine Research (AWI) established the deepsea, long-term observatory HAUSGARTEN, representing the fi rst, and by now only, open-ocean, long-term station in a polar region
Climate and southern Africa's water-energy-food nexus
In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and Gross Domestic Product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose; the Southern African Development Community, the Southern African Power Pool, and trade of agricultural products amounting to significant transfers of embedded water
Groundwater depletion embedded in international food trade
Recent hydrological modelling1 and Earth observations2,3 have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation1,2,4, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, cropspecific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products
Recommended from our members
The vulnerabilities of agricultural land and food production to future water scarcity
Rapidly increasing populations coupled with increased food demand requires either an expansion of agriculturalland or sufficient production gains from current resources. However, in a changing world, reduced wateravailability might undermine improvements in crop and grass productivity and may disproportionately affectdifferent parts of the world. Using multi-model studies, the potential trends, risks and uncertainties to land useand land availability that may arise from reductions in water availability are examined here. In addition, theimpacts of different policy interventions on pressures from emerging risks are examined.Results indicate that globally, approximately 11% and 10% of current crop- and grass-lands could be vul-nerable to reduction in water availability and may lose some productive capacity, with Africa and the MiddleEast, China, Europe and Asia particularly at risk. While uncertainties remain, reduction in agricultural land areaassociated with dietary changes (reduction of food waste and decreased meat consumption) offers the greatestbuffer against land loss and food insecurity
- …
