44 research outputs found

    DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs

    Get PDF
    DrugBank (http://www.drugbank.ca) is a richly annotated database of drug and drug target information. It contains extensive data on the nomenclature, ontology, chemistry, structure, function, action, pharmacology, pharmacokinetics, metabolism and pharmaceutical properties of both small molecule and large molecule (biotech) drugs. It also contains comprehensive information on the target diseases, proteins, genes and organisms on which these drugs act. First released in 2006, DrugBank has become widely used by pharmacists, medicinal chemists, pharmaceutical researchers, clinicians, educators and the general public. Since its last update in 2008, DrugBank has been greatly expanded through the addition of new drugs, new targets and the inclusion of more than 40 new data fields per drug entry (a 40% increase in data ‘depth’). These data field additions include illustrated drug-action pathways, drug transporter data, drug metabolite data, pharmacogenomic data, adverse drug response data, ADMET data, pharmacokinetic data, computed property data and chemical classification data. DrugBank 3.0 also offers expanded database links, improved search tools for drug–drug and food–drug interaction, new resources for querying and viewing drug pathways and hundreds of new drug entries with detailed patent, pricing and manufacturer data. These additions have been complemented by enhancements to the quality and quantity of existing data, particularly with regard to drug target, drug description and drug action data. DrugBank 3.0 represents the result of 2 years of manual annotation work aimed at making the database much more useful for a wide range of ‘omics’ (i.e. pharmacogenomic, pharmacoproteomic, pharmacometabolomic and even pharmacoeconomic) applications

    Metabolite profiling of Dioscorea (yam) species reveals underutilised biodiversity and renewable sources for high-value compounds

    Get PDF
    Yams (Dioscorea spp.) are a multispecies crop with production in over 50 countries generating ~50 MT of edible tubers annually. The long-term storage potential of these tubers is vital for food security in developing countries. Furthermore, many species are important sources of pharmaceutical precursors. Despite these attributes as staple food crops and sources of high-value chemicals, Dioscorea spp. remain largely neglected in comparison to other staple tuber crops of tropical agricultural systems such as cassava (Manihot esculenta) and sweet potato (Ipomoea batatas). To date, studies have focussed on the tubers or rhizomes of Dioscorea, neglecting the foliage as waste. In the present study metabolite profiling procedures, using GC-MS approaches, have been established to assess biochemical diversity across species. The robustness of the procedures was shown using material from the phylogenetic clades. The resultant data allowed separation of the genotypes into clades, species and morphological traits with a putative geographical origin. Additionally, we show the potential of foliage material as a renewable source of high-value compounds

    The future of metabolomics in ELIXIR.

    Get PDF
    Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases

    Deciphering lipid structures based on platform-independent decision rule sets

    Get PDF
    We developed decision rule sets for Lipid Data Analyzer (LDA; http://genome.tugraz.at/lda2), enabling automated and reliable annotation of lipid species and their molecular structures in high-throughput data from chromatography-coupled tandem mass spectrometry. Platform independence was proven in various mass spectrometric experiments, comprising low- and high-resolution instruments and several collision energies. We propose that this independence and the capability to identify novel lipid molecular species render current state-of-the-art lipid libraries now obsolete

    NMR Metabolomics Protocols for Drug Discovery

    Get PDF
    Drug discovery is an extremely difficult and challenging endeavor with a very high failure rate. The task of identifying a drug that is safe, selective and effective is a daunting proposition because disease biology is complex and highly variable across patients. Metabolomics enables the discovery of disease biomarkers, which provides insights into the molecular and metabolic basis of disease and may be used to assess treatment prognosis and outcome. In this regard, metabolomics has evolved to become an important component of the drug discovery process to resolve efficacy and toxicity issues, and as a tool for precision medicine. A detailed description of an experimental protocol is presented that outlines the application of NMR metabolomics to the drug discovery pipeline. This includes: (1) target identification by understanding the metabolic dysregulation in diseases, (2) predicting the mechanism of action of newly discovered or existing drug therapies, (3) and using metabolomics to screen a chemical lead to assess biological activity. Unlike other OMICS approaches, the metabolome is “fragile”, and may be negatively impacted by improper sample collection, storage and extraction procedures. Similarly, biologically-irrelevant conclusions may result from incorrect data collection, pre-processing or processing procedures, or the erroneous use of univariate and multivariate statistical methods. These critical concerns are also addressed in the protocol

    DrugBank 4.0: shedding new light on drug metabolism

    No full text
    DrugBank (http://www.drugbank.ca) is a comprehensive online database containing extensive biochemical and pharmacological information about drugs, their mechanisms and their targets. Since it was first described in 2006, DrugBank has rapidly evolved, both in response to user requests and in response to changing trends in drug research and development. Previous versions of DrugBank have been widely used to facilitate drug and in silico drug target discovery. The latest update, DrugBank 4.0, has been further expanded to contain data on drug metabolism, absorption, distribution, metabolism, excretion and toxicity (ADMET) and other kinds of quantitative structure activity relationships (QSAR) information. These enhancements are intended to facilitate research in xenobiotic metabolism (both prediction and characterization), pharmacokinetics, pharmacodynamics and drug design/discovery. For this release, >1200 drug metabolites (including their structures, names, activity, abundance and other detailed data) have been added along with >1300 drug metabolism reactions (including metabolizing enzymes and reaction types) and dozens of drug metabolism pathways. Another 30 predicted or measured ADMET parameters have been added to each DrugCard, bringing the average number of quantitative ADMET values for Food and Drug Administration-approved drugs close to 40. Referential nuclear magnetic resonance and MS spectra have been added for almost 400 drugs as well as spectral and mass matching tools to facilitate compound identification. This expanded collection of drug information is complemented by a number of new or improved search tools, including one that provides a simple analyses of drug-target, -enzyme and -transporter associations to provide insight on drug-drug interactions. \ua9 2013 The Author(s). Published by Oxford University Press.Peer reviewed: YesNRC publication: Ye
    corecore