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Bivariate genome-wide association meta-analysis
of pediatric musculoskeletal traits reveals
pleiotropic effects at the SREBF1/TOM1L2 locus
Carolina Medina-Gomez 1,2,3, John P. Kemp 4,5, Niki L. Dimou6,7, Eskil Kreiner8, Alessandra Chesi9,

Babette S. Zemel10,11, Klaus Bønnelykke8, Cindy G. Boer 1, Tarunveer S. Ahluwalia 8,12, Hans Bisgaard8,

Evangelos Evangelou7,13, Denise H.M. Heppe2,3, Lynda F. Bonewald14, Jeffrey P. Gorski15, Mohsen Ghanbari3,16,

Serkalem Demissie17, Gustavo Duque18, Matthew T. Maurano19, Douglas P. Kiel20,21,22, Yi-Hsiang Hsu20,22,23,

Bram C.J. van der Eerden1, Cheryl Ackert-Bicknell24, Sjur Reppe25,26, Kaare M. Gautvik26,27, Truls Raastad28,

David Karasik20,29, Jeroen van de Peppel1, Vincent W.V. Jaddoe2, André G. Uitterlinden1,2,3,

Jonathan H. Tobias30, Struan F.A. Grant9,11,31, Pantelis G. Bagos6, David M. Evans4,5 &

Fernando Rivadeneira 1,2,3

Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants

contributing to lean mass variation remain largely unknown. We estimated the shared SNP

heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM)

and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The

estimated SNP heritability is 43% (95% CI: 34–52%) for TBLH-BMD, and 39% (95% CI:

30–48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29–56%). We

identify variants with pleiotropic effects in eight loci, including seven established bone

mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5.

Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and

have a stronger association with the former trait. We show that SREBF1 is expressed in

murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate

GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral

density and lean mass.
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The interaction between skeletal muscle and bone has long
been perceived as being mechanical, where bone provides
an attachment site for muscles and muscles apply forces to

bone. Such muscle-derived forces drive an adaptive response in
bone affecting its morphology, structure, and strength as por-
trayed by the mechanostat theory1. Whenever mechanical stimuli
exceed a set point, bone tissue is added at the location, where it is
mechanically necessary. As muscle mass is a key determinant of
bone mineral density (BMD) variation, it is expected that these
traits are phenotypically highly correlated2–4. Recent studies show
that the coupling between these two tissues is much more
complex5, 6. It extends beyond the well-established mechanical
interaction, already beginning during embryonic development,
when osteoblasts and muscle cells share a common mesenchymal
precursor6. Indeed, there is constant paracrine crosstalk between
bone and muscle throughout life, with both sharing common
responses to paracrine and endocrine stimulation7. Under this
perspective of coupled development and physiological relation-
ships during growth, it is highly likely that both tissues share
genetic determinants exerting pleiotropic effects8.

BMD, measured by dual-energy X-ray absorptiometry (DXA),
is commonly used in clinical practice to assess bone health in
young populations and to diagnose osteoporosis and determine
fracture risk in the older populations. Conveniently, lean mass,
which is a good proxy for skeletal muscle mass9, 10, can also be
derived from the same whole-body DXA scans. A previous study
in postmenopausal women9 showed DXA lean mass has a high
correlation (ρ=0.94) with skeletal muscle mass of the whole body
measured by magnetic resonance imaging (MRI). Furthermore,
another study in peri-pubertal children10 showed a 0.98 corre-
lation between DXA derived lean mass in the mid third femur
and skeletal muscle mass of the same region measured with MRI.

Heritability studies have demonstrated that between 50 and
85% of BMD variation can be explained by genetic factors11,
whereas heritability estimates for muscle phenotypes, such as lean
mass, grip strength, arm flexion, and leg strength, range between
30 and 65%12, 13. Genome-wide association studies (GWAS) have
been successful in revealing the genetic architecture of BMD,
identifying >60 different loci robustly associated with the trait at
different skeletal sites14–26. In contrast, very few robust associa-
tions have been reported to date by GWAS of lean mass27.
Notwithstanding, twin studies have calculated the additive genetic
correlation of BMD and lean mass to range from 30 to 45%28.

GWAS usually evaluate one trait at a time, however, recent
methods enable multivariate analyses to be performed. Multi-
variate methodologies offer several advantages over univariate
GWAS including, increased power (when traits are genetically
correlated), reduction of the multiple testing burden and
enhanced biological insight (in the case of pleiotropy)29. There-
fore, this approach is well-suited to study the genetic influence

over the bone-muscle unit. We applied a bivariate GWAS
approach for total-body lean mass (TB-LM) and BMD less head
region (TBLH-BMD) in four pediatric cohorts leading to the
identification of variants in eight different loci with statistical
evidence for pleiotropic effects on both traits. Seven of these are
established BMD loci, while the 17p11.2 locus is reported for the
first time as associated with musculoskeletal traits. Our functional
follow-up points to SREBF1 as the most likely gene underlying
the association signal. SREBP1, the product of SREBF1 is impli-
cated in osteoblast and myoblast differentiation by previous
studies. Our findings shed a light into the role of SREBF1 in the
crosstalk between bone and muscle during development.

Results
SNP heritability and genetic correlation. Our study includes
data from 10,414 participants from four different pediatric
cohorts (Table 1, Supplementary Note). In all four studies TBLH-
BMD and TB-LM phenotypic correlation (ρ) adjusted for sex,
age, and fat percent was significant (P< 0.01) and of similar
magnitude, Generation R (ρ=0.44), ALSPAC (ρ=0.45), BMD-CS
(ρ=0.49), and COPSAC (ρ=0.42). GCTA calculated SNP herit-
ability and genetic correlation for adjusted TBLH-BMD and TB-
LM were estimated for the Generation R (N= 3027) and ALSPAC
(N= 4820) studies, where there was sufficient statistical power for
the analysis (Table 2). Significant SNP heritability estimates
ranged between 30 and 45% for both traits in these two cohorts,
with a genetic correlation of ~ 30% in both studies. Similar results
were derived using LD-score methodology, which estimated the
heritability of TBLH-BMD to be 43% (CI: 34–52%), 39% (CI:
30–48%) for TB-LM and a shared genetic component of 43% (CI:
29–56%).

Univariate and bivariate GWAS of lean mass and BMD. Uni-
variate GWAS meta-analysis identified variants associated at the
genome-wide significant (GWS, 5×10−8) level with TBLH-BMD
mapping to four different loci all of which have been previously
associated with BMD in adult and/or children15, 17, 19–22, shown
in Fig. 1: the 7q31.31 WNT16/CPED1 locus, leading SNP
rs917727-T (beta= 0.129 SD, P= 1.28×10−16); the 11q13.2 LRP5/
PPP6R3 locus, leading SNP rs12272917-C (beta= − 0.097 SD, P=
1.42×10−9); the 1p36.12 WNT4 locus, leading SNP rs3765350-G
(beta= − 0.094 SD, P= 9.75×10−9); and the 2q24.3 GALNT3 locus,
leading SNP rs6726821-G (beta= − 0.077 SD, P= 2.95×10−8). A
summary of all genome-wide associated SNPs can be found in
Supplementary Data 1. The univariate GWAS meta-analysis of
TB-LM yielded no GWS associations along the lines of the sparse
number of identified loci in adults27. QQ-Plots for these two
analyses showed no evidence for early inflation as consequence of

Table 1 Anthropometric characteristics of study participants

Generation R ALSPAC BMD-CS COPSAC

Mean (SD) n= 4071 n= 5251 n= 821 n= 273

Age, years 6.21 0.32 9.94 0.32 8.74 1.91 6.89 0.72
Women (%) 2035 49.98% 2673 50.90% 431 61.80% 144 53.14%
CEU ancestry (%) 2171 53.32% 5251 100% 634 77.22% 271 100%
Height (m) 1.19 0.63 1.4 0.64 1.32 0.12 1.24 0.61
Weight (kg) 23.08 4.08 34.7 7.41 30.78 8.76 24.6 4.25
TBLH BMD (g cm−2) 0.555 0.05 0.777 0.053 0.67 0.10 0.583 0.05
TBLH BMC (g) 528.5 104.21 891.92 181.85 726.12 205.92 2932 591.04
TB Lean Mass (g) 16,393 2284 24,553 3184 22,360 5830 17,460 2600
TB Fat Mass (g) 5862 2328 8561 5108 7590 3580 7010 2490
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bias (i.e., population stratification, cryptic family relatedness or
genotyping errors) (Supplementary Fig. 1).

On the basis of the covariate adjusted TBLH-BMD/TB-LM
bivariate analysis, the genomic inflation factor λ was 1.08. In
contrast to the two univariate analyses, the bivariate meta-
analysis identified eight different GWS signals (Fig. 1). Four of
them were not found to be GWS in the TBLH-BMD analysis
mapping to the 4q22.1 MEPE locus; the 13q14.11 TNFSF11 locus;
the 14q2.12 RIN3 locus, all known BMD loci, and the 17p11.2
TOM1L2/SREBF1 locus (Table 3, Supplementary Fig. 2). Signals
in the 2q24.3, 11q13.2, and 17p11.2 loci presented nominal
evidence of association (P< 0.05) with both traits (Table 3,
Supplementary Data 2). Detailed description of all these known
BMD loci can be found in the Supplementary Note.

The signal on 17p11.2 (lead SNP rs7501812, P= 1.4×10−10)
was the only GWS signal where association was stronger with TB-
LM than with TBLH-BMD, mapping to a region not previously
associated with neither trait. The region underlying this signal
(Fig. 2) extends along an LD-block harbouring several genes
including MYO15A, LRRC48, MIR33B, C17orf39 [GID4], DRG2,
RAI1, SREBF1, TOM1L2, ATPAF2, the latter seven all shown to
be expressed in skeletal muscle30. Detailed information for the
genes residing at 17p11.2 is provided in Supplementary Table 1.
All GWS SNPs in this region yielded nominally significant
opposite effect for the coded allele in TBLH-BMD as compared to
TB-LM, despite the positive correlation between these traits.

Although using different phenotypes than the ones used in our
analysis, Genetic bivariate strategies in adult populations have
approached the bone/lean mass relationship. A GWAS bivariate
analysis of bone size and appendicular lean mass in Chinese and
European individuals31 reported a potential association signal
mapping to the GLYAT gene (11q12.1) arising from a low
frequency (MAF< 0.05) variant not present in our meta-analysis.
In addition, a linkage study reported a significant signal (LOD
score= 4.86) mapping to the 15q13 locus and multiple suggestive
signals (LOD score< 3) in 7p22, 7q21, 7q32, and 13q1132. In our
bivariate GWAS meta-analysis none of these regions (including
GLYAT) contained significantly associated SNPs (P< 9.0×10−6

after multiple correction, 5537 SNPs tested). Additionally, we
applied a bivariate analysis to the summary statistics of previously
reported univariate GWAS meta-analyses of BMD and lean mass
traits in adults20, 27 (Supplementary Data 3). We only found
evidence of genetic variants exerting pleiotropic effects on both
traits in the 11q13.2 locus. However, consistent with our findings
in children, variants in the 17p11.2 locus (led by rs7501812)
showed opposite association with lumbar spine BMD and TB-LM
at the margin of reaching statistical significance (P< 0.07).

Gene annotation and eQTL analyses of the 17p11.2 locus. We
identified 163 proxy SNPs (r2> 0.8) of our GWS SNPs in the
17p11.2 region, of which 78 were present in our meta-analysis
(Supplementary Table 5). Only rs11868035 (in high LD with a
GWS SNP (rs11654081, r2> 0.8)), was previously reported in the
GWAS catalog. The G-allele of this SNP has a protective effect on

Parkinson’s disease as reported in a recent meta-analysis com-
prising ~ 30,000 individuals (P= 5.6×10−8)33. The rs11868035 G-
allele was nominally associated with lean mass (beta=0.05SD; P=
3×10−4) and approached GWS in our bivariate meta-analysis
(Pbivariate=8×10−7). In the proximity of these variants and in high
LD (r2> 0.8) with rs11654081, we identified two RAI1 common
missense variants with no clinical annotation (Supplementary
Data 4). The rs11649804/Pro165Thr variant (Pbivariate=9×10−7)
was predicted to be ‘tolerated’ by SIFT and ‘probably damaging’
by PolyPhen-2, while the rs3803763/Gly90Ala variant was not
present in our meta-analysis.

We identified two miRNAs, miR-6777 and miR-33b, in the
associated region. Of these, miR-33b is located in an intronic
region of the SREBF1 gene and is co-transcribed with its host
gene. Furthermore, analysis of the miR-33b putative targets
disclosed this miRNA as a potential regulator of both myogenesis
and osteogenesis by targeting multiple genes involved in the
related pathways, such as TPM3 and BMP334, 35. Moreover, we
found that 5 GWS markers in the 3′UTR of TOM1L2 are located
in putative miRNA-binding sites (i.e., rs3183702, rs9915248,
rs3744115, rs1052299 and rs1108648). Of these, rs1052299 was
predicted to create novel-binding sites for two highly conserved
miRNAs affecting bone and muscle36–38 -miR-133a-5p and miR-
138-5p—and is more likely to affect miRNA-mediated regulation
of TOM1L2.

As most of the association signal in 17p11.2 arises from non-
coding variants, we reviewed the possible regulatory annotation
of these SNPs by using data from the ENCODE and ROADMAP
EPIGENOMICS projects through the UCSC browser (Fig. 3).
Shadowed areas correspond to CTCF (CCCTC-binding factor)-
associated areas of chromatin interaction by looping. As these
experiments are not available in musculoskeletal cells, we
examined interactions in MCF-7 and K562 cells, for which the
CTCF binding sites coincide with those predicted to exist in the
musculoskeletal cells. Three selected interacting regions are
shown: the first one brings together an intronic region of
TOM1L2 and the 3′region of SREBF1; the second one, contains
two regions within TOM1L2; and the third one, intronic regions
from TOM1L2 and ATPAF2. The topological associated domains
(TADs) in the region are in line with these results, evidencing
areas of complex chromatin structures (Supplementary Fig. 3).

The SNP with the strongest bivariate association with TBLH-
BMD and TB-LM in this locus, rs7501812, is also a cis-eQTL
variant found to regulate the expression of SREBF1, C17orf39
[GID4], TOM1L2 and ATAPF2 (FDR< 0.05) in whole blood,
based on expression data from 5311 non-transformed peripheral
blood samples and publicly available in the Blood eQTL
browser39. Nonetheless, SREBF1 expression, represented by two
probes in the data set, showed the highest correlation with
rs7501812. The G-allele, associated with higher TBLH-BMD
(beta= 0.043 SD; P= 2.0×10−3) and lower TB-LM (beta= − 0.056
SD; P= 5.5×10−5) in our study, decreased the expression of the
two SREBF1 probes in whole blood. By interrogating the browser
per gene, rather than per SNP, we generally found that alleles
from the bivariate GWS SNPs associated with higher TBLH-BMD

Table 2 Trait SNP heritability and genetic correlation TBLH-BMD/TB-LM in pediatric populations

Study N TBLH-BMD Heritability TB-LM Heritability Genetic correlation TBLH-BMD/
TB-LM

h2 SE P h2 SE P ρ SE P

Generation R 3028 0.311 0.12 0.004 0.400 0.12 3×10−4 0.299 0.21 0.126
ALSPAC 4820 0.437 0.07 6×10−10 0.325 0.07 3×10−6 0.323 0.12 0.016

Only unrelated individuals (e.g., no two individuals in the analysis were closer than third degree cousins in either of the two studies) were included in the analysis
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and lower TB-LM in the region, are associated with decreased
expression of SREBF1, TOM1L2, and C17orf39 [GID4] but
increased expression of ATPAF2 in whole blood (Supplementary
Data 4). We applied the Summary Mendelian Randomization
(SMR) approach40 to prioritize genes underlying the GWS signal
in the 17p12 region. Results from this approach combining
Mendelian randomization and heterogeneity in dependent
instruments (HEIDI) tests using the Blood eQTL browser data
set39, indicated that SREBF1 is the most likely gene driving the
associations with TB-LM (PSMR=1.2×10−4; PHEIDI=0.23) and
TBLH-BMD (PSMR=2.9×10−3; PHEIDI=0.79) (Supplementary
Fig. 4). Expression data from GTEx also showed a highly negative
significant association of rs7501812-G allele with the expression
of SREBF1 in whole blood (P= 2.4×10−14). In contrast, GTEx
data in skeletal muscle showed a positive correlation for

rs7501812-G with SREBF1 expression (P= 6.2×10−4). Further-
more, rs4925114 (P= 3.5×10−6) and rs11654081 (P= 6.0×10−6)
major alleles (LD ~ 0.75 with rs7501812-G), significantly upre-
gulated the expression of SREBF1 in skeletal muscle (FDR<0.05)
(Supplementary Fig. 5).

Functional characterization of SREBF1. Leveraging mouse
calvaria-derived cells, we assessed gene expression during osteo-
blastogenesis, which revealed that Rai1, Tom1l2, Atpf2, and Srebf1
were expressed in this cell type without major changes from pre-
osteoblast to its mature stage (Supplementary Fig. 6). In contrast,
Lrrc48 was not expressed at all in the pre- or mature osteoblast, as
determined by RNAseq profiles. We also assessed expression
profiles during human mesenchymal stem cell (hMSC)
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differentiation using qPCR data. The expression of SREBF1
relative to GAPDH in two donors, showed that SREBF1 expres-
sion peaks at the onset of osteoblast mineralization. In contrast,
the expression of TOM1L2 was not detected above background
level (Fig. 4). SREBF1 is an adipocyte differentiation factor
(ADD-1) that produces SREBP-1, a transcription factor ubiqui-
tously expressed (more strongly in lipogenic tissues) and directly
regulating the transcription of over 200 genes involved in the de
novo synthesis of fatty acids, triglycerides, and cholesterol41.
SREBP-1, in its active form, is important for the mineralization of
osteoblastic cultures in vitro, as its overexpression increases the
number of mineralized foci42. Contrary to its positive regulatory
role in osteoblast differentiation and mineralization, in skeletal
muscle SREBP-1 protein indirectly downregulates MYOD1,
MYOG, and MEF2C, acting as a key regulator of myogenesis.
Similarly, overexpression of SREBP-1 inhibits myoblast-to-
myotube differentiation 43, reduces cell size and leads to loss of
muscle-specific proteins in differentiated myotubes41.

We evaluated expression profiles of the genes showing putative
interactions from the ENCODE/Roadmap Epigenomics analysis,
for association with bone and muscle phenotypes. SREBF1muscle
expression, assessed from postmenopausal women thigh muscle
biopsies (N= 18) showed significant negative correlation with
femoral neck BMD of the donor (P< 0.001) and was borderline
significantly associated with TBLH-BMD (P= 0.05) (Supplemen-
tary Table 2). Expression of RAI1 was inversely correlated with
thickness of the vastus lateralis muscle of the donor (P= 0.01),
while TOM1L2 expression levels were positively correlated with
this trait (P= 0.02). ATPAF2 and C17orf39 [GID4] did not
correlate with any of the scrutinized measurements of the donors.
Evaluation of expression profiles from trans-Iliac bone biopsies in
a separate group of postmenopausal women (N= 80), revealed no
correlation (P< 0.05) with donor phenotypes for either of the
genes despite being expressed in bone. To note, SREBP-1 has also
been shown to interact with lamin A, implicated in muscular
dystrophy44, and this mechanism cannot be ruled out as key in
the association of this gene with muscle outcomes. In addition,
miR-33b may function in concert with the SREBP-1 host gene
product to regulate myogenesis or/and osteogenic differentiation,
as it does in controlling lipid homeostasis45.

Discussion
This work illustrates the enhanced power of bivariate analysis to
identify associations not detected by the univariate analysis of
correlated traits, and to hint at pleiotropic effects. This bivariate
GWAS meta-analysis of bone mineral density and lean mass in
children identified eight loci associated with both traits. Seven of
the identified loci have been reported as associated with BMD in
previous GWAS of adult and paediatric populations. The 17p11.2
is a novel locus, not previously associated with lean mass or BMD,

marked by a long stretch of LD harbouring multiple genes in the
region including RAI1, LRRC48, MIR33B, C17orf39, DRG2,
MYO15A, SREBF1, TOM1L2, and ATPAF2. Different lines of
evidence, arising from in-silico and in-vivo functional follow-up
suggest that TOM1L2 or SREBF1 are the main candidate genes
underlying the bivariate association signal; confirming the exis-
tence of pleiotropic effects on BMD and lean mass arising from
the 17p11.2 region.

SNP heritability estimated both by GCTA and LD score
regression confirm that TBLH-BMD and TB-LM are moderately
high heritable traits. In addition, we found that more than one-
third of the tagged additive genetic effect is shared between
TBLH-BMD and TB-LM. These estimates are lower than those
derived from previous twin studies one of them estimating the
heritability for TBLH-BMD to be between 80 and 90%, between
70 and 88% for TB-LM and with a genetic correlation (shared
heritability) of 46%28. Similar to other complex traits, SNP her-
itability estimates for TBLH-BMD and TB-LM were lower than
heritability estimates derived from family studies46, 47. This could
be due to inflation of the family based heritability estimates46, 47

but also a consequence of the amount, and type, of markers being
surveyed, limited to the genotyped SNPs and the underlying
variants that they tag. Thus, if the selected markers are not suf-
ficiently correlated (LD tagging) with the true genetic variants
explaining the trait-variance, SNP heritability would certainly be
less than true heritability.

The univariate approach for TBLH-BMD identified four GWS
signals, all of them reported before in BMD GWAS at different
skeletal sites19–21. However, we did not find any GWS result for
TB-LM in our meta-analysis in pediatric populations. This is in
line with the scarce number of loci identified with lean mass
variation in adults. To date, only five loci have been identified as
associated with TB-LM in an study comprising > 80,000 adults27.
It is worth noting that lean mass in children has a higher pro-
portion of organ tissue vs. skeletal mass as compared to adults.
This could hamper the identification of loci influencing muscle
mass and claims for new larger efforts in children. Yet, imple-
menting a bivariate meta-analytical approach we identified
eight associated loci, three of which were nominally associated
(P< 0.05) with both TBLH-BMD and TB-LM. Therefore, the
bivariate analysis is an alternative approach to diminish such
power limitations. Our bivariate approach showed particularly
high statistical power to identify variants, in which the coded
allele exerted an opposite effect on TBLH-BMD as compared to
TB-LM. Our meta-analysis did not replicate potential pleiotropic
signals previously reported in adults31, 32. Nevertheless, the
bivariate analysis of summary statistics of published BMD and
lean mass efforts in adults we did, identified variants with strong
evidence for pleiotropic effects in the 11q13.2 locus. The lack of
replication in the other regions may well be a consequence of
differential genetic effects during the life course, e.g., the

Table 3 Lead SNPs for the eight bivariate association signal with TBLH-BMD and TB-LM

Locus SNP CHR Position A1 A2 EAF Beta TBLH-
BMD

P TBLH-
BMD

Beta TBLM P TBLM P bivariate

1p36.12 rs6684375 1 22579021 T C 0.19 0.0842 2.47E-06 −0.0273 0.14 4.69E-09
2q24.3 rs6726821 2 166286360 G T 0.45 −0.0769 2.95E-08 −0.0104 0.48 3.56E-08
4q22.1 rs7672749 4 89017308 A G 0.09 0.0822 4.35E-04 −0.0591 0.01 3.29E-08
7q31.31 rs917727 7 120805815 T C 0.29 0.1289 5.29E-17 −0.0042 0.77 3.07E-20
11q13.2 rs12284933 11 68076065 A G 0.24 −0.0969 1.85E-09 −0.0699 1.49E-05 2.19E-09
13q14.11 rs9525638 13 42026577 C T 0.42 0.0756 6.42E-08 −0.0006 0.97 1.35E-08
14q2.12 rs754388 14 92185163 G C 0.18 −0.0862 3.26E-06 0.0210 0.24 3.36E-08
17p11.2 rs7501812 17 17691632 G A 0.41 0.0431 0.002 −0.0563 5.53E-05 1.44E-10

Estimates were derived from 10,414 children participants of four different pediatric studies worldwide. Beta coefficients and allele frequencies (EAF) are reported for the A1 allele
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accumulation of environmental factors attenuating effects in the
elderly. Overall, the role of protein products of genes such as
LRP5, TNSF11, WNT16, MEPE, and WNT4 -mapping to the
identified loci- in bone metabolism is long-established. However,
none of the genes in the identified loci has been yet implicated in
muscle metabolism and opens up new opportunities to study
pleiotropic effects and the interplay between bone and muscle.

We further focused on the 17p11.2 locus, which is novel in the
spectrum of musculoskeletal traits GWAS, and which is the only
associated region where the signal was stronger for TB-LM than
for TBLH-BMD. Despite the positive correlation between TB-LM
and TBLH-BMD, variants in this region exerted opposite effects
on these traits, probably facilitating their discovery in a bivariate
analysis powerful setting. Moreover, this region was recently
described as a QTL for BMD phenotypes in rats48. The authors
attributed the association signal to Rai1, as knockout mice for this
gene present with retarded growth and display malformations in
both the craniofacial and the axial skeleton49. RAI1 is responsible
for the Smith-Magenis syndrome in humans, that as in mice
presents with craniofacial and skeletal abnormalities50. None-
theless, the two common missense variants in LD with the
bivariate GWS SNPs in our meta-analysis, have not been related
to the disease.

We retrieved additional lines of evidence to disentangle the
implication of gene(s) underlying the association signal although
results were not conclusive. The regulatory landscape across the
long stretch of LD in this region contains complex chromatin
interactions that are consistent with the potential involvement of
more than one gene (i.e., SREBF1, TOM1L2, and ATPAF2). TADs
were retrieved for two oncogenic cell lines rather than for
osteoblasts and skeletal muscle cells. However, TADs have been
shown to be largely invariant across cell types, and physiological
conditions51. Therefore, we believe similar interactions might also
be taking place in these cells, suggesting that associated SNPs may
be influencing distant genes within the TAD. For example, in
agreement with the predicted complex chromatin looping in this
locus, the lead SNP of the bivariate association signal (rs7501812),
has strong correlation with the expression of various genes in the

region as seen in whole blood. However, its correlation with
SREBF1 is the strongest one. Also, SMR implicates SREBF1 as the
most likely candidate gene underlying the 17p11.2 signal. Yet,
TOM1L2 or RAI1 probes were not included in the analysis as they
lacked a GWS cis-eQTL. Such stringency in the SMR inclusion
criteria results from the basic assumption of the instrument used
in the Mendelian randomisation approach, i.e., the SNP should be
strongly associated with exposure. Further, the e-QTL effects
identified in whole blood may not constitute good proxies for
eQTLs exerting tissue specific effects. However, there is no eQTL
data available from other tissues (particularly bone and muscle)
with comparable statistical power to the one provided by the
large-scale eQTL study in whole blood used here.

In addition, rs4925114 and rs11654081, both in high LD with
rs7501812, show the strongest correlation with the expression of
SREBF1 in skeletal muscle. Interestingly, the same allele in either
of these three SNPs correlates with lower SREBF1 expression in
whole blood and higher SREBF1 expression in skeletal muscle.
Unfortunately, the GTEx eQTL database has no data available for
bone related cells. Our ex-vivo models in murine osteoblasts
established that Rai1, Atpaf2, Srebf1, and Tom1l2 were expressed
in bone. With the exception of Srebf1, knockout mice for these
genes all present with a skeletal phenotype. While Srebf1 KO
models have been reported in the literature, we have no certainty
that bone phenotyping was performed on these mice.

We also confirmed the expression of SREBF1 in human MSC-
derived osteoblasts. Further, analysis of expression profiles in
muscle biopsies from post-menopausal women showed a corre-
lation between the expression of RAI1 and TOM1L2 and muscle
thickness, and noteworthy, a negative correlation between
SREBF1 expression and bone density parameters. Altogether,
SREBF1 and TOM1L2 are the strongest candidates underlying the
genetic association signal. The role of active SREBP-1, SREBF1
product, exerting opposing effects on osteoblast and myoblast
differentiation has been well documented41–43. However, despite
the fact that the potential role of TOM1L2 in the musculoskeletal
system remains to be elucidated, miRNAs predicted to regulate its
expression have been shown to be involved in osteogenic
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differentiation and skeletal muscle development36, 38. In addition,
the knockout mice of this gene observed with kyphosis52.

Overall, there is compelling evidence that SREBF1 exerts
opposite effects on the differentiation of myocytes and osteo-
blasts. These opposite effects are paralleled in the SNPs associated
with TBLH-BMD/TB-LM in our bivariate approach, and there-
fore, it is likely that SREBF1 is underlying the association signal.
The G-allele from rs7501812, shown to downregulate the
expression of SREBF1 in whole blood and upregulate it in skeletal
muscle, is actually associated with higher TBLH-BMD and lower
TB-LM (Fig. 5). Whereas, the expression of SREBF1 in muscle
biopsies correlated with lower BMD parameters in a direction

opposite to what is predicted by the SREBP-1 function in bone
and muscle metabolism, the number of expression profiles
included in analysis is small; also, this unexpected correlation
could arise from tissue-specific effects. The eQTL analysis in
GTEx showed that SREBF1 is ubiquitously expressed and suggests
that SNPs in 17p11.2 exert apparent opposite effect in blood and
muscle. In addition, there are cellular processes that cannot be
captured by our analyses and can be the origin of some incon-
sistencies seen at the association level. For instance, SREBP-1
must be proteolytically released from a transmembrane site in the
Golgi complex to become active; then this activated fragment
needs to be transported to the nucleus in order to exert its
effect53.

In summary, in this first large-scale bivariate GWAS meta-
analysis of TBLH-BMD and TB-LM in pediatric cohorts, we
identified eight GWS loci (in/near WNT4, GALNT3, MEPE,
CPED1/WNT16, TNFSF11, RIN3, TOM1L2/SREBF1, and
PPP6R3/LRP5). Although for most of these loci the association
with TBLH-BMD is the dominant association responsible for
their significance, we report in the 17p11.2 locus, a stronger
association with TB-LM compared to TBLH-BMD. SREBF1 arises
as a compelling candidate to underlie this association, as this
transcription factor is known to play an opposite role in osteo-
blast and myoblast differentiation; in line with the finding derived
through our bivariate approach. Nevertheless, the level of evi-
dence gathered does not allow us to discard fully that other genes
in the region, particularly TOM1L2, may be implicated in these
processes, and additional functional assessments are required.
Alternatively, this study demonstrates that a considerable increase
in power can be achieved when using a bivariate methodology as
compared to testing each component of a multivariate phenotype
individually, particularly in those cases where the effect of the
associated variant goes in opposite directions in the involved
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phenotypes. Moreover, we show that this methodology may help
discover previously unknown mechanisms of pleiotropic effects of
genetic variants.

Methods
Study populations. TBLH-BMD and TB-LM were measured in four pediatric
population-based studies: the Generation R Study, the Avon Longitudinal Study of
Parents and their Children (ALSPAC), the Bone Mineral Density in Childhood
Study (BMDCS), and the Copenhagen Prospective Studies on Asthma in Child-
hood (COPSAC) cohort (Supplementary Note). All participants underwent TB-
DXA scans; measurements were conducted by well-trained research assistants and
daily quality control assurance was performed. Before the scan procedure, parti-
cipants were asked to take off their shoes, heavy clothes, and metal accessories. As
recommended by the International Society for Clinical Densitometry, TBLH-BMD
was the measurement used in the analysis by all four studies. TB-LM and total
body fat mass (TB-FM) were derived from the same scans. In addition, all indi-
viduals included in this study had genome-wide array data imputed to the HapMap
Phase II reference panel (build 36 release 22) assessed as best guess genotypes, all
markers with MAF< 0.05 were excluded from the analysis. The study was
approved by the ALSPAC Law and Ethics committee (ALSPAC), The Ethics
Committee for Copenhagen and the Danish Data Protection Agency (COPSAC),
the Medical and Ethical Review Committee of the Erasmus University Medical
Center (Generation R), and the institutional review boards of Children’s Hospital
of Los Angeles (Los Angeles, CA), Cincinnati Children’s Hospital Medical Center
(Cincinnati, OH), Creighton University (Omaha, NE), Children’s Hospital of
Philadelphia (Philadelphia, PA), and Columbia University (New York, NY)
(BMDCS). Written informed consent was provided by all parents or custodians of
the participants. A detailed description of each of these study populations is pro-
vided in Supplementary Note.

Statistical methods. TBLH-BMD and TB-LM measurements were adjusted by
age, gender, height, fat percent (TB-FM/weight), and study specific covariates
(genetic principal components and measurement center, when applicable). Stan-
dardized residuals were then generated. Phenotypic correlation (ρ) between these
variables was evaluated by a Pearson correlation test in each study independently.

SNP heritability and genetic correlation. To characterize the extent to which
common genetic variants determine pediatric BMD and lean mass, and the shared
genetic etiology of these traits, we applied two recently proposed approaches for
estimating SNP heritability and genetic correlation based on genome-wide sharing
between distantly related individuals, one implemented in the GCTA software
package54, 55. Precision of GCTA estimates is largely influenced by sample size and
thus, analyses were performed considering genotyped markers only from the
ALSPAC and Generation R studies. In the latter, given its multi-ethnic nature,
relatedness coefficients were estimated with the Relatedness Estimation in Admixed
Populations (REAP)56 software. The obtained genetic relationship matrix (GRM)
was then used as input for the GCTA analysis (Supplementary Methods). Samples
were excluded from analysis to guarantee that no pair of individuals exceeded the
standard GCTA cut-off coefficient of 0.025 for genetic relatedness (i.e., closer than
third-degree cousins) in either of the two studies. In total 431 and 1043 individuals
were excluded from ALSPAC and Generation R, respectively. The second approach
implemented the LD-score regression methodology57 to the TBLH-BMD and TB-
LM meta-analyses results.

Univariate and bivariate GWAS. Analysis of the two quantitative traits was
performed in each study individually based on best guess data using the “qt-
command” available in PLINK58. This routine enables the user to obtain, in
addition to the effect estimates, the means and standard deviations of both TBLH-
BMD and TB-LM standardized residuals stratified by genotype. Meta-analysis of

2,276,811 SNPs, present in at least two of the studies, was performed using an
inverse variance weighing. In the meta-analysis approach, we used a newly pro-
posed method for bivariate meta-analysis, which is based on calculating the within-
study covariances of the outcome specific estimates59. The algorithm uses a general
approach and has been proposed for both, discrete and continuous outcomes, but
in the case of continuous outcomes, such as the one encountered here, a direct
extension of the method proposed by Wei and Higgins60 is applied. We used the
additive model of inheritance (per-allele mean difference of the quantitative phe-
notype) for both outcomes and the method of moments for estimation with the
mvmeta command in Stata61. Source code and details are given in the webpage of
the Department of Computer Science and Biomedical Informatics of the University
of Thessaly, Greece. The overall bivariate association test was obtained by a
standard Wald-type statistic (chi-square on 2 d.f.) that tests the null hypothesis that
a particular SNP is not associated with either one of the outcomes. Genome-wide
significance (GWS) was defined as a P <5×10−8. Manhattan plots were generated in
Easystrata62.

Adult bivariate analysis based on summary statistics of GWAS in muscu-
loskeletal traits. We assessed the evidence of association of the GWS markers
identified here (149 SNPs, Supplementary Data 3), in a bivariate analysis of pre-
vious powered GWAS meta-analyses of lean mass (total body (N ~ 38,000))27 and
BMD (lumbar spine and femoral neck (N ~ 32,000))20 performed in adult and
elderly population. We chose to use a recently introduced method that performs
bivariate GWAS allowing for mixed directions of effect known as empirical-
weighted linear-combined test statistics (eLC), implemented in a C++ eLX package
and publicly available. Briefly, eLC directly combines correlated Z test statistics
(calculated as β/SE derived from the univariate GWAS meta-analyses) with a
weighted sum of univariate test statistics to empirically maximize the overall
association signals and also to account for the phenotypical correlations the traits.
In this case, we ran two analyses one incorporating the data from femoral neck
BMD and total body lean mass meta-analyses, and another with data from lumbar
spine and total body lean mass meta-analyses. Markers with nominal effect in both
BMD and lean mass traits and with bivariate P<=3.35×10−4 (0.05/149) were
deemed to exert pleiotropic effects in adults.

Gene Annotation and eQTL Analyses. We identified all variants from the 1000
Genomes Project Phase 1 reference panel in strong linkage disequilibrium (LD)
(CEU r2> 0.8) with the lead SNPs in the novel identified susceptibility loci, by
bivariate analysis, using HaploReg363 for functional annotation. First, these proxy
SNPs were scrutinized in the GWAS catalogue64 to ascertain possible association
with other traits. Second, we identified non-synonymous variants that were
interrogated for likely downstream functional consequences using SIFT and
PolyPhen-2 databases. Third, we interrogated two public databases, i.e., miR-
NASNPv265 and PolymiRTSv366 for presence of any of the associated SNPs in
miRNA genes or miRNA-binding sites within 3′UTRs of target genes. Other
information about miRNAs, such as miRNA sequence, host gene, conservation and
putative targets, were obtained from miRbase (release 21)67 and TargetScan v7.168

websites. Fourth, variants were also evaluated for overlap with regions of predicted
regulatory function generated by the Encyclopedia of DNA Elements (ENCODE)
Project and the ROADMAP epigenomic project including: regions of enhancer
activity, DNase I hypersensitivity, local histone modifications or proteins bound to
these regulatory sites in cell lines of potential interest as HSMM (Skeletal Muscle
Myoblast), HSMMtube (Skeletal Muscle myotubes differentiated from the HSMM),
SKMC (skeletal muscle cells) and when present in the different assays, Osteobl
(Osteoblasts). In addition, evidence of chromatin interactions was further explored
by Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET)
data from the ENCODE project in both MCF-7 and K562 oncologic cell lines. The
UCSC Genome Browser was used for visualizing ENCODE data tracks indicative of
regulatory function. Finally, topologically associated domains (TADs) for K562
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Fig. 5 Schematic representation of the plausible role of rs7501812 in the pleiotropic modulation of BMD and lean mass. The G-allele from rs7501812
upregulates the expression of SREBF1 both in skeletal muscle and bone. This overexpression would be expected to result in higher levels of the active form
of SREBP-1. SREBP-1 exerts opposite effects on bone and muscle biogenesis. While it promotes osteoblast mineralization45, it inhibits myoblast
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cells containing the associated SNPs were retrieved from a recent Hi-C interactions
browser51.

The eQTL analysis was completed using recently published eQTL data sets from
a meta-analysis of the transcriptional profiles from the peripheral blood cells of
5311 Europeans39 and the GTEx database (GTEx v6p) based on 1641 samples
across 43 tissues from 175 individuals30.

Summary data-based mendelian randomization. We used the recently developed
SMR approach40 in order to identify the most likely gene in the lead SNP region,
which has a complicated LD pattern. In short, the SMR approach uses the genetic
variant as the instrumental variable to test for the causative effect of the gene
expression (the exposure) on the phenotype of interest. This analysis is divided in
two-steps. A transcriptome association analysis, where the effect of gene-expression
on the trait of interest is expressed as a function of the GWAS summary statistics
and the GWS eQTLs reported by Westra et al.39 in whole blood. Then, a test for
heterogeneity in dependent instruments (HEIDI) is applied; in principle, if the
same causal underlying variant affects gene expression and the trait then, all SNPs
in high LD with the causal variant will present the same SMR calculated effect.
Therefore, testing for heterogeneity in the cis-eQTL region will be equivalent to
testing if there is only one causal variant40. We used Bonferroni correction to
account for multiple testing on 394 probes with GWS evidence for cis-eQTL effects
in chromosome 17; this resulted in a significance P threshold=1.27×10−4 (0.05/
394). We used a conservative HEIDI threshold P=0.05, to exclude signals with high
heterogeneity as used previously for different traits40. Plotting was performed in R
including only the most significant probe per gene in the SMR analysis and using
the lean mass GWAS results.

Functional analyses of SREBF1. Aiming to corroborate the functional or reg-
ulatory mechanism underlying the association between SREBF1 and LM and BMD,
we used three different lines of evidence. The expression of SREBF1 was investi-
gated in murine and human cells differentiating to osteoblasts. In addition, the
expression of SREBF1 and its neighbouring genes TOM1L2 and ATPAF2 were
examined in muscle biopsies from postmenopausal women. Methods specific to
each analysis are described below.

Murine pre-osteoblasts. All procedures and use of mice for the neonatal osteo-
blast expression studies were approved by the Jackson Laboratory Animal Care and
Use Committee (ACUC), in accordance with NIH guidelines for the care and use
of laboratory animals. Pre-osteoblast-like cells were isolated from neonatal calvaria
from C57BL/6J mice expressing cyan florescent protein (CFP) and RNA was col-
lected at nine time points post differentiation, every other day for 18 days, starting
2 days after the cells were first exposed to an osteoblast differentiation cocktail.
mRNA profiles for triplicate samples for each time point were generated by Next
Generation High throughput RNA sequencing (RNAseq), using an Illumina HiSeq 2000.

Human mesenchymal stem cells. Human bone marrow derived mesenchymal
stem cells ((hMSC), Lonza Group Ltd., Basel, Switzerland) were seeded in 12-well
plates (5×103 cells per cm2) and differentiated into osteoblasts (using α-Mem
pH7.5, 10% heat inactivated foetal calf serum (FCS), 100 nM Dexamethasone and
10 mM β-glycerophosphate). As mentioned in the datasheet provided by the
company, cells were authenticated by FACS analyses for the presence of surface
markers CD105, CD166, CD29, and CD44 and the absence of CD14, CD34 and
CD45. In addition, osteogenic, adipogenic and chondrogenic differentiation was
shown by alizarin red S staining, oil-red-O staining and collagen II staining,
respectively. The human MSCs were tested negative for mycoplasma, both by the
company and in-house during the culture experiments described in this manu-
script. Total RNA was isolated using Trizol (Life Technologies, Carlsbad, CA, USA)
after 0, 1, 4, 7, 17, and 21 days of differentiation. cDNA synthesis and quantitative
polymerase chain reaction (qPCR) was carried out in duplicate in osteogenic dif-
ferentiating hMSC from two different donors by using the following primers:
SREBF1-for AGCCCCACTTCATCAAGGC, SREBF1-rev CAGA-
GACCAGGGGACTGAGA, TOM1L2-for GGCATTAACAATTGCCAGGCT and
TOM1L2-rev CACTTGTGACACCCTCCTCC

Gene expression in human thigh muscle and bone biopsies. Prior to these
studies, validation, and recommendation were obtained by the Norwegian Regional
Ethical Committee (REK no:2010/2539 and 2008/253 REK sør-øst D), and all
sampling and procedures were according to the Law of Biobanking in Norway. All
women who volunteered received a full clinical examination including the DEXA
and laboratory analyses, and those who participated after fulfilling the inclusion
criteria took pride in contributing to accomplish the aim of the study. Written
informed consent was provided by all volunteers.

In muscle, gene expression profiles were generated from human thigh muscle
biopsies donated by healthy (T-score >−1) postmenopausal women (n = 18), from
whom anthropometric measurements and DXA data were also available.
Expression profiling was performed using an Affymetrix HG U133 2.0 plus array.
The Affymetrix Cel files were imported into Partek Genomics Suite (Partek Inc., St
Louis, MO, USA), and normalized using the RMA (Robust Multichip Average)
algorithm. Gene expression patterns were further adjusted for batch effects and

differing synthesis times69. The correlation of gene expression profiles of
transcripts in SREBF1 and contiguous genes RAI1, TOM1L2 and ATPF2, and DXA
parameters as femoral neck BMD, TBLH-BMD, TB-LM, TB-FM, together with
muscular thickness of the vastus lateralis, was assessed using Spearman correlation.
All parameters were adjusted for age, height and fat percent, except for TB-FM
which was adjusted only for age and height.

For the bone study, trans Iliac bone biopsies (n= 84) were collected from
postmenopausal women without underlying diseases other than osteoporosis or
receiving medication (past or present) possibly affecting bone remodeling or
representing secondary causes of osteoporosis70. RNA was purified and analyzed
using Affymetrix HG U133 2.0 plus arrays as described elsewhere70. Correlation
analysis were carried as described for the human muscle biopsies above, for all
variables except muscle thickness which was not available.

URLs. Department of Computer Science and Biomedical Informatics, of the
University of Thessaly, Greece [mvmeta command in Stata], (http://www.compgen.
org/tools/multiple-outcomes)

HaploReg3, http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.
php

GWAS catalogue, http://www.ebi.ac.uk/gwas/
SIFT, http://sift.jcvi.org/
PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/
miRNASNP v2, http://www.bioguo.org/miRNASNP/
PolymiRTS v3, http://compbio.uthsc.edu/miRSNP/search.php
miRbase http://www.mirbase.org/
TargetScan v7.1, http://www.targetscan.org/vert_71/
UCSC Genome Browser, https://genome.ucsc.edu/
Interactive Hi-C Data Browser, http://promoter.bx.psu.edu/hi-c/view.php
GTEx, http://www.gtexportal.org/home/
Blood eQTL browser, http://genenetwork.nl/bloodeqtlbrowser
Empirical-weighted linear-combined test statistics (eLC), https://sites.google.

com/site/multivariateyihsianghsu/

Data availability. Summary statistics of all meta-analyses are available at the
GEnetic Factors for OSteoporosis Consortium (GEFOS) website (http://www.gefos.
org/?q=content/data-release-2017). Expression data from bone biopsies is available
at the European Bioinformatics Institute (EMBL-EBI) ArrayExpress repository, ID:
E-MEXP-1618. All other data supporting the findings of this study are available
from the corresponding author upon request.
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