research

Numerical and experimental verification of a theoretical model of ripple formation in ice growth under supercooled water film flow

Abstract

Little is known about morphological instability of a solidification front during the crystal growth of a thin film of flowing supercooled liquid with a free surface: for example, the ring-like ripples on the surface of icicles. The length scale of the ripples is nearly 1 cm. Two theoretical models for the ripple formation mechanism have been proposed. However, these models lead to quite different results because of differences in the boundary conditions at the solid-liquid interface and liquid-air surface. The validity of the assumption used in the two models is numerically investigated and some of the theoretical predictions are compared with experiments.Comment: 30 pages, 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019