113 research outputs found

    Caffeine increases strength and power performance in resistance‐trained females during early follicular phase

    Get PDF
    The effects of 4 mg·kg‐1caffeine ingestion on strength and power were investigated for the first time, in resistance‐trained females during the early follicular phase utilizing a randomized, double‐blind, placebo‐controlled, crossover design. Fifteen females (29.8±4.0 years, 63.8±5.5 kg [mean±SD]) ingested caffeine or placebo 60 minutes before completing a test battery separated by 72 hours. One‐repetition maximum (1RM), repetitions to failure (RTF) at 60% of 1RM, were assessed in the squat and bench press. Maximal voluntary contraction torque (MVC) and rate of force development (RFD) were measured during isometric knee‐extensions, while utilizing interpolated twitch technique to measure voluntary muscle activation. Maximal power and jump height were assessed during countermovement jumps (CMJ). Caffeine metabolites were measured in plasma. Adverse effects were registered after each trial. Caffeine significantly improved squat (4.5±1.9%, effect size [ES]: 0.25) and bench press 1RM (3.3±1.4%, ES: 0.20), and squat (15.9±17.9%, ES: 0.31) and bench press RTF (9.8±13.6%, ES: 0.31), compared to placebo. MVC torque (4.6±7.3%, ES: 0.26), CMJ height (7.6±4.0%, ES: 0.50) and power (3.8±2.2%, ES: 0.24) were also significantly increased with caffeine. There were no differences in RFD or muscle activation. Plasma [caffeine] was significantly increased throughout the protocol and mild side‐effects of caffeine were experienced by only 3 participants. This study demonstrated that 4 mg·kg‐1 caffeine ingestion enhanced maximal strength, power and muscular endurance in resistance‐trained and caffeine‐habituated females during the early follicular phase, with few adverse effects. Female strength and power athletes may consider using this dose pre‐competition and ‐training as an effective ergogenic aid

    Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses

    Full text link
    In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both types of neural activity propagation in this work. We first study networks composed of purely excitatory neurons. Our results show that both the successful transmission probability and excitatory synaptic strength largely influence the propagation of these two types of neural activities, and better tuning of these synaptic parameters makes the considered network support stable signal propagation. It is also found that noise has significant but different impacts on these two types of propagation. The additive Gaussian white noise has the tendency to reduce the precision of the synfire activity, whereas noise with appropriate intensity can enhance the performance of firing rate propagation. Further simulations indicate that the propagation dynamics of the considered neuronal network is not simply determined by the average amount of received neurotransmitter for each neuron in a time instant, but also largely influenced by the stochastic effect of neurotransmitter release. Second, we compare our results with those obtained in corresponding feedforward neuronal networks connected with reliable synapses but in a random coupling fashion. We confirm that some differences can be observed in these two different feedforward neuronal network models. Finally, we study the signal propagation in feedforward neuronal networks consisting of both excitatory and inhibitory neurons, and demonstrate that inhibition also plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience (published

    Pengaruh Model Cooperative Learning Metode Two Stay Two Stray (TSTS) dan Numbered Head Together (NHT) terhadap Pemahaman Konsep Akuntansi Siswa ditinjau dari Kemampuan Awal Siswa : studi quasi eksperimen pada materi laporan keuangan perusahaan jasa mata pelajaran siklus akuntansi perusahaan jasa kelas X SMK Negeri 1 Kota Tasikmalaya tahun Ajaran 2014/2015

    Get PDF
    Penelitian ini dilakukan untuk melihat pengaruh model cooperative learning metode TSTS dan NHT terhadap pemahaman konsep akuntansi ditinjau dari kemampuan awal siswa dalam mata pelajaran akuntansi kelas X Akuntansi SMKN 1 Kota Tasikmalaya. Metode yang digunakan adalah quasi eksperimen dengan pengambilan sampel cluster random sampling yaitu kelas X-Ak 1 dan X-Ak 3. Kemampuan awal setiap kelas dibagi menjadi dua kategori, yaitu kemampuan awal tinggi dan kemampuan awal rendah. Data penelitian dikumpulkan melalui tes tulis yaitu tes kemampuan awal, pre test, dan pos test. Uji Hipotesis menggunakan uji anova between subject design faktorial 2x2. Hasil penelitian menunjukan ada pengaruh metode pembelajaran NHT dan TSTS terhadap pemahaman konsep akuntansi. Ada pengaruh kemampuan awal terhadap pemahaman konsep akuntansi. Ada pengaruh dan interaksi penggunaan metode TSTS dan NHT terhadap peningkatan pemahaman konsep akuntansi ditinjau dari kemampuan awal. Pemahaman konsep siswa yang memiliki kemampuan awal tinggi dengan metode NHT lebih tinggi dari penggunaan metode TSTS dengan kemampuan awal yang sama. Peningkatan pemahaman konsep siswa dengan kemampuan awal rendah metode TSTS lebih baik dari metode NHT. This research was conducted to see the effect of cooperative learning model of Two Stay Two Stray method and Numbered Head Together method toward the understanding of accounting concepts seen from the student’s prior knowledge.The research method was is quasi experimental with cluster random sampling in class X-Ak 1 and X-Ak 3. Prior Knowledge of each class is divided into two categories, namely high prior knowledge and low prior knowledge. The instrument used in this research was tests, was prerequisite test, pre test and post test. Hypothesis test using ANOVA test between subject 2x2 factorial design.The findings of this research are: there is the influence of the use of methods TSTS and NHT toward the increase of the understanding of accounting concepts. There is also the influence of the prior knowledge toward the increase of the understanding of accounting concepts. Moreover an effect of interaction between TSTS method and NHT method with the student’s prior knowledge toward the increase of the understanding of accounting concepts. The use of NHT method and TSTS method increased the understanding of the concept of students who have a high prior knowledge. Meanwhile, the use of TSTS method is better than NHT method in improving student comprehension with low prior knowledge

    Heavy-load exercise in older adults activates vasculogenesis and has a stronger impact on muscle gene expression than in young adults

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials: Microarray data from the BSU cohort have been submitted to the GEO database (www.ncbi.nlm.nih.gov/geo/): GSE28422, GSE28392, and GSE25941. Microarray data from the Oslo cohort is available on request.BACKGROUND: A striking effect of old age is the involuntary loss of muscle mass and strength leading to sarcopenia and reduced physiological functions. However, effects of heavy-load exercise in older adults on diseases and functions as predicted by changes in muscle gene expression have been inadequately studied. METHODS: Thigh muscle global transcriptional activity (transcriptome) was analyzed in cohorts of older and younger adults before and after 12-13 weeks heavy-load strength exercise using Affymetrix microarrays. Three age groups, similarly trained, were compared: younger adults (age 24 ± 4 years), older adults of average age 70 years (Oslo cohort) and above 80 years (old BSU cohort). To increase statistical strength, one of the older cohorts was used for validation. Ingenuity Pathway analysis (IPA) was used to identify predicted biological effects of a gene set that changed expression after exercise, and Principal Component Analysis (PCA) was used to visualize differences in muscle gene expressen between cohorts and individual participants as well as overall changes upon exercise. RESULTS: Younger adults, showed few transcriptome changes, but a marked, significant impact was observed in persons of average age 70 years and even more so in persons above 80 years. The 249 transcripts positively or negatively altered in both cohorts of older adults (q-value < 0.1) were submitted to gene set enrichment analysis using IPA. The transcripts predicted increase in several aspects of "vascularization and muscle contractions", whereas functions associated with negative health effects were reduced, e.g., "Glucose metabolism disorder" and "Disorder of blood pressure". Several genes that changed expression after intervention were confirmed at the genome level by containing single nucleotide variants associated with handgrip strength and muscle expression levels, e.g., CYP4B1 (p = 9.2E-20), NOTCH4 (p = 9.7E-8), and FZD4 (p = 5.3E-7). PCA of the 249 genes indicated a differential pattern of muscle gene expression in young and elderly. However, after exercise the expression patterns in both young and old BSU cohorts were changed in the same direction for the vast majority of participants. CONCLUSIONS: The positive impact of heavy-load strength training on the transcriptome increased markedly with age. The identified molecular changes translate to improved vascularization and muscular strength, suggesting highly beneficial health effects for older adults.South East Norway Health AuthorityOslo University Hospital, Ullevaal6th EU Framework ProgramLegat til Forskning, Lovisenberg Diaconal HospitalNational Institutes of Health (NIH)Eli Lilly and Compan

    The Physical Activity and Fitness in Childhood Cancer Survivors (PACCS) Study: Protocol for an International Mixed Methods Study

    Get PDF
    BackgroundSurvivors of childhood cancer represent a growing population with a long life expectancy but high risks of treatment-induced morbidity and premature mortality. Regular physical activity (PA) may improve their long-term health; however, high-quality empirical knowledge is sparse.ObjectiveThe Physical Activity and Fitness in Childhood Cancer Survivors (PACCS) study comprises 4 work packages (WPs) aiming for the objective determination of PA and self-reported health behavior, fatigue, and quality of life (WP 1); physical fitness determination (WP 2); the evaluation of barriers to and facilitators of PA (WP 1 and 3); and the feasibility testing of an intervention to increase PA and physical fitness (WP 4).MethodsThe PACCS study will use a mixed methods design, combining patient-reported outcome measures and objective clinical and physiological assessments with qualitative data gathering methods. A total of 500 survivors of childhood cancer aged 9 to 18 years with >= 1 year after treatment completion will be recruited in follow-up care clinics in Norway, Denmark, Finland, Germany, and Switzerland. All participants will participate in WP 1, of which approximately 150, 40, and 30 will be recruited to WP 2, WP3, and WP 4, respectively. The reference material for WP 1 is available from existing studies, whereas WP 2 will recruit healthy controls. PA levels will be measured using ActiGraph accelerometers and self-reports. Validated questionnaires will be used to assess health behaviors, fatigue, and quality of life. Physical fitness will be measured by a cardiopulmonary exercise test, isometric muscle strength tests, and muscle power and endurance tests. Limiting factors will be identified via neurological, pulmonary, and cardiac evaluations and the assessment of body composition and muscle size. Semistructured, qualitative interviews, analyzed using systematic text condensation, will identify the perceived barriers to and facilitators of PA for survivors of childhood cancer. In WP 4, we will evaluate the feasibility of a 6-month personalized PA intervention with the involvement of local structures.ResultsEthical approvals have been secured at all participating sites (Norwegian Regional Committee for Medical Research Ethics [2016/953 and 2018/739]; the Oslo University Hospital Data Protection Officer; equivalent institutions in Finland, Denmark [file H-19032270], Germany, and Switzerland [Ethics Committee of Northwestern and Central Switzerland, project ID: 2019-00410]). Data collection for WP 1 to 3 is complete. This will be completed by July 2022 for WP 4. Several publications are already in preparation, and 2 have been published.ConclusionsThe PACCS study will generate high-quality knowledge that will contribute to the development of an evidence-based PA intervention for young survivors of childhood cancer to improve their long-term care and health. We will identify physiological, psychological, and social barriers to PA that can be targeted in interventions with immediate benefits for young survivors of childhood cancer in need of rehabilitation.</p

    A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design

    Get PDF
    Background Studies indicate that strength training has beneficial effects on clinical health outcomes in prostate cancer patients during androgen deprivation therapy. However, randomized controlled trials are needed to scientifically determine the effectiveness of strength training on the muscle cell level. Furthermore, close examination of the feasibility of a high-load strength training program is warranted. The Physical Exercise and Prostate Cancer (PEPC) trial is designed to determine the effectiveness of strength training on clinical and muscle cellular outcomes in non-metastatic prostate cancer patients after high-dose radiotherapy and during ongoing androgen deprivation therapy. Methods/design Patients receiving androgen deprivation therapy for 9-36 months combined with external high-dose radiotherapy for locally advanced prostate cancer are randomized to an exercise intervention group that receives a 16 week high-load strength training program or a control group that is encouraged to maintain their habitual activity level. In both arms, androgen deprivation therapy is continued until the end of the intervention period. Clinical outcomes are body composition (lean body mass, bone mineral density and fat mass) measured by Dual-energy X-ray Absorptiometry, serological outcomes, physical functioning (muscle strength and cardio-respiratory fitness) assessed with physical tests and psycho-social functioning (mental health, fatigue and health-related quality of life) assessed by questionnaires. Muscle cellular outcomes are a) muscle fiber size b) regulators of muscle fiber size (number of myonuclei per muscle fiber, number of satellite cells per muscle fiber, number of satellite cells and myonuclei positive for androgen receptors and proteins involved in muscle protein degradation and muscle hypertrophy) and c) regulators of muscle fiber function such as proteins involved in cellular stress and mitochondrial function. Muscle cellular outcomes are measured on muscle cross sections and muscle homogenate from muscle biopsies obtained from muscle vastus lateralis. Discussion The findings from the PEPC trial will provide new knowledge on the effects of high-load strength training on clinical and muscle cellular outcomes in prostate cancer patients during androgen deprivation therapy. Trial registration ClinicalTrials.gov: NCT0065822

    Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus

    Get PDF
    Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% for TBLH-BMD, and 39% for TB-LM, with a shared genetic component of 43%. We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: _WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5_. Variants in the _TOM1L2/SREBF1_ locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that _SREBF1_ is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass

    Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus

    Get PDF
    Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% for TBLH-BMD, and 39% for TB-LM, with a shared genetic component of 43%. We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: _WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5_. Variants in the _TOM1L2/SREBF1_ locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that _SREBF1_ is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass

    Neuromuscular Consequences of an Extreme Mountain Ultra-Marathon

    Get PDF
    We investigated the physiological consequences of one of the most extreme exercises realized by humans in race conditions: a 166-km mountain ultra-marathon (MUM) with 9500 m of positive and negative elevation change. For this purpose, (i) the fatigue induced by the MUM and (ii) the recovery processes over two weeks were assessed. Evaluation of neuromuscular function (NMF) and blood markers of muscle damage and inflammation were performed before and immediately following (n = 22), and 2, 5, 9 and 16 days after the MUM (n = 11) in experienced ultra-marathon runners. Large maximal voluntary contraction decreases occurred after MUM (−35% [95% CI: −28 to −42%] and −39% [95% CI: −32 to −46%] for KE and PF, respectively), with alteration of maximal voluntary activation, mainly for KE (−19% [95% CI: −7 to −32%]). Significant modifications in markers of muscle damage and inflammation were observed after the MUM as suggested by the large changes in creatine kinase (from 144±94 to 13,633±12,626 UI L−1), myoglobin (from 32±22 to 1,432±1,209 µg L−1), and C-Reactive Protein (from <2.0 to 37.7±26.5 mg L−1). Moderate to large reductions in maximal compound muscle action potential amplitude, high-frequency doublet force, and low frequency fatigue (index of excitation-contraction coupling alteration) were also observed for both muscle groups. Sixteen days after MUM, NMF had returned to initial values, with most of the recovery process occurring within 9 days of the race. These findings suggest that the large alterations in NMF after an ultra-marathon race are multi-factorial, including failure of excitation-contraction coupling, which has never been described after prolonged running. It is also concluded that as early as two weeks after such an extreme running exercise, maximal force capacities have returned to baseline

    Human skeletal muscle plasmalemma alters its structure to change its Ca2+-handling following heavy-load resistance exercise

    Get PDF
    High-force eccentric exercise results in sustained increases in cytoplasmic Ca2+ levels ([Ca2+]cyto), which can cause damage to the muscle. Here we report that a heavy-load strength training bout greatly alters the structure of the membrane network inside the fibres, the tubular (t-) system, causing the loss of its predominantly transverse organization and an increase in vacuolation of its longitudinal tubules across adjacent sarcomeres. The transverse tubules and vacuoles displayed distinct Ca2+-handling properties. Both t-system components could take up Ca2+ from the cytoplasm but only transverse tubules supported store-operated Ca2+ entry. The retention of significant amounts of Ca2+ within vacuoles provides an effective mechanism to reduce the total content of Ca2+ within the fibre cytoplasm. We propose this ability can reduce or limit resistance exercise-induced, Ca2+-dependent damage to the fibre by the reduction of [Ca2+]cyto to help maintain fibre viability during the period associated with delayed onset muscle soreness
    corecore