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Abstract

Drug discovery is an extremely difficult and challenging endeavor with a very high failure rate. 

The task of identifying a drug that is safe, selective and effective is a daunting proposition because 

disease biology is complex and highly variable across patients. Metabolomics enables the 

discovery of disease biomarkers, which provides insights into the molecular and metabolic basis of 

disease and may be used to assess treatment prognosis and outcome. In this regard, metabolomics 

has evolved to become an important component of the drug discovery process to resolve efficacy 

and toxicity issues, and as a tool for precision medicine. A detailed description of an experimental 

protocol is presented that outlines the application of NMR metabolomics to the drug discovery 

pipeline. This includes: (1) target identification by understanding the metabolic dysregulation in 

diseases, (2) predicting the mechanism of action of newly discovered or existing drug therapies, 

(3) and using metabolomics to screen a chemical lead to assess biological activity. Unlike other 

OMICS approaches, the metabolome is “fragile”, and may be negatively impacted by improper 

sample collection, storage and extraction procedures. Similarly, biologically-irrelevant conclusions 

may result from incorrect data collection, pre-processing or processing procedures, or the 

erroneous use of univariate and multivariate statistical methods. These critical concerns are also 

addressed in the protocol.
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17.For high throughput NMR data collection, please refer to the Bruker ICONNMR manual to explore various configuration options. 
For example, composite experiments allow for the collection of multiple 1D and 2D experiments for the same metabolomics sample. 
An experimental set consisting of a 1D 1H, a 2D 1H-13C HSQC, and 2D 1H-13C HMBC experiment may be subsequently collected 
for the same sample before moving to the next sample in the queue.
18.It is imperative that NMR data are collected at the same temperature for a queue of metabolomics samples. ICONNMR assists this 
by allowing for a temperature delay when a large number of samples are in the SampleJet queue. For example, a 15 to 60 second delay 
may be inserted prior to data acquisition to allow each sample to equilibrate to the probe temperature. We recommend a 60 second 
delay for both pre- and post-sample insertion to prevent any temperature variation.
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1. Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy is an instrument of choice for drug 

discovery and design (see Fig. 1) [1,2]. For decades, NMR has provided structural details for 

druggable protein targets, and is routinely used for investigating protein-drug interactions 

and conducting high-throughput ligand-affinity screens. In this regards, NMR is able to 

obtain atomic-level resolution of protein-ligand structures in near physiological conditions 

that results in better quality chemical leads [3,4]. Accordingly, NMR has enhanced the 

success rate of the drug discovery process and has made numerous contributions to the 

development of new therapeutics [5-7]. In addition to its role in structural biology, NMR has 

also made significant contributions to the field of metabolomics, especially in the application 

of metabolomics to drug discovery [8-12].

A traditional view of a disease is as a genome or proteome level dysfunction, but there is a 

growing appreciation for the role of metabolomic perturbations in a variety of human 

diseases [13]. For example, an alteration in glucose metabolism is a well-known hallmark of 

cancer (i.e., Warburg effect), but other metabolic changes are also associated with cancer, 

such as glutaminolysis, redox imbalance, and flux changes in the tricarboxylic acid (TCA) 

cycle or the pentose phosphate pathway (PPP). [14]. Similarly, antibiotic resistance in 

Staphylococcus aureus has been shown to result from a re-direction of carbon flow into 

metabolic processes that counter-act antibiotic activity [15,16]. Another example is 

mitochondrial metabolism, especially changes in NAD levels, which is an indicator of aging 

and age-related disorders [17]. The NAD-sirtuin pathway regulates neuronal protection and 

is an important process that prevents axon degradation, which is a primary cause of 

Parkinson’s disease and Alzheimer. Thus, lowered NAD+ levels is a crucial metabolic 

observation in neurodegeneration that is being manipulated for disease prevention [15,17]. 

Thus, the characterization of metabolite levels in any biological system coupled with the 

ability to trace the metabolic fate of individual atoms has the potential to beneficially impact 

a variety of biomedical needs [12]. Specifically, metabolomics is an invaluable tool of drug 

discovery, since metabolic changes may be used to identify therapeutic targets, verify in vivo 
drug efficacy, decipher mechanisms of action, and identify potential toxic side-effects.

The drug discovery pipeline is an extremely resource intensive endeavor. The process is 

time-consuming and may require upwards of twelve years before a new drug obtains FDA 

approval [18]; and costly, with an average expense of $2.6 billion dollars per approved drug 

[19]. The process is also prone to a very high failure rate where only a few lead compounds 

that emerge from traditional medicinal chemistry efforts can be transferred to clinical trials 

[20]. Furthermore, very few drug leads make it past Phase I clinical trials, and most 

compounds eventually fail in Phase III [21]. On average, less than one-in-ten compounds 

receive FDA approval and are launched as a new drug entities [22]. Of course, FDA 

approved drugs are still routinely pulled from the market or encounter safety concerns when 

broadly prescribed [23]. This low overall success rate is a result of numerous problems 

routinely encountered throughout the drug discovery process [24,25]. These problems are 

multifactorial, complex in nature, disease specific, and, in some cases, poorly understood; 

they have also been extensively discussed and reviewed in the literature [26-31]. 

Accordingly, it is well-appreciated that a single technological advancement is not going to 
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resolve the entirety of the challenges facing drug discovery research, but a new approach 

may lead to better chemical leads, to a reduction in toxicity issues, or an improvement in 

selectivity and efficacy. Thus, incorporating NMR metabolomics into a standard drug 

discovery pipeline may lead to an improved success rate, but it won’t solve all of the field’s 

problems.

Metabolomics has the potential to identify therapeutic targets in the drug discovery process. 

First, metabolomics may improve our fundamental understanding of cellular physiology, 

disease development or disease progression, which may lead to the discovery of new 

therapeutic targets. In addition, metabolic profiles resulting from a disease state or drug-

resistance may identify cellular or metabolic processes that are critical to the system. In this 

manner, specific proteins associated with these up-regulated or down-regulated pathways 

may be targeted in either a single drug therapy or as part of a multi-drug treatment. The 

underlying assumption is that the perturbed metabolic processes are required to maintain the 

drug resistance or disease state. Accordingly, inhibiting these proteins may reverse the drug-

resistance or eliminate the disease. Of course, the metabolic profile of a disease state may 

also be used to monitor a response to treatment [32]. The return of the metabolic profile to a 

healthy state would be indicative of a positive therapeutic response. Similarly, a lack of a 

response would suggest an ineffective treatment, and, conversely, a drastic change in the 

metabolic profile may be indicative of a toxic response. Thus, in total, metabolomics may 

beneficially impact all the steps of the drug discovery process, from target identification to 

therapeutic monitoring.

Cancer biology has pioneered the idea of metabolic dysregulation as the source of disease 

pathology. Warburg aerobic glycolysis and glutaminolysis are essential features of cancer 

pathogenesis and are known to occur in most tumors [33]. These metabolic processes are 

potentially linked to oncogene and tumor suppressor regulation [34]. Thus, new therapeutic 

targets to improve cancer management may be based on modulating these altered metabolic 

processes. For example, a new experimental treatment for cancer is 4-phenylbutyrate [35], 

which is a sacrificial metabolite that induces an alternative metabolic pathway to overcome a 

defective urea cycle and repair a nitrogen imbalance. Presumably, 4-phenylbutyrate may 

indirectly address a dysregulated glutaminolysis by facilitating the excretion of glutamine in 

the urine [36]. Specifically, 4-phenylbutyrate is converted to 4-phenylacetate, which then 

reacts with glutamine to form the excretion product phenylacetylglutamine.

In a similar manner, on-going efforts to develop novel cancer treatments by targeting 

metabolic dysregulation (e.g., glycolysis, glutaminolysis, PPP) has highlighted the 

therapeutic importance of metabolic enzymes such as pyruvate dehydrogenase kinase, 

lactate dehydrogenase A, glutaminase 1, thioredoxin reductase and gamma glutamylcysteine 

synthetase [37,38]. In fact, inhibitors developed against all of these metabolic targets are 

currently at various stages of preclinical and clinical trials. Indeed, anti-metabolite 

compounds and enzyme inhibitors are among the most commonly prescribed drugs. For 

example, gemcitabine, a first-line treatment for pancreatic cancer, is a nucleotide 

(metabolite) analog that interferes with DNA synthesis [34]. Notably, gemcitabine resistance 

results from a metabolic shift that increases the cellular production of deoxycytidine 

triphosphate to function as a competitive inhibitor of gemcitabine [34]. Similarly, 
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azathioprine is a purine analog that disrupts RNA and DNA synthesis and is used to treat 

autoimmune diseases like Crohn’s disease and rheumatoid arthritis [39]. Sulfanilamide 

antibiotics inhibit bacterial enzymes that require para-aminobenzoic acid (PABA) for 

synthesizing folic acid, a coenzyme in DNA synthesis. Treatments for inborn errors of 

metabolism are other successful examples of employing metabolite analogs as a therapy 

[40]. Clearly, a metabolic view of disease pathology has beneficially contributed to existing 

drugs and the creation of next generation therapies; and has the potential of significantly 

improving patient outcomes [41].

As illustrated above, NMR-based metabolomics is an asset for drug discovery since it helps 

characterize metabolite level perturbations and altered metabolic pathways that may be used 

to identify protein targets for designing new drugs. NMR is also routinely used as a high-

throughput screen to identify and evolve chemical leads against these protein targets. NMR 

ligand-affinity screens such as SAR-by-NMR, MS/NMR, multi-step NMR, SHAPES, and 

FAST-NMR that make use of saturation transfer difference (STD), WaterLOGSY, 19F NMR, 

HSQC chemical shift perturbations (CSP), transfer NOEs, and fragment-based libraries are 

established means of identifying and validating chemical leads through experimentally-

observed protein-ligand interactions [42-47]. Consequently, combining NMR HTS 

techniques with metabolomics to implement a high content drug screen is a logical next step. 

One such example is the NMR-based metabolomics screen of a library of 56 kinase 

inhibitors targeting eEF-2 kinase and NF-kB [48]. Tiziani et al. monitored global metabolic 

changes resulting from compound treatment to a panel of cancer cell lines (e.g., HeLa, 

CCRF-CEM, SKOV-3, and acute myeloid leukemia (AML) primary cells) in a 96-well 

format. SDS induced cell lysates were then used to collect one-dimensional (1D) 1H CPMG 

and two-dimensional (2D) 1H JRES NMR spectra followed by multivariate statistical 

analysis of the entire spectral dataset. The resulting scores and backscaled loadings plot 

calculated relative to controls were used identify active lead compounds based on the 

magnitude of the metabolic response. Notably, approximately 100 samples were screened in 

less than 24 h.

NMR metabolomics combined with traditional medicinal chemistry can, thus, be used to 

validate in vitro efficacy, selectivity, and specificity while avoiding off target effects (see Fig. 

2). Metabolic perturbations resulting from a drug treatment may be correlated to the 

inhibition of the desired protein-target and/or as a result of unexpected off-target effects 

[49]. If the lead compound inhibits additional protein targets beside the specifically designed 

drug-target, then the lack of selectivity may help predict and anticipate toxicity issues in 

future clinical trials. Thus, medicinal chemistry techniques can then be used to evolve the 

chemical lead in an iterative fashion using insights and feedback from the metabolomics 

experiments. The goal is to maintain the metabolic profile associated with inhibiting the 

desired protein target while diminishing or eliminating metabolic changes resulting from 

unwanted off-target effects. This global approach of monitoring all possible changes to the 

system in response to a drug’s activity would be difficult, if not impossible, to replicate in an 

in vitro setting. Even if the specific off-target proteins could be identified, it is not feasible to 

reproduce the synergistic and simultaneous impact on multiple cellular processes.
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In a similar manner, an in vivo mechanism of action for a new chemical lead may be inferred 

by comparing its induced metabolic profile against metabolic profiles for drugs with known 

mechanisms of action [50]. Compounds that share the same mechanisms of action would be 

expected to have similar impacts on the metabolome. Technological advances have reduced 

NMR analyses times to less than a few mins per sample [51]. Thus, like other secondary-

assays routinely used in a drug discovery pipeline, metabolomics can be applied in a high-

throughput fashion to interrogate an entire library of chemical leads. Accordingly, 

metabolomics is a cost-effective means of filtering-out problematic lead compounds prior to 

expensive clinical trials.

Mechanistic understanding of in vivo drug activity is an important, and, typically, 

challenging stage of the drug discovery process. Knowledge of in vitro and in vivo 
mechanisms of action improves the overall success rate and will beneficially enhance the 

drug design effort [50]. Unfortunately, elucidating a mechanism of action for a specific 

chemical lead may be an arduous, time-intensive and resource-intensive task. Multiplying 

this effort across a large screening library is impractical. Instead, predicting the in vivo 
mechanism of action for new chemical leads by leveraging known entities is a valuable 

alternative to resolving this problem. Furthermore, the availability of a set of drugs with a 

diverse range of biological activities for such a comparison will increase the likelihood of 

successfully assigning a mechanism of action. In addition, identifying compounds that target 

various biological processes and have a range of mechanisms of action may also assist in 

disease management and in combating the emergence of resistance. This may be 

accomplished through a multidrug therapy that combines compounds with distinct modes of 

action. Halouska et al. [50] demonstrated the general approach by comparing the metabolic 

profile of Mycobacterium smegmatis following treatment with a range of antibiotics with 

known mechanisms of action and some promising chemical leads from high-throughput cell-

based screens. 1D 1H NMR spectra combined with multivariate analysis was used to 

characterize the relative global metabolomes. As expected, antibiotics with similar modes of 

action clustered together in the orthogonal projections to latent structures (OPLS) scores 

plot. The high throughput screening (HTS) chemical leads clustered together with known 

cell wall inhibitors implying a similar mechanism of action, which was supported by 

literature reports. It is also possible to invert the protocol and use a drug with a known 

mechanism of action to modulate a metabolic pathway predicted to be important to disease 

progression of drug-resistance. In this manner, if the targeted metabolic pathway is reversed 

following drug treatment and the desired therapeutic outcome is achieved (i.e., cell death) 

then an in vivo mechanism of action is likely indicated. A recent example of this process 

involved a vancomycin intermediate resistant strain of staphylococcus aureus (VISA) that 

exhibited an increase in purine biosynthesis relative to a vancomycin-susceptible strain 

(VSSA) [15]. Treating VISA strains with a combination drug therapy consisting of a sub 

lethal dose of vancomycin and 6-mercaptopurine (i.e., purine substrate analog) led to a 

statistically significant increase in staphylococcal killing. In addition to reversing the 

acquired vancomycin resistance, the metabolomics results also indicate (as expected) that 

the in vivo mechanism of action for 6-mercaptopurine is an inhibitor of purine biosynthesis.

Metabolomics can also provide valuable information during a clinical trial. Metabolomics 

can assist with therapeutic monitoring, drug dosage adjustments, and by differentiating 
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responders from non-responders. Simply, specific metabolic profiles may be attributed to 

each group, which then can be used to classify individual patients by monitoring metabolite 

changes in common biofluids such as urine, serum or fecal material. Another aspect of a 

clinical trial that has benefited from metabolomics is monitoring patient compliance. In this 

regards, patient non-compliance is readily identified by the presence of distinct and/or strong 

signals in the NMR spectrum that are not normally present, such as metabolites from drug 

metabolism or from consuming of caffeine, ethanol or nicotine. As a result of these clear 

benefits to drug discovery, metabolomics continues to be adopted by the pharmaceutical and 

biotechnology industry. A prime example is COMET, the COnsortium of MEtabonomic 

Toxicity [52], which brought together pharmaceutical companies to utilize large datasets of 

NMR metabolomics analysis of urine and serum samples to predict drug toxicity.

To address the expanding interest in NMR metabolomics, we present a detailed, step-by-step 

description of a metabolomics workflow with a specific attention to details important to its 

application to a drug discovery and design process. The protocol includes methods relevant 

to understanding the mechanism of action of novel drug leads in comparison to existing 

therapeutics. Furthermore, we describe the application of metabolomics to wide-variety of 

sample sources commonly encountered in drug discovery programs. This includes bacterial 

and mammalian cell cultures, human and animal tissue samples and different biofluids (e.g., 

urine, serum and fecal material). The entire process from cell culturing and sample 

collection to biological interpretation is described. Importantly, the protocol addresses 

critical concerns regarding the proper: (i) preparation and handling of metabolomics 

samples, (ii) pre-processing, processing and acquisition of spectral data, (iii) metabolite 

identification, and (iv) statistical analysis.

Unlike other OMICS techniques, the composition of the metabolome can easily change from 

the processing, handling, and storage of samples [53]. Metabolites are chemically labile or 

unstable, are subject to thermal degradation or oxidation, and are readily transformed by 

residual enzymatic activity. For example, the oxidation of cysteine and glutathione, or the 

conversion of ATP to AMP (because of a labile phosphate group) are common occurrences 

in metabolomics samples [54]. These biologically-irrelevant sample variations may distort 

our understanding of a system and lead to erroneous conclusions. Accordingly, 

metabolomics requires a robust, efficient, and fast workflow to yield reproducible and 

reliable data. Univariate and multivariate statistical analyses are essential components of any 

metabolomics study and provide the means to interpret the data set and identify the key 

group variances (i.e., metabolite changes) [55]. Nevertheless, issues such as the incorrect 

application of statistical techniques, the subsequent lack of proper model validation, or the 

over-interpretation of models are a common occurrence in the field of metabolomics [56]. 

Accordingly, the protocol presented herein addresses these issues by providing instructions 

to avoid common mistakes.

2. Materials

All samples should be prepared using Nanopure water (H2O) and/or deuterated water (D2O). 

All safety regulations should be followed for the proper handling and disposal of chemicals 

and biological samples used in the study.
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2.1 Laboratory Equipment

1. Bruker AVANCE III HD 700 MHz NMR spectrometer equipped with a 5 mm 

quadruple resonance QCI-P cryoprobe (1H, 13C, 15N, and 31P) with z-axis 

gradients, an automatic tune and match system (ATM), and a SampleJet 

automated sample changer system with Bruker ICON-NMR software (Bruker 

Biospin, Billerica, MA).

2. BSL-2 biosafety level grade hood (e.g., Biological Safety Cabinet, LF BSC class 

2 type A, Thermo Fischer Scientific, Waltham, MA).

3. Nanopure ultra water system (Barnstead Inc., Dubuque, IA).

4. Lab Armor bead bath (Chemglass Life Sciences, Vineland NJ).

5. Incubator capable of maintaining physiological temperature and proper carbon 

dioxide levels (e.g., HERA CELL VIOS 250i CO2 Incubator, Thermo Fischer 

Scientific, Waltham, MA).

6. pH meter and probe.

7. Refrigerated centrifuge capable of speeds up to 21,100 g (e.g., SORVALL micro 

21R centrifuge, Thermo Fischer Scientific, Waltham, MA).

8. Speed Vac for solvent removal (e.g., SAVANT SC210A SpeedVac concentrator, 

Thermo Fischer Scientific, Waltham, MA).

9. Freeze dryer to remove water (e.g., FreeZone 4.5, LABCONCO, Kansas City, 

MO).

10. 1 μL to 1000 μL pipettes

11. FastPrep-96 homogenizer (MP Biomedicals, Santa Ana, CA).

12. ACCU-SCOPE 3030ph microscope (Commac, NY).

13. Cryogenic storage container (Taylor Wharton, Theodor, Al).

14. −80 °C freezer.

15. Flask shaker incubator (up to 250 rpm).

16. Sonic Dismembrator (Sonicator).

2.2 Disposable supplies

1. 1 μL to 1 mL pipette tips.

2. 10 mL aspirating pipettes.

3. 15 mL Falcon tubes.

4. 2 mL Eppendorf tubes.

5. 1 mL screw-cap microcenterfuge tubes.
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2.3 Isotopically Labeled Solvents and Reagents (see Notes 1 and 2)

1. Deuterium oxide (D2O, 99.8 atom %D).

2. 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TMSP-d4, 99.8 atom % 

D).

3. Dimethyl sulfoxide-d6 (DMSO-d6, 99.8 atom %D).

4. 13C6-glucose (99% 13C).

5. 13C2-acetate (99% 13C).

6. Other potential 13C-carbon labeled or 15N-nitrogen labeled reagents.

2.4 Buffers

1. Wash buffer, phosphate-buffered saline (PBS) at pH 7.4: 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4 and 2 mM KH2PO4. To prepare 1 L PBS buffer at pH 

7.4, add 8.0 g of NaCl, 0.2 g of KCl, 2.68 g of Na2HPO4
.7H20 and 0.24 g of 

KH2PO4 to a final volume of 1 L of Nanopure water.

2. NMR buffer: 50 mM phosphate buffer at pH 7.2 (uncorrected, see Note 3) in 600 

μL of 99.8% D2O. Add 50 μM (1D NMR experiment) or 500 μM (2D NMR 

experiment) TMSP-d4 as an internal chemical shift reference.

2.5 Cell Media (see Note 4)

1. Dulbecco’s modified eagle medium (DMEM) and Roswell Park Memorial 

Institute (RPMI) medium with the addition of an appropriate amount of fetal 

bovine serum (5 to 20% v/v) and/or supplemental glucose (1 to 25 mM) are 

commonly used to culture mammalian cells.

2. Bacterial cells are typically cultured in complex media, such as like Luria-

Bertani (LB) media for E.coli, Middlebrook’s albumin dextrose catalase media 

(MADC) for Mycobacterium smegmatis, or M9 minimal media.

2.6 Software and Databases

1. Bruker ICON-NMR software for automated NMR data acquisition (Bruker 

Biospin, Billerica, MA).

2. MVAPACK metabolomics toolkit for processing and analyzing chemometric 

data (http://bionmr.unl.edu/mvapack.php) [57].

1.NMR isotope labeled compounds are non-radioactive and do not require any special handling. It is imperative you wear typical 
personal protective gear like gloves and eye protection and follow standard safety protocols.
2.Always keep deuterated solvents in a desiccator or dry box and keep them sealed or wrapped in parafilm while in storage.
3.Typically, metabolomics sample from cell lysates are prepared in 100% D2O and using a standard pH probe may not report pH 
accurately. Standard corrections are pD = pH + 0.4 although Rubinson et al. [92] suggest that phosphate buffer pH is not significantly 
altered to warrant corrections.
4.The choice of culture medium is dependent on the specific needs of the cell type and the specific goals of the experiment. There are 
a variety of cell culture media available either through commercial sources or from published recipes. Also, it may be possible to use 
different media for the same cell type. Again, the choice of medium will be dictated by the specific needs of the experiment. 
Accordingly, only a few representative culture media are listed as illustrative examples, and these are not intended to be an exhaustive 
list.
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3. PCA/PLS-DA utilities for quantifying separation in PCA, PLS-DA and OPLS-

DA scores plots (http://bionmr.unl.edu/pca-utils.php) [58].

4. NMRPipe software for processing and visualizing NMR data (https://

www.ibbr.umd.edu/nmrpipe/install.html) [59].

5. NMRViewJ software for processing and visualizing NMR data (One Moon 

Scientific, Inc. Westfield, NJ; https://nmrfx.org/) [60].

6. R statistical package (https://www.r-project.org/) [44].

7. Chenomx (Chenomx, Inc., Edmonton, AB, Canada) software for automated 

metabolite assignment and quantification from 1D 1H NMR spectra (https://

www.chenomx.com/).

8. MetaboAnalyst software for the statistical, functional and integrative analysis of 

metabolomics data (http://www.metaboanalyst.ca/) [61].

9. Human Metabolomics Database (HMDB) of reference NMR data for known 

metabolites (http://www.hmdb.ca/) [62].

10. Biological Magnetic Resonance Data Bank (BMRB) of reference NMR data for 

known metabolites http://www.bmrb.wisc.edu/metabolomics/) [63].

11. Non-uniform schedule (NUS) generator (http://bionmr.unl.edu/dgs-

gensched.php) for NUS NMR data acquisition [64].

12. Small Molecule Pathway Database (SMPDB) (http://www.smpdb.ca) for 

modeling metabolic pathway changes from list of metabolite changes [65].

3. Methods

Extreme consistency is key to the success of any metabolomics experiment. Accordingly, it 

is essential to apply all experimental protocols and parameters uniformly to all groups in the 

study. Any variation in the preparation, handling or storage of the sample may perturb the 

metabolome and lead to an erroneous results. For example, different sample processing 

times, samples handled by different investigators, cell cultures grown in different incubators 

or shakers, different sources or lot numbers of chemicals, media or disposables, different 

buffer/media preparations (even if the same recipe was prepared by the same individual), are 

all likely to induce a biologically irrelevant-bias in the samples and needs to be avoided. In 

effect, the only difference between groups should be the intended variable (e.g., wild-type 

vs. mutant; treated vs. untreated, healthy vs. disease, etc.). In general, the defined variable(s) 

is expected to induce a measurable change in the metabolome that is detectable by NMR. 

For example, a proper dosage for a drug used in a metabolomics project needs to be 

experimentally determined. The drug dosage needs to be high enough to induce a detectable 

metabolic response, but not too high to induce a generic cell death phenotype (see Note 5).

5.For the success of a metabolomics experiment, cell survival is an essential requirement. This presents a challenge when investigating 
the efficacy, side-effects, mechanism of action or resistance of a drug that impacts cell survival or is designed to kill cells. Similarly, 
cell mutations or experimental conditions (e.g., nutrient depletion, high temperature, anaerobic growth, etc.) that may lead to an 
increase in cell death are also potential problems. The goal is to identify a drug dosage and/or experimental condition that only stress 
the cells, but does not result in any cell death (see section 3.3). In this regard, the observed metabolomic changes will only be a result 
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3.1 Experimental Design

A scientific hypothesis needs to be clearly defined in order to properly design a 

metabolomics experiment (see Fig. 3). In other words, simply characterizing the 

metabolome of a cell, tissue or biofluid is likely to fail to provide any scientific insight or 

value without a logically designed comparative analysis. In this regards, a metabolomics 

experiment is fundamentally a comparison between two or more groups (e.g., control vs. 

drug treated), where a difference or similarity in a metabolome is expected to answer a 

scientific question. The next critical step is to identify an appropriate source for the 

metabolome or the type of biological samples to be compared (i.e., established or primary 

cell lines, tissue samples from an animal model, or human biofluids, etc.). The choice of 

system will then determine the number of biological replicates that can be practically 

obtained, which, in turn, will define the statistical significance of any observed results. 

Given a testable hypothesis and the type of biological samples, there are essentially an 

endless number of experimental variables that can be manipulated, where each permutation 

defines a new group. Practically speaking, it would be impossible to account for every 

possible permutation in a single experimental design. Instead, the identification of which 

groups to use is fundamentally driven by the scientific question the study is designed to 

answer (see Fig. 3) Thus, a general set of protocols is presented for a generic metabolomics 

experiment that can be applied to a drug discovery project. The protocol provides a means to 

determine a drug’s mechanism of action and to monitor a patient’s response to treatment.

The simplest experimental design for a metabolomics drug discovery project will consist of 

two groups: untreated samples and drug-treated samples. Nevertheless, it is typical to 

significantly expand the experimental design beyond just two groups (see Figs. 2 and 3). 

Common groups include:

1. Controls (e.g., wild type cells or healthy subjects).

2. Control with treatment (positive control e.g., wild type cells or healthy animals 

treated with a drug lead).

3. Experimental model (e.g., animal disease model or treatment naïve patients).

4. Experimental model with a drug treatment (e.g., animal disease model or patients 

treated with a drug lead).

5. Negative control (e.g., mutant cells with no treatment, patients with alternative 

disease).

6. Negative control with a drug treatment (e.g., mutant cell lines treated with a drug 

lead).

The metabolomics study may consist of any combination of biological samples originating 

from cell cultures, tissue samples and/or biofluids. Human or animal biofluids may consist 

of urine, serum, plasma, blood, fecal material, saliva, sweat, condensed breath, cerebrospinal 

of the cell’s immediate response to the biological activity of the drug or the experimental condition. Conversely, if the metabolome is 
harvested from a mixture of live and dead cells, then it will be difficult, if not impossible, to deconvolute metabolome changes 
resulting from the stressor or cell death. A correct drug dosage or experimental condition is usually determined by acquiring a series of 
growth curves in which the drug or stressor is titrated over a wide-range of values.
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fluid (CSF) or any other body fluid or excretion. Similarly, tissue samples usually consist of 

organs, such as heart, lungs, brain, liver or kidneys from sacrificed animals. Tissue samples 

from human subjects typically originate from biopsies (i.e., muscle, adipose, etc.), from 

surgeries (i.e., tumors) or tissue banks. Each biofluid, tissue type, or time-point would 

constitute a different group. Of course, there are numerous experimental protocols that could 

also be varied, such as different media, nutrients, temperature, diets, etc.

Besides sample type and experimental protocols, there are other variations that may be 

applied to form additional groups. For example, different groups may be formed by varying 

the drug dosage or by using a placebo. Of course, multiple drugs could be tested in a single 

study and group membership would be defined by what drug a cell culture or an individual 

receives. In addition, the number of drug treatments received by a cohort could vary. Time 

could be another variable in the experimental design (e.g., when samples are collected and 

when treatments are administered). Similarly, different groups may consist of different 

mutant or wild-type cell lines or strains. For example, a mutant cell line may correspond to 

the drug protein target being inactivated (i.e., negative control) through a variety of genetic 

mutations or gene-knockout methods. Alternatively, the mutant cell lines could be various 

human isolates with variable levels of resistance or susceptibility to the tested drug. The cell 

lines could just be different types of bacteria (e.g., E. coli., S. aureus, etc.) or different types 

of cancers (e.g., pancreatic, breast, etc.). Similarly, animal models or human cohorts may 

have different stages or severity of the disease, or even different diseases. Furthermore, 

multiple biofluid samples (i.e., both urine and serum) may be collected from the same 

animal or human participant at multiple time points during the study. Similarly, more than 

one tissue or organ sample may be harvested from each sacrificed animal.

Another important decision regarding the experimental design is the number of biological 

replicates required per group. In general, more biological replicates led to a better statistical 

significance in differentiating between the various groups. But of course, there are practical 

limits to the number of cell cultures, animals or human cohorts that can be prepared or 

recruited for any study. Facility and equipment capacities, the availability of personnel, and 

cost, are all major factors that greatly limit the number of samples or cohorts that are 

possible. There is also an obvious multiplication factor based on the number of desired 

groups and the number of replicates per group. Accordingly, there may be a tendency to 

maximize the number of groups at the expense of the number of replicates per group. This is 

inadvisable since it would likely lead to statistically insignificant conclusions. Instead, the 

number of groups should be reduced to achieve an acceptable minimal number of biological 

replicates per group. In fact, sample size calculation for metabolomics studies is complex 

and not well-defined, where recent efforts suggest sample sizes may need to be > 20 per 

group [66,67]. In the case of metabolomics studies involving human cohorts, the need for 

replicates is even greater and more challenging to estimate, but sample sizes > 60 to 100 

cohorts per group are typical targets.

One final factor to consider for the design of a metabolomics study involving human cohorts 

is the inclusion and exclusion criteria. Simply, what individual characteristics, traits or 

behavior are needed for the goals of the study? Conversely, what are the potential 

confounding factors that may confuse or obscure the desired outcome of the study and 
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should be avoided? The specific inclusion and exclusion criteria are likely unique to each 

study; and there are no general guidelines to apply. Criteria commonly considered include: 

age, body mass index, diet, comorbidities, ethnicity, gender, health test panel (e.g., blood 

pressure, lipid panel, metabolic panel, urinalysis, etc.), physical activity, race, and the use of 

alcohol, recreational drugs, or tobacco (see Table 1).

3.2 Determining Drug Dosage for Cultured Cells

The reported minimum inhibitory concentration (MIC) for a drug against a specific cell 

strain is a good starting point for determining the optimal drug dosage for a metabolomics 

study. Typically, drug concentrations that range between 1 to 24 times the reported MIC or 

MIC50 are tested to identify an optimal drug dosage. The goal is to identify a drug dosage 

that stresses the cells, but does not induce cell death. This is accomplished by identifying a 

drug dosage that results in a decrease in cell growth by approximately 50% (MIC50, see Fig. 

4).

Along with dosage, the time point for administering the drug needs to be experimentally 

determined. First, enough biomass needs to be harvested in order to extract a detectable 

metabolome. Second, the timing of the drug dosage should induce the desired perturbation 

in the metabolome. For example, a particular metabolic processes may only be active during 

a specific phase of the growth curve. Typically, a drug treatment is administered during the 

exponential or log phase for a bacterial culture. The cells are allowed to grow for at least one 

generation or one doubling time before harvesting.

1. Approximately 1 to 20 mM of a stock solution is prepared for each compound to 

be tested by dissolving the required amount of the compound into 0.5 mL of 

ethanol or DMSO-d6 (see Note 6).

2. Bacterial cells are typically grown at 37 °C with shaking at 200 rpm in 50 mL of 

complex or minimal media in a 125 mL Erlenmeyer flask. Mammalian cells are 

typically grown in a 6 well plate with 3 mL of media at 37 °C and 5% percent 

CO2 in an incubator. A total of 21 cell cultures are prepared.

3. The bacterial cells are allowed to grow until an average optical density at 600 nm 

(OD600) of 0.6 is achieved (see Fig. 4). Mammalian cells are grown to 

approximately 40% confluency.

4. Each cell culture receives a different aliquot of the stock drug solution such that 

the final drug concentration ranges from 0 to 24 times the MIC value. Each drug 

dosage is made in triplicate for a total of 21 cell cultures (see Note 7).

5. Following the addition of the drug-leads, the cells are allowed to grow for an 

additional amount of time. This is typically the cell doubling time.

6.The choice of solvent and concentration is determined by the compound’s solubility. The goal is to maximize the concentration of 
the stock solution so as to minimize the amount of solvent that needs to be added to each cell culture. The maximal amount of solvent 
added to a cell culture is 5 to 10 μL.
7.The following range of drug concentrations is typically used: 0x,1x, 2x, 4x, 8x, 16x and 24x the MIC value. The amount of solvent 
(i.e., DMSO-d6 or ethanol) added to any cell culture should be 5 to 10 μL or less.
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6. For bacterial cells, the optical density (OD600) is recorded at the end of the 

additional cell growth time. The growth rate inhibition is calculated by 

comparing the optical density of the treated cells to the untreated cells. Typically, 

untreated cells will reach an OD600 of 1.2 (i.e., a doubling from an initial OD600 

of 0.6), while the OD600 of drug treated cells will be lower. For mammalian cells, 

the cells are visualized under a microscope to measure the percent confluency 

and assess the amount of detached cells [53,68,69]. Typically, untreated cells 

should reach a confluency of approximately 80% (i.e., doubling from an initial 

40% confluency).

7. The desired dosage corresponds to the drug concentration that inhibits cell 

growth by approximately 50% relative to untreated cells (see Note 5).

8. For mammalian cells, an additional consideration is the length of time following 

the drug treatment that is required before the cells can be harvested. It is 

important to provide a significant amount of time to allow a perturbation in the 

metabolome to occur, but it should be short enough to prevent a significant 

accumulation of dead cells. No dead cells are a preferred outcome. After the 

proper drug dosage is identified, repeat experimental steps 2 to 5 with the 

following modifications:

a. A constant drug dosage is used for each replicate cell culture. Each cell 

culture replicate is a different time-point instead of a different drug 

dosage.

b. The time after drug treatment that the cells are harvested are varied 

from zero (i.e., control) to an end-point of approximately 12 to 24 h.

9. For each time point, the percentage of live and dead cells is determined with a 

cell counter. The optimal time point for harvesting the cells would be the latest 

time point following the drug treatment where the vast majority of the cells are 

still alive.

3.3 Determining Drug Dosage for Cohorts.

How a drug is administered (e.g., oral, intravenous, intraperitoneal, etc.), how often the drug 

is administered, how the drug is formulated, and the drug’s dosage will all impact how the 

drug is adsorbed, distributed, metabolized and excreted (ADME) in an animal or human 

[70,71]. This, in turn, will determine both the peak and steady-state concentration of the 

drug; and the resulting efficacy and toxicity of the treatment. Determining the proper drug 

dosage and the route of administering a drug lead for an animal model or a clinical trial is, 

thus, a complex question that is not easily answered. In fact, the entire field of 

pharmacokinetics and pharmacodynamics is dedicated to addressing these very challenging 

questions [72]. Available information, such as a lethal dose (LD50) from cell based assays or 

reported dosages for similar compounds from the scientific literature, may provide initial 

guidance. Unfortunately, there is not a simple algorithm to convert an LD50 to an animal 

dosage. Instead, a detailed efficacy and toxicity study needs to be conducted to determine 

the proper drug dosage prior to embarking on a metabolomics study.
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Drug dosages are typically administered according to a species’ body-mass (e.g., mg/kg). 

Accordingly, it may appear trivial to translate an animal drug dosage to a human clinical trial 

by simply scaling the dosage based on relative body-masses. Unfortunately, this approach is 

incorrect since pharmacokinetics and toxicity issues vary widely across species. Instead, a 

variety of factors, such as differences in allometry, metabolic rates, and physiological, need 

to be considered [73,74]. Thus, the protocol for determining the proper dose and means of 

administering a drug candidate is beyond the intended scope of this chapter.

3.4 Collecting and Storage of Biofluids from Human Cohorts (see Table 1)

1. Human volunteers in a metabolomics study must sign an informed consent form 

before participating.

2. Participants in a metabolomics study are typically required to complete a 

questionnaire that confidentially collects information regarding the individuals 

age, sex, race/ethnicity, residing state, diet (e.g., vegetarian, vegan, etc.), dietary 

restrictions (e.g., no peanuts, no gluten, low-carb, low calorie, no lactose, etc.), 

and a list of daily medications or supplements.

3. Biofluid collection should be done after 12 h of fasting with no fish consumed 

for 24 h [75].

4. Daily supplements and over the counter medications should be stopped at least 

24 h prior to collecting the biofluid(s).

5. Each type of biofluid requires specific and unique collection procedures. For 

example, urine specimens are best collected midstream and in the morning, and 

can be collected by the participant. Conversely, blood needs to be collected by a 

medical professional in a clinical or medical facility. A detailed discussion of 

common protocols employed for collecting biofluids from human and animal 

cohorts is beyond the scope of this chapter, but have been previously described in 

detail [19,53,68,69,76-78].

6. After collecting a biofluid, the samples should be processed immediately, kept on 

ice at all times, and stored at −80 oC.

3.5 Preparation of Mammalian Cells

1. Cell culture media and supplements are obtained from commercial vendors (see 
Section 2.5). The cell culture media may be supplemented with isotopically 

labeled nutrients (e.g., 13C-glucose, 13C-acetate, 15N-ammonium chloride, etc.) 

as dictated by the goals of the experiment (see Section 3.7).

2. Cell culture procedures must follow published guidelines for the cell type to 

avoid misidentification and contamination [79].

3. A minimum target of ten replicate cultures are prepared per group (see Note 8).

8.The number of replicates per group will have a significant impact on the quality of the study and the statistical validity of the 
outcomes. In general, it is best to maximize the number of replicates per group, with a typical target of ten replicates per group. A 
variety of experimental considerations may impact the number of replicates that are practical for a given study. For example, a large 
number of groups may require a reduction in the number of replicates per group. Another consideration is the impact of the number of 
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4. Mammalian cells are typically grown in a 100 mm2 dish with 10 mL of media at 

37 °C and 5% percent CO2 in an incubator. Equally distribute replicates from 

each group between incubators if more than one incubator is required (see Note 

9).

5. The cells are grown until reaching approximately 80 to 90% confluency.

6. The drug is added to the cell culture for the treated groups using the dosage 

determined from Section 3.3. A blank solvent bolus is added to all non-treatment 

groups.

7. The drug is typically added to the cell culture after 80 to 90% confluency. But, 

the drug may also be added at the start of the cell culture or at other time-points 

as required.

8. The cells are harvested after a pre-determined incubation time with the drug.

3.6 Preparation of Bacterial Cell Cultures

1. Perform steps 1–3 from Section 3.5.

2. The drug is added to the cell culture for the treated groups using the dosage 

determined from Section 3.3. A blank solvent bolus is added to all non-treatment 

groups.

3. Typically, the drug is added at the start of the cell culture, but it may be added at 

various points along the growth curve depending on the specific goals of the 

study or the proposed mechanism of action of the drug.

4. Start with a 25 mL culture of cells with an OD600 of 0.05 from glycerol frozen 

stocks.

5. For any type of bacterial cell, it is important to obtain a final OD600 of 20 for the 

entire culture volume. For example, if the total volume is 20mL, then the 

minimum OD600 should be 1.0 per mL. This will ensure that a high quality NMR 

spectrum will be obtained from the cell lysates in a reasonable amount of time.

6. Cell cultures are harvested at a specific time-point of the growth curve (e.g., 

exponential growth, stationary phase, etc.). Important, all cell cultures must be 

harvested at the identical phase of the growth curve, not necessarily the same 

OD600 value.

7. All replicate cell cultures are normalized based on the final OD600 value. The 

total volume for each individual cell culture is adjusted so that each cell culture 

has the same effective OD600 value.

replicates on the quality of the metabolomics samples. Sacrificing quality for a greater number of replicates will not likely lead to a 
successful outcome. Conversely, a limited number of replicates < 4 per group will likely provide meaningless results.
9.In order to avoid the introduction of bias, always randomize sample handling steps. If the samples are always processed in the order 
of the sample number, then a time-bias will be induced across the entire dataset. Instead, if the order is constantly changed at each 
step, the processing time and any impact on the metabolome will be randomized, which in turn will minimize or eliminate any bias.
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3.7 Isotopically Labeled Metabolomics Samples

1. Identify a 13C-, 15N- or other isotopically labeled compound or nutrient to label 

the metabolome and act as a tracer. The tracer should be associated with the 

metabolic pathway of interest and expected to be affected by the experimental 

treatment. 13C6-glucose is a common choice for a tracer since it highlights 

central carbon metabolism (e.g., glycolysis and TCA cycle).

2. The culture media should not contain the selected nutrient or metabolite.

3. The culture media is supplemented with an appropriate molar concentration of 

the tracer metabolite (see Notes 4 and 10). The concentration of the 15N-, or 13C-

labeled metabolite needs to be high enough (≥ 1 to 5 μM) to be detected by 

NMR. Accordingly, the culture media should be supplemented with 

approximately 2.5 to 4 g/L (0.5 to 25 mM) of a major nutrient source like 13C6-

glucose or ~10–100 mg/L of a targeted metabolite like 13C-D-alanine (~ 1 mM). 

Multiple labeled isotopes may be used together if the type of label (13C or 15N) 

differs between the compounds.

4. In general, the isotopically labeled metabolite is added to the culture medium at 

the start of the cell culture. Of course, it may be added at different time points to 

emphasize a specific cellular processes or timed according to the drug treatment.

3.8 Extracting Water Soluble Metabolites from Mammalian Cells

Samples should be stored at −80 °C, but, ideally, samples should be immediately analyzed. 

All samples should be kept on ice or at 4 °C during the extraction process and/or handling. 

There are a few critical aspects to keep note of throughout the process that can affect the 

quality of the resultant data (1) speed, (2) consistency, (3) random processing of samples, 

and (4) the efficient removal of all biomolecules and cell debris [80]. Quick and prompt 

sample processing and preparation are ideal to avoid extended temperature variations, 

chances of environmental contamination and degradation of metabolites. For example, 

protein degradation due to improper shipping processes may lead to alterations in amino 

acid levels in biofluids. Furthermore, metabolites can chemically degrade or transform 

within milliseconds due to enzymatic activity, oxidation, chemical instability, or any number 

of other chemical processes [81]. Thus, rapid inactivation and removal all macromolecular 

cell debris (usually through methanol/ethanol precipitation) that may bind or transform a 

metabolite is a necessary step of the protocol (see Note 11).

10.The experimental conditions for optimal labeling should be experimentally verified for every cell line or cell type used for a 
metabolomics experiment. Factors to consider include the composition of the culture media and the 13C-carbon source (e.g., glucose, 
pyruvate or glutamine) that are used for the cell culture. For mammalian cells, a time course experiment should be conducted where 
cells are cultured from 1 to 48 h to assess the rate of carbon consumption. For bacterial cells, a time course experiment should be 
conducted where cells are cultured for 1 to 3 doubling times to assess the rate of carbon consumption. Examples of media used for 
13C-carbon labeling of mammalian cell metabolome are Dulbecco's Modified Eagle Medium (DMEM) and Roswell Park Memorial 
Institute (RPMI) media. Examples of media used for 13C-carbon labeling of bacterial cell metabolome are Middlebrook’ Albumin 
Dextrose Catalase (MADC) media or M9 minimal media.
11.Removal of proteins and other biomolecules by methanol or ethanol precipitation is preferred over mechanical filtration methods or 
the application of Carr–Purcell–Meiboom–Gill (CPMG) NMR T2 filtering techniques. Filtering techniques are known to impart 
biologically-irrelevant group differences, due to metabolite-macromolecule binding [87].
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1. The extraction process for intracellular metabolites begins after the cells have 

grown to the desired time point. In addition to the cell extract, the media should 

also be analyzed for metabolomics changes as many metabolites get exchanged 

or effluxed outside of the cell.

2. Pre-chill the extraction solvents methanol and methanol:water mixture on dry 

ice.

3. Collect 1 mL of the media and immediately freeze the samples with liquid 

nitrogen and store it at −80 °C until ready for NMR sample preparation.

4. For the cell extracts, wash the cells still attached to the plates twice with 5 mL of 

PBS to remove debris. Discard the wash.

5. Lyse and quench cells with 1 mL of pre-chilled methanol at −20 °C. Incubate 

cells at −80 °C for 15 min. This process should detach the cells from the plate. 

Confirm cell detachment using a microscope and repeat lyse and quenching step 

if necessary.

6. Using a cell scraper, detach and transfer the cell suspension in methanol to a 2 

mL microcentrifuge tube.

7. Centrifuge the 2 mL microcentrifuge tube for 5 min at 15,000 × g and 4 °C to 

pellet the cell debris.

8. Collect the supernatant and transfer to a new 2 mL microcentrifuge tube. Again, 

keep all samples on ice throughout the process.

9. Perform a second extraction, to improve the overall efficiency. Add 0.5 mL of an 

80%/20% mixture of methanol/water prechilled −20 °C to the cell pellet.

10. Centrifuge the suspension of cell debris with 80%/20% methanol/water for 5 min 

at 15,000 × g at 4 °C to pellet the cell debris.

11. Collect the supernatant and transfer it to the 2 mL microcentrifuge tube 

containing the original methanol extract, thereby combining the two extractions.

12. For a third time extract the pellet by adding 0.5 mL of ice cold water.

13. Centrifuge the cell suspension for 5 min at 15,000 g at 4 °C to pellet the 

remaining cell debris.

14. Transfer the supernatant to the original microcentrifuge tube. Combine all 

extractions together in a 2 mL microcentrifuge tube.

15. Repeat steps 1 to 14 for each replicate and for each group either in a randomized 

fashion or at the same time depending on the total sample number and your 

centrifuge capacity (see Note 9).

16. Use a SpeedVac or a rotary evaporator to remove the methanol, chill the 

condenser with liquid nitrogen if using a rotary evaporator.

17. Following evaporation of the methanol solvent, poke a pin hole using a 

thumbtack and flash-freeze the samples in liquid nitrogen.
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18. Freeze dry the samples using a lyophilizer, the pin hole helps establish low 

pressure in each sample tube.

19. Store samples in a −80 °C freezer or proceed to preparing the NMR samples (see 
section 3.11).

3.9 Extracting Water Soluble Metabolites from Gram-Negative Bacteria

1. Spin down the suspension culture at 3200 g at 4°C for 20 min to obtain a pellet.

2. Aspirate the media, keeping 1 mL of the media for NMR analyses.

3. Wash the pellet with ice cold PBS before extraction.

4. Add 1.5 mL of a 1:1 mixture of methanol and water to the pellet and transfer to a 

2 mL microcentrifuge tube

5. Pipet to mix the pellet with a 1:1 mixture of methanol and water prechilled to 

−20 °C.

6. Lyse the cells using a handheld sonicator by pulsing for six 10 s bursts. Take 

precautions to avoid any sample heating during the sonication process.

7. Incubate the microcentrifuge tubes on ice for 2 min to extract the metabolome.

8. Centrifuge at 1000 × g for 10 min at 4 °C to remove cell debris.

9. Collect the supernatant (0.75 mL) and transfer to a new 2 mL microcentrifuge 

tube.

10. Repeat the metabolome extraction by adding 0.75 ml of 1:1 mixture of methanol 

and water prechilled to −20 °C to the cell pellet.

11. Repeat steps 6 to 8 and combine the supernatant with the previous extract.

12. Repeat steps 1 to 11 for all replicate samples and groups (see Note 9).

13. Use a SpeedVac or a rotary evaporator to remove the methanol.

14. Flash-freeze the samples in liquid nitrogen.

15. Remove the water and bring to dryness using a lyophilizer.

16. Store samples in a −80 °C freezer or proceed to preparing the NMR samples (see 
section 3.11).

3.10 Extracting Water Soluble Metabolites from Gram-Positive Bacteria

1. Perform steps 1–5 from section 3.9.

2. Lyse the cells using Matrix B lysing tubes using a FastPrep system. Each sample 

is bead beaten for 45s burst at 1200 rpm for three rounds Take precautions to 

avoid any sample heating during the process.

3. Perform steps 7–16 from section 3.9.
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3.11 Preparation of NMR samples from cell lysates or tissue extracts

1. For 1D NMR experiments, lyophilized cell-free lysates or tissue extracts are 

suspended in 550 μL of 100% 50 mM D2O phosphate buffer at pH 7.2 

(uncorrected, see Note 3) with 50 μM TMSP-d4 as a chemical shift and 

concentration reference.

2. For 2D NMR experiments, lyophilized cell-free lysates or tissue extracts are 

suspended in 550 μL of 100% 50 mM D2O phosphate buffer at pH 7.2 

(uncorrected, see Note 3) with 500 μM TMSP-d4 as a chemical shift and 

concentration reference.

3. Centrifuge the sample at 14,000 g for 10 min to remove any particulates.

4. The sample is transferred to a 4” 5 mM SampleJet NMR tube with a RAININ 

XLS pipette (see Note 12).

5. Repeat steps 1 to 4 for each replicate and for each group (see Note 9).

6. Each sample is added to a 96 well plate SampleJet configuration equilibrated to 

4 °C to prevent metabolite degradation (see Fig. 5).

3.12 Preparation of NMR Samples from Urine

1. Thaw the urine samples stored at −80 oC on ice.

2. Samples are centrifuged at 15,000 × g for 10 min at 4 oC to pellet any 

particulates in the sample.

3. 500 μL of urine is transferred into a new Eppendorf tube and mixed with 50 μL 

of 50 mM phosphate buffer in 99.8% D2O at pH 7.2 (uncorrected, see Note 3). 

50 μM (for 1D 1H NMR) or 500 μM (for 2D NMR) TMSP-d4 are added to each 

sample as a chemical shift and concentration reference.

7. The sample is transferred to a 4” 5 mM SampleJet NMR tube with a RAININ 

XLS pipette (see Note 12).

8. Repeat steps 1 to 7 for each replicate and for each group (see Note 9).

9. Each sample is added to a 96 well plate SampleJet configuration equilibrated to 

4 °C to prevent metabolite degradation (see Fig. 5).

3.13 Preparation of NMR Samples from Serum

1. Thaw the serum samples stored at −80 oC on ice.

2. 500 uL of serum sample is transferred into a new Eppendorf tube and mixed with 

1 mL of methanol to precipitate proteins.

3. Samples are centrifuged at 15,000 × g for 10 min at 4 oC.

12.Smaller diameter NMR tubes of 3 mm (160 μL) or 1.7 mm (45 μL) may be needed if the available metabolomics sample is limited. 
Filling of these smaller diameter NMR tubes may be improved by a liquid handling robot, such as a Gilson 215 Liquid Handler. In 
addition, the NMR acquisition parameters will likely need to be adjusted to account for the lower sensitivity due to the lower number 
of nuclei in the samples.
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4. Transfer the supernatants into new microcentrifuge tubes.

5. Remove the methanol by rotary evaporation using a SpeedVac.

6. The samples are flash-frozen in liquid nitrogen and then dried by lyophilization.

7. The dried samples are reconstituted into 550 μL of 50 mM phosphate buffer in 

99.8% D2O at pH 7.2 (uncorrected, see Note 3). 50 μM (for 1D 1H NMR) or 500 

μM (for 2D NMR) TMSP-d4 are added to each sample as a chemical shift and 

concentration reference.

8. The sample is transferred to a 4” 5 mM SampleJet NMR tube with a RAININ 

XLS pipette (see Note 12).

9. Repeat steps 1 to 8 for each replicate and for each group (see Note 9).

10. Each sample is added to a 96 well plate SampleJet configuration equilibrated to 

4 °C to prevent metabolite degradation (see Figure 5).

3.14 Preparation of NMR Samples from Fecal Matter

1. Thaw the fecal samples stored at −80 oC on ice

2. Weigh 3 to 50 mg of the fecal material in a microcentrifuge tube containing 

matrix D type lysing beads.

3. Add 1 mL of 1:1 water: methanol mixture to extract the metabolome and 

precipitate proteins.

4. Using a FastPrep, bead beat the samples for 30 sec at 1200 rpm thrice.

5. Centrifuged at 15,000 × g for 10 min at 4 oC.

6. Collect the supernatants in a separate microcentrifuge tube.

7. Repeat steps 3–6 to re-extract the pellet and combine both supernatants.

8. Remove the methanol by rotary evaporation using a SpeedVac and water by 

lyophilization

9. Reconstitute in 550 μL of 50 mM phosphate buffer in 99.8% D2O at pH 7.2 

(uncorrected, see Note 3). 50 μM (for 1D NMR) or 500 μM (for 2D NMR) of 

TMSP-d4 will be added to each sample as a chemical shift and concentration 

reference.

10. The sample is transferred to a 4” 5 mM SampleJet NMR tube with a RAININ 

XLS pipette (see Note 12).

11. Repeat steps 1 to 10 for each replicate and for each group (see Note 9).

12. Each sample is added to a 96 well plate SampleJet configuration equilibrated to 

4 °C to prevent metabolite degradation (see Fig 5).
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3.15 NMR Data Collection

All NMR experiments are conducted at 298 K using a Bruker AVANCE III HD 700 MHz 

spectrometer equipped with a 5 mm quadruple resonance QCI-P cryoprobe (1H, 13C, 15N, 

and 31P) with z-axis gradients. An automatic tune and match system (ATM), and a 

SampleJet automated sample changer system with Bruker ICON-NMR software were used 

to automate the NMR data collection (see Fig. 5).

3.15.1 1D 1H NMR

1. Load the NMR metabolomics samples into the SampleJet automated sample 

changer system (see Fig. 5 and Note 9). Check that the SampleJet is in the 

correct mode (i.e., 5 mm tubes).

2. Log into an account on the spectrometer workstation and start the Topspin 

software.

3. The first NMR sample is lowered into the magnet using the Bruker command, sx 
101, where 101 corresponds to sample one in rack one.

4. The spectrometer is locked onto the D2O solvent frequency using the Bruker 

command, lock D2O (see Note 13).

5. The NMR sample is shimmed for optimal signal and suppression of the water 

signal by typing the Bruker command topshim. This will initiate an automated 

gradient shimming procedure, which may take a few min to complete (see Note 

13).

6. The sample is automatically tuned and matched using the ATM system by typing 

the Bruker command, atma.

7. The 90-degree pulse length (μs) is determined by measuring a null spectrum with 

an approximate 360-degree pulse using the Bruker zg pulse sequence (see Note 

14).

8. A 1D 1H NMR spectrum is obtained for each sample using a standard excitation 

sculpting water suppression pulse program (Bruker zgesgp pulse sequence) that 

provides optimal suppression of the residual water signal while maintaining a flat 

baseline (see Note 15).

13.Topshim requires the sample to contain either a D2O or H2O solvent. It is advisable to create a shim file with a parameter set that 
produces an optimal set of shims for your sample type. Read in a shim file using the Bruker command rsh and select the appropriate 
Topshim shim file. If you are doing this for the first time, complete the command topshim, if you are not satisfied with the shim 
performance use command topshim tuneb tunea to obtain an improved set of shims. Write the shim set parameters with the Bruker 
command wsh and save it to a new file name for future reference.
14.The 90 degree pulse length is commonly measured by incrementing the P1 pulse in the zg pulse program by 1 μs or smaller 
increments; and by plotting the relative peak heights or intensities. A maximum peak height should be observed at the pulse length 
corresponding to the 90-degree pulse. Conversely, a minimum or null spectrum should be observed at the pulse length corresponding 
to the 360-degree pulse length. In practice, a more accurate measure of the 90-degree pulse is obtained by measuring the 360-degree 
pulse length and dividing by four to obtain the 90-degree pulse length. A typical 90-degree pulse length for a metabolomics sample 
ranges from approximately 8 μs to 13 μs or longer. Among other factors, the relative salt concentration of the metabolomics sample 
affects the 90-degree pulse, in which a higher salt concentration results in a longer 90-degree pulse. Other factors also contribute to the 
observed 90-degree pulse, so it is always necessary to experimentally determine the 90-degree pulse for each sample or set of samples.
15.Excitation Sculpting parameters (zgesgp) - 32768 data points (TD), SW = 12.02 ppm, O1P (transmitter offset) = 4.70 ppm, D1= 1 
second, NS (number of scans) = 128, DS (dummy/steady state scans) = 16, P1 = 9.5 −13.5 us, SPNAM (shaped pulse for water 
suppression) = SINC1.1000 at 26.39 dB or 0.00228 W.
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9. Typical experimental parameters for a 1D 1H NMR spectrum obtained on a 

Bruker 700 MHz spectrometer with a cryoprobe correspond to 128 scans, 16 

dummy scans, 32,768 data points, a spectral width of 11,160.7 Hz, and a 

relaxation delay of 1.5 (see Note 16).

10. Automated data collection of the entire set of metabolomics samples is 

accomplished using Bruker ICONNMR 5 (see Fig. 5).

11. The sample filename, solvent, pulse program and temperature parameters are all 

defined in Bruker ICONNMR 5 (see Notes 15 to 19).

12. Collect the 1D 1H NMR spectrum for each replicate and each group (see Note 9).

13. The data is processed initially with Topspin to verify spectral quality, but 

exported for further analysis.

3.15.2 2D 1H-13C-HSQC NMR (see Note 20)

1. Follow steps 1 to 7 from section 3.15.1.

2. Using ICONNMR 5, the sample filename, solvent, pulse program and 

temperature parameters are adjusted (see Notes 16 to 19).

3. The ICONNMR setup is similar to a 1D 1H NMR data collection as shown in 

Fig. 5.

4. A standard 2D 1H-13C-HSQC experiment (Bruker hsqcetgpsisp2 pulse program) 

is used to determine the 1H-13C chemical shift correlations for all 13C-labeled 

metabolites in the metabolomics sample (see Note 20).

5. Typical experimental parameters for a 2D 1H-13C-HSQC NMR spectrum 

obtained on a Bruker 700 MHz spectrometer with a cryoprobe correspond to 128 

scans, 32 dummy scans, and a 1.0 s relaxation delay. The spectrum is collected 

with 2 K data points and a spectrum width of 4,734 Hz in the direct dimension 

and 64 data points and a spectrum width of 18,864 Hz in the indirect dimension 

(see Note 21).

16.The NMR data acquisition parameters need to be adjusted to compensate for differences in the field strength and sensitivity of the 
NMR spectrometer actually used for the data collection. Specifically, the number of scans, the number of data points, the sweep-width 
(13.79 ppm, 1H frequency range) and the frequency-offset (centered on water peak at 4.70 ppm) need to be adjusted according to the 
type and configuration of the NMR spectrometer used for the study.
19.Parameters to check before you queue experiments in ICONNMR for 1D 1H NMR are: number of scans ns, number of dummy 
scans ds, 90 degree pulse p1, delay d1, sweep width sw, receiver gain rg, experiment temperature te, and automation setup aunm. We 
recommend using au_zgonly as the automation setup. This will collect all samples at the same receiver gain, which will avoid peak 
intensity variation across the dataset.
20.NMR metabolomics studies are beginning to make use of HMBC, TOCSY, HSQC-TOCSY, 2D J-Resolved spectra, or other 
experiments along with the traditional 2D 1H-13C HSQC approach. Heteronuclear isotope labels like 15N, 31P and other isotope-
labeled metabolites may be detected in addition to 1H- and 13C-labeled metabolites [93]. Accordingly, experimental parameters, data 
processing and preprocessing methods, and data analysis techniques all need to be adjusted to accommodate the specifics of each 
NMR experiment.
21.2D 1H-13C-HSQC parameters (hsqcetgpsisp2) - 1024 data point in F2 and F1, Non-Uniform Sampling at 25%, O1P = 4.7 ppm, 
O2P (offset for 13C) = 75 ppm, NS = 64, DS = 16, d1 =2, P1 = 10 − 13 μs depending on salinity, CPDPRG2 = garp (decoupling 
program), PCPD2 = 55 μs at PLW12 = 4.09 W.
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6. Implementation of fast NMR methods that includes non-uniform sampling 

significantly decreases data acquisition time and/or increases spectral resolution, 

but may introduce artifacts (see Note 22).

7. Collect the 2D 1H-13C-HSQC NMR spectrum for each replicate and each group 

(see Note 9).

8. Process the data initially with Topspin to verify spectral quality, but exported for 

further analysis (see Figs. 6 and 7).

3.16 NMR Data Processing (see Note 23)

All NMR data is processed and analyzed with our MVAPACK software [57], our PCA/PLS-

DA utilities [58], NMRPipe [59], and NMRViewJ [60]. See example processing scripts at 

http://bionmr.unl.edu/wiki/Scripts. Please see the NMRPipe and nmrDraw tutorial (https://

spin.niddk.nih.gov/NMRPipe/doc1/) and NMRViewJ documentation (http://docs.nmrfx.org/) 

for more details.

3.16.1 1D 1H NMR (see Figs. 6 and 8)

1. Apply a 1.0-Hz exponential apodization function to the FID.

2. Fourier transform the FID.

3. The resulting NMR spectrum is automatically simultaneously phased corrected 

and normalized with the phase-scatter correction algorithm [82].

4. Reference the NMR spectrum to the peak of TMSP-d4 (0.0 ppm).

5. Remove the noise and solvent regions manually.

3.16.2 2D 1H-13C-HSQC NMR (see Figs. 7 and 8)

1. Apply a sine-bell apodization function to the t2 dimension.

2. Zero fill the t2 dimension three times.

3. Fourier transform he t2 dimension, manually phase correct, and delete the 

imaginary data.

4. Transpose the data matrix.

5. Apply a sine-bell apodization function to the t1 dimension.

6. Zero fill the t1 dimension three times.

22.Non-uniform sampling of 2D 1H 13C HSQC data can be performed on metabolomics samples albeit with some caution. From our 
experience we recommend no lower than 20% sparsity using the burst augmented scheduler available on http://bionmr.unl.edu/dgs-
gensched.php. Download the sampling schedules as a text file for Topspin. Similarly, processing scripts need to be adapted for NUS 
datasets and a quick guide to that can be found online at http://bionmr.unl.edu/wiki/NUS.
23.A minimalistic approach to the processing of NMR data is optimal for a metabolomics analysis based on multivariate statistics 
models such as PCA and OPLS. The resulting multivariate statistical model is dependent on the choice of processing and 
preprocessing protocols. Baseline corrections and alignment, type of weighting (apodization) function, the type of spectral alignment 
or referencing, the resulting phase correction or phase correction algorithm, the number of zero-fills or the application of linear-
prediction, or any other data manipulation method will affect the outcome of the statistical model. Accordingly, it is best to avoid data 
processing steps since it is difficult to ascertain if the data processing induced a biologically-irrelevant bias to the data or improved the 
model.
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7. Fourier transform the t1 dimension and phase correct manually.

8. Reference the NMR spectrum in both dimensions to the peak of TMSP-d4 (0.0 

ppm).

3.17 NMR Data Preprocessing for Multivariate Modeling

To obtain an accurate and reliable multivariate statistical model, it is essential that the data 

set is properly preprocessed to remove normal systematic variations resulting from 

biological variability, instrument instability, and inconsistency in sample handling and 

preparation. Key preprocessing steps include: (1) alignment, (2) normalization, (3) binning, 

and (4) scaling, which is illustrated in Fig. 9. All NMR datasets are processed with our 

MVAPACK software [82] and our PCA/PLS-DA utilities [58]. See example MVAPACK 

scripts at http://bionmr.unl.edu/wiki/Scripts.

3.17.1 1D 1H NMR

1. Spectra may first be normalized based on either the total cell count or the total 

protein concentration using the BCA (Bicinchoninic Acid) protein estimation 

assay using parallel dishes treated similarly.

2. Normalize the spectra with the PSC algorithm [82].

3. Align and/or bin the spectra. For principal component analysis (PCA), use the 

following parameters:

a. Globally align the spectral data to the peak of TMSP-d4 at 0.0 ppm.

b. Regionally align the spectral data using the icoshift algorithm [83].

c. Bin the spectral data using the adaptive, intelligent binning algorithm 

[84].

4. For orthogonal projection to latent structures (OPLS), use the following 

parameters:

a. Globally align the spectral data to the peak of TMSP-d4 at 0.0 ppm.

b. Regionally align the spectral data using the icoshift algorithm [83].

c. The spectral data are not binned. Instead, use the full-resolution spectral 

data to build the model.

5. Manually remove the solvent peaks and noise regions.

6. Scale the data set using Pareto scaling.

7. Generate the PCA or OPLS model from the data matrix.

3.17.2 2D 1H-13C-HSQC NMR

1. Spectra may first be normalized based on either the total cell count or the total 

protein concentration as explained above.

2. Normalize the spectral data using standard normal variate normalization.
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3. Bin the spectral data using a generalized adaptive, intelligentbinning algorithm 

[84].

4. Pareto scale the data.

5. Generate a PCA or OPLS model from the data matrix.

3.18 Statistical Analysis

Data sets are analyzed with our MVAPACK software [57], our PCA/PLS-DA utilities [58], 

and R [85]. See example MVAPACK and R scripts at http://bionmr.unl.edu/wiki/Scripts.

Improper application of statistical methods is a serious issue in the field of metabolomics, 

which results from some common misconceptions. For example, validation of supervised 

multivariate statistical methods are routinely lacking. Instead, supervised OPLS and PLS 

models need to be validated using a cross validation score like CV-ANOVA [86] and/or 

response permutation testing [87]. R2 and Q2 values, from these supervised models provide 

a measure of model fitness from the original data and a measure of consistency between the 

original and predicted data. R2 and Q2 values do not provide for model validation without a 

proper standard of comparison.

Metabolomics data sets are often described using PCA or PLS/ OPLS models. It is important 

to note that PCA finds the largest source of variance in the dataset irrespective of the intent 

of the study. Separation of clusters observed in a PCA model may not have anything to do 

with a drug treatment if there are other major sources of variance in the data. Thus, a 

loadings plot generated from a PCA model represents all of the variation in the data set, not 

just the expected changes induced by the drug treatment. Supervised methods, like PLS and 

OPLS, address this issue by aggressively forcing group separation based on the defined 

group membership. So, by design, group separation is almost always achieved in a 

supervised model and should not be interpreted as a novel discovery in itself. Again, group 

separation may occur irrespective of the validity of the model. This happens because PLS 

and OPLS models are easily over-fitted, especially for metabolomics data sets since the 

number of variables (e.g., metabolites) are typically larger than the number of replicates. 

This forced separation of groups also contributes to a common misconception in the 

metabolomics community, the incorrect belief that OPLS or PLS out-performs PCA in 

identifying group separation and the underlying dataset variances. Remember, PCA finds the 

largest source of variance in the dataset, so if there is no variance in a PCA model, smaller 

group-specific variations are also not present. Thus, if PCA fails to identify group separation 

it is unlikely that PLS or OPLS will yield a valid model despite the appearance of group 

separation [87]. Simply, PCA, PLS and OPLS generate different models by extracting 

different information to achieve different goals.

PLS and OPLS appear to provide a similar model. In fact, a comparison of PLS and OPLS 

scores plots generated from the same data set may suggest the only difference is a relative 

rotation of the group-defined ellipses. Nevertheless, this apparently subtle change highlights 

a critical difference. PLS intermingles both group-independent and group dependent 

variance; whereas, OPLS places group-independent variance (e.g., confounding factors such 

as differences in diet, age, race, etc.) orthogonal to group-dependent variance. Therefore, a 
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metabolite identified as a major contributor to an OPLS model is strictly the result of the 

defined group difference. Accordingly, we strongly recommend using OPLS instead of PLS.

3.18.1 Univariate Analysis

1. Determine relative metabolite abundances from NMR spectral peak heights 

and/or peak volumes (see Fig. 8).

2. Normalize relative metabolite abundances on a per spectrum basis. One common 

approach is to convert the absolute peak intensities (arbitrary units) to a Z-score:

Z =
Ii − Ī

σ
(1)

where Ī is the average peak intensity for the spectrum, Ii is the intensity of peak i, 
and σ is the standard deviation of peak intensities. Peak intensities may also be 

normalized to the total number of cells, to the total protein concentration (see 
section 3.17.1), to the average spectral noise, or to an internal standard (see Note 

24). Relative metabolite abundances may also be converted to fold-changes:

F =
Ii
Io

(2)

where Ii is the normalized peak intensity of metabolite i from a treated spectrum 

and Io is the normalized peak intensity of metabolite i from the control or 

untreated spectrum.

3. A standard Student’s t-test is commonly used to determine statistical significance 

only for a pairwise comparison of metabolite changes based on either fold-

changes or normalized peak intensities (see Note 25). A statistically significant 

difference is typically identified by a p-value < 0.05 (see Fig. 8).

4. A Student’s t-test is insufficient for the multiple comparisons that are common to 

a metabolomics study [87,88]. In order to identify the set of metabolites that 

exhibit a statistically significant change, a multiple hypothesis test correction 

method such as a Benjamini-Hochberg [89] or a Bonferroni [90] correction must 

be applied (see Note 25 and 26).

24.For NMR, relative peak intensities are averaged across all replicates per group and for each NMR peak assigned to the metabolite. 
Most metabolites will have more than one peak in an NMR spectrum and commonly all NMR peaks are incorporated into an average 
relative peak intensity. If a metabolite is differentially labeled due to contributions from different pathways, it is then appropriate to 
show single resonances for the metabolite. NMR peaks may need to be scaled by the number of attached hydrogens, since peak 
intensity is proportional to the number of nuclei.
25.There are a wide variety of statistical tests available to analyze the data. Some examples are the Mann–Whitney U test [94], 
Welch’s t-test [95], Hotelling’s t-squared statistic [96], and one-way analysis of variance [87], among others. The proper choice of a 
statistical test depends on several factors. A good introduction to what dictates choice of statistical tests can be found in A Biologist’s 
Guide To Statistical Thinking And Analysis [95].
26.In effect, the uncertainty in each pairwise comparison (as determined by the Student’s t-test) is compounded with the addition of 
each metabolite to a set. The actual p value for a set of metabolites is defined as:

p = 1‐(1‐α)m (3)
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5. A heat-map with hierarchical clustering is commonly generated from the fold-

changes or normalized peak intensities using R (see example R script at http://

bionmr.unl.edu/wiki/Scripts). The heat-map may contain relative metabolite 

abundances for each individual replicate in the study or simply the replicate-

averages for each group (see Note 27).

3.18.2 Multivariate Analysis

1. Generate a PCA and or OPLS model from the data matrix.

2. Fractions of explained variation (R2
X and R2

Y) are computed during PCA or 

OPLS model training.

3. Internally cross-validate the PCA or OPLS model using seven-fold Monte Carlo 

cross-validation [91] to compute Q2 values (see Note 28).

4. For an OPLS model, compare the Q2 value against a distribution of null model 

Q2 values in 1000 rounds of response permutation testing [87]. Group 

membership is randomly reassigned to generate the set of null models. A p-value 

is calculated from a comparison of the true Q2 value to the set of null model Q2 

values (see Note 28).

5. Further validate the model using CV-ANOVA significance testing, which is used 

to calculate another model p-value [86] (see Note 28).

6. Scores plots (see Figure 6), back-scaled loadings plots (see Figure 8), S-plots 

and/or SUS-plots are often generated from OPLS models.

7. PCA/PLS-DA utilities [58] are used to define group membership by drawing an 

ellipse per group onto the scores plots (see Figs. 6 and 7). Each ellipse 

corresponds to 95% confidence interval for a normal distribution. The PCA/PLS-

DA utilities also generate a metabolomics tree diagram that identifies the 

statistical significance (p-value and/or bootstrap value) and the relative similarity 

of each group in the scores plot (see Fig. 6). The p-value or bootstrap number 

from the pairwise comparison is labeled at each node in the tree.

3.19 Data Analysis - Metabolite Assignment from 1D 1H NMR Data

NMR data are analyzed with NMRPipe [59], NMRViewJ [60], and Chenomx. See example 

scripts at http://bionmr.unl.edu/wiki/Scripts. Please see the NMRPipe and nmrDraw tutorial 

(https://spin.niddk.nih.gov/NMRPipe/doc1/) and NMRViewJ documentation (http://

docs.nmrfx.org/) for more details.

where m is the number of hypotheses (metabolites) and α is typically defined as 0.05. Accordingly, a set of 10 metabolites becomes an 
insignificant p = 0.401 even though each individual metabolite is statistically significant based on a pairwise Student’s t-test with a p < 
0.05.
27.It is more informative to display all replicates from each group in the heatmap. Hierarchical clustering of each replicate is 
indicative of the relative group separation and provides further confirmation of an observed group separation from a PCA, PLS or 
OPLS scores plot.
28.Typical R2 values > Q2 values, and Q2 values > 0.4. While p-values < 0.05 are typically acceptable for a supervised PLS-DA or 
OPLS model. Usually, high quality PLS/OPLS models from metabolomics data sets yield p-values << 0.001.
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1. Perform the identification of metabolites in a 1D 1H NMR spectrum with 

software programs such as Chenomx. Chenomx matches the experimental 1D 1H 

NMR spectrum to a database of 1D 1H NMR spectra of known metabolites. 

Chenomx attempts to explain or describe the experimental NMR spectrum by 

combining or summing as many of the individual reference metabolite NMR 

spectra as needed. In addition to metabolite identification, Chenomx also 

provides an estimate of the metabolite concentration (see Note 29).

2. Upload the 1D 1H NMR spectrum for processing. The NMR spectra can be batch 

processed or processed one at a time.

3. Phase the 1D 1H NMR spectrum.

4. Calibrate and reference the 1D 1H NMR spectrum to TMSP-d4, using the known 

concentration of TMSP-d4.

5. Send the properly phased and calibrated 1D 1H NMR spectrum to the Chenomx 

profiler where the spectrum is compared against the metabolite library.

6. Chenomx will overlay a 1D 1H NMR reference spectrum for each metabolite 

identified in the experimental 1D 1H NMR spectrum. The spectral overlay needs 

to be manually adjusted to optimize the alignment of the experimental 1D 1H 

NMR spectrum with the reference spectrum. Fig. 8 shows an example of a 

labeled 1D 1H NMR spectrum.

3.20 Data Analysis - Metabolite Assignment from 2D 1H-13C-HSQC NMR Data

NMR data are analyzed with NMRPipe [59] and NMRViewJ [60]. See example scripts at 

http://bionmr.unl.edu/wiki/Scripts. Please see the NMRPipe and nmrDraw tutorial (https://

spin.niddk.nih.gov/NMRPipe/doc1/) and NMRViewJ documentation (http://docs.nmrfx.org/) 

for more details.

3.20.1 NMRPipe Processing to Obtain. ft2 and .nv Files.

1. The data files from ICONNMR can be used directly by NMRPipe to process the 

2D 1H-13C-HSQC spectra.

2. On a Linux workstation, open a terminal and go to the directory that contains the 

NMR data. Type bruker to start the NMRpipe software.

3. Read in the experimental parameters file by clicking Read Parameters and verify 

that all the parameters have been correctly updated. Confirm that the mode of 

data collection has been set to echo-antiecho if the NMR spectrum was collected 

with the hsqcetgpsisp2 pulse program.

4. Click Update Script to save an NMRPipe processing script fid.com file in the 

working directory.

29.NMR field strength and sample pH are important aspects of any chemical shift database matching. Thus, we strongly recommend 
performing a chemical shift match with the correct database (e.g., same NMR field strength and pH) while using Chenomx or similar 
software.
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5. Type ./fid.com to start the NMRPipe processing script.

6. When the NMRPipe processing has finished, type nmrDraw to view the 

processed NMR spectrum. Please see the NMRPipe and nmrDraw tutorial 

(https://spin.niddk.nih.gov/NMRPipe/doc1/) for detailed instructions.

7. Phase the NMR spectrum in NMRpipe and note the p0 and p1 values for both the 
1H and 13C dimensions.

8. Edit the NMRPipe processing script hsqcproc.com and replace the parameters 

associated with the NMRPipe phase correction command, ps, with the p0 and p1 

values obtained from step 7.

9. Type ./hsqcproc.com to start the NMRPipe processing script

10. Repeat steps 3 to 9 for each 2D 1H-13C-HSQC NMR spectrum in the dataset. 

This produces a set .ft2 files. One .ft2 file is created for each 2D 1H-13C-HSQC 

NMR spectrum collected for each replicate from each group.

11. Copy all of the .ft2 files into a new folder and use the NMRPipe script 

addnmr.com to generate NMRviewJ files from the .ft2 files. A .nv file will be 

generated for each individual spectrum (.ft2 file) with a numerically incremented 

root name of “Final_”. In addition, the script will combine all of the NMR 

spectra together into a single file called results.nv. The script will also generate 

the text file, rate.txt, which lists all of the individual .nv files (Final_).

3.20.2 Peak Picking and Peak Integration of 2D 1H-13C-HSQC Spectra in 
NMRviewJ

1. Type nmrviewj to start NMRviewJ. Refer to NMRViewJ documentation (http://

docs.nmrfx.org/) for more details.

2. From the Dataset toolbar in the main window, use the Open and Draw Datasets 
function to select the result.nv file.

3. Right click and select attributes to open the attributes window.

4. In the attributes window, select the PeakPick tab.

5. In the blank Lists field in the attribute window, type a filename (i.e., lists) for the 

new peak pick list. Click the Pick button. The software will automatically peak 

pick the displayed spectrum and populate lists with the peak ID number, 

chemical shifts, and intensity.

6. Choose Show Peak Table from the Peak toolbar on the main window. A peak 
table window will open that lists the peak ID, peak intensity and the peak 

chemical shifts.

7. Manually edit the peak list and remove solvent peaks, noise peaks or other 

spectral artefacts. Peaks are deleted from the peak table by using the delete 

function in the PeakPick tab in the attributes window along with the spectrum 
display window. In the spectrum display window, use the mouse to position the 

two cursors around any peak or spectral region to form a box. Then, click the 
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Delete button under the PeakPick tab in the attributes window to remove the 

peak(s).

8. After the peak table has been completely edited, on the peak table window 

choose the Edit tab and select Compress & Degap. Answer yes to the pop-up 

question. This will finalize changes to the peak list and prevent any further edits.

9. On the peak table window choose the Edit tab and then select Save Table. A file 

browser window will open in order to choose a name and location to save the 

new peak list file. The saved peak pick file can be viewed and edited in Excel.

10. In order to obtain peak intensities across the entire set of NMR spectra in the 

dataset, click on the Analysis tab on the main window and select Rate Analysis. 

A set-up window for the Rate Analysis will open.

11. In the Rate Analysis set-up window:

a. Set the Prefix for matrix numbers field to Final_

b. Set the Peaklist field to lists (defined in section 3.20.2 step 5).

c. Make sure Auto fit is checked.

d. Use all other default settings.

e. Click Load time file.

f. In the file browser window, select rate.txt (created in section 3.20.1 step 

11).

g. Click Measure All. The software automatically populates the table in 

the Rate Analysis set-up window with all of the peak intensities across 

the entire NMR dataset.

h. Click Save Table. In the file browser window, save the peak intensities 

table to a new filename (i.e., intensities).

12. The peak list (i.e., list) and the peak intensities (i.e., intensities) files are merged 

in Microsoft Excel using the common peak ID column. The ppm1 (1H ppm) and 

ppm2 (13C ppm) columns are added to the peak intensities columns to generate a 

complete matrix of NMR peaks and intensities across the entire data set.

13. The merged Excel file is saved to a new filename.

3.20.3 Metabolite Assignments from 2D 1H-13C-HSQC Peak Lists

1. The complete list of peaks obtained from the NMRviewJ analyses is searched 

using NMR metabolomics databases such as HMDB [62], BMRB [63], or other 

databases (see Note 30).

2. On the HMDB homepage, choose the Search tab and select 2D NMR Search.

30.BMRB, HMDB and other such databases operate in a similar fashion. Simply upload a peak list with a set of chemical shift 
tolerances and obtain a list of potential matches.
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3. From the Spectra Library pull-down menu, choose 13C HSQC.

4. Cut and paste the 2D 1H-13C-HSQC peak lists into the Peak List field. One set of 
1H and 13C chemical shifts, respectively, per line. Chemical shift values should 

only be separated by white space.

5. Set the 1H chemical shift error tolerance to 0.05 ppm (X-axis Peak Tolerance ± 
field) and the 13C chemical shift error tolerance to 0.10 ppm (Y-axis Peak 
Tolerance ± field).

6. Click the Search button. Depending on the size of the peak list, the software will 

return a ranked-order list of possible metabolites based on the number of 

chemical shift matches to reference spectrum.

7. Manually curate the list of potential metabolite assignments based on the number 

of chemical shift assignments, the quality of the spectral overlap (i.e., chemical 

shift match), number of other metabolites in the same metabolic pathway, and the 

biological system (i.e., is it a reasonable or possible metabolite for the organism),

8. Obtain additional NMR (e.g., HMBC, HSQC-TOCSY) and/or MS spectral data 

to confirm or refute the assignment.

9. An assigned 2D 1H-13C-HSQC spectrum is shown in Fig. 8.
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Fig. 1. 
A schematic diagram outlines the overall drug discovery process and highlights the role of 

NMR and NMR-based metabolomics at every step in the process. Traditional drug discovery 

roles for NMR are boxed in grey, while NMR metabolomics applications are boxed in green.
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Fig 2. 
Cartoon illustrations of hypothetical PCA scores plot for the following scenarios (a) inactive 

compound, (b) active and selective inhibitor, (c) active, nonselective inhibition of target and 

secondary protein, and (d) active, nonselective preferential inhibition of secondary protein. 

Labels correspond to: wild-type cells (wt) and mutant cells (mut). Reproduced with 

permission from Ref 51. Copyright © 2006 American Chemical Society.
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Fig. 3. 
(a) A summary of the design and planning steps in a typical metabolomics-based drug 

discovery project. (b) A workflow for a typical cell-based NMR metabolomics experiment 

focused on understanding the mechanism of action for a chemical lead.
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Fig. 4. 
An example bacterial growth curve for a cell line treated with a drug at an OD600 of 0.6. The 

cellular metabolome should be extracted during the log phase, which captures the majority 

of metabolic variations.

Bhinderwala and Powers Page 40

Methods Mol Biol. Author manuscript; available in PMC 2020 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 5. 
High-throughput sample preparation and data collection. (a) Images illustrating the loading 

of replicate metabolomics samples into the 96 well plate SampleJet configuration. (b) 

ICONNMR screenshots illustrating the stepwise workflow for setting-up a high-throughput 

1D 1H NMR metabolomics screen.
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Fig. 6. 
A representative example of bacterial cells treated with existing drug therapies to decipher 

the in vivo mechanism of action of unknown drugs using 1H NMR based metabolomics. (a) 

2D OPLS-DA scores plot demonstrating the clustering pattern for 12 antibiotics with known 

biological targets and three compounds of unknown in vivo activity: untreated cells (■ 
black), chloramphenicol (♦ teal), ciprofloxacin (♦ orange), gentamicin (♦ pink), kanamycin 

(♦ purple), rifampicin (♦ red ), streptomycin (♦ yellow), ethambutol (▼ green), 

ethionamide (▼ blue), isoniazid (▼ pink), ampicillin (▲ red ), D-cycloserine (▲ purple), 

vancomycin (▲ orange), amiodorone (● purple), chlorprothixene (● green), and 

clofazimine (● red) treated M. smegmatis cells. The ellipses correspond to the 95% 

confidence limits from a normal distribution for each cluster. The untreated M. smegmatis 
cells (■ black) were designated the control class, and the remainder of the cells was 

designated as treated. The OPLS-DA used one predictive component and six orthogonal 

components to yield a R2
X of 0.715, R2

Y of 0.803, and Q2 of 0.671. (b) Metabolomics tree 

diagram was determined from the OPLS-DA scores plot. The coloring scheme and 

associated symbol for each compound in the tree diagram correlates with colored symbols in 

the OPLS-DA scores plot. The bootstrap numbers for each node are indicated on the tree 

diagram. Reproduced with permission from Ref 52. Copyright © 2012 American Chemical 

Society.
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Fig. 7. 
Metabolomics analysis on the effect of (R,R′)-MNF in PANC-1 cells. (a) PCA scores 

resulting from modeling of the 1D 1H NMR data matrix from untreated PANC-1 cells (open 

symbols) and PANC-1 cells treated with 0.5 μM (R,R′)-MNF (gray symbols) or 1 μM (R,R

′)-MNF (black symbols). A statistically significant degree of separation is observed between 

treated and untreated groups. The ellipses correspond to 95% confidence intervals for a 

normal distribution. Each principal component is labeled with the corresponding R2 and Q2 

values. (b) Bar graph of 1D 1H NMR peak intensities (relative metabolite concentrations) 

resulting from the analysis of PANC-1 cellular extracts after a 1 h incubation with 0.5 μM 

(hatched bars) or 1 μM (filled bars) of (R,R′)-MNF versus untreated cells (open bars). 

Metabolites were identified from the back-scaled loadings plots as the major contributors to 

the group separations in the OPLS models. Benjamini-Hochberg corrected Student's t-test p-

values from pairwise comparisons are indicated. An asterisk indicates significance between 

the control and 1 μM of (R,R′)-MNF while an asterisk with underlying bar indicates 

Bhinderwala and Powers Page 43

Methods Mol Biol. Author manuscript; available in PMC 2020 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significance between the control and both treated groups. (c) Metabolic pathway analysis of 

the identified metabolites found in the 1D 1H NMR spectra of the PANC-1 extracts after 1 h 

incubation with 0.5 μM or 1 μM of (R,R′)-MNF. Each circle represents a matched pathway 

and is colored according to its p values from the pathway enrichment analysis. Statistically 

significant pathways (p < 0.05) are labeled with their common name. (d and e) Targeted 

metabolomics on the effect of 1 μM (R,R′)-MNF on intracellular concentrations of 

carnitine, 1-lactate, and 3-hydroxybutyrate in PANC-1 cells (d) as well as MCF-7 and MDA-

MD-321 breast tumor cells (e). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. Reproduced with 

permission from M. Bernier, J. Catazaro, N. S. Singh, Q. Shi. M. Wang, Q. Yang, A. 

Wnorowski, K. Jozwiak, R. Powers, and I. W. Wainer* (2017) "GPR55 Receptor 

Antagonists Decrease Glycolytic Activity in PANC-1 Pancreatic Cancer Cell Lines and 

Tumor Xenografts", International Journal of Cancer, 141(10):2131-2142 Copyright © 2017 

John Wiley and Sons.
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Fig. 8. 
Examples of a typical (a) 2D 1H-13C HSQC spectrum and (b) 2D 1H-1H TOCSY spectrum 

acquired from bacterial cells. Reproduced with permission from Zhang, B.; Halouska, S.; 

Schiaffo, C. E.; Sadykov, M. R.; Somerville, G. A.; Powers, R. NMR analysis of a stress 

response metabolic signaling network. J. Proteome Res., 2011, 10, 3743- 3754. Copyright © 

2011 American Chemical Society. (c) 1D 1H NMR spectrum acquired from bacterial cells. 

Reproduced with permission from S. Halouska, R. J. Fenton, D. K. Zinniel, D. D. Marshall, 

R. G. Barletta* and R. Powers* (2014) "Metabolomics Analysis Identifies D-Alanine-D-

alanine Ligase as the Primary Lethal Target of D-cycloserine in Mycobacteria", J. Proteome 

Res., 13(2):1065-1076. Copyright © 2014, American Chemical Society. (d) Back-scaled 

loadings plot for 1D 1H NMR spectra showing 15 different metabolites that vary between 

groups. Reproduced with permission from Ref 15. Copyright © 2017 American Society for 

Microbiology. (e) Heatmap showing differences between the vancomycin-susceptible 

Staphylococcus aureus (VSSA) strains and S. aureus with intermediate-level resistance to 

vancomycin (VISA) metabolome. The heatmap was generated by using 2D 1H-13C HSQC 

NMR spectrum-normalized peak intensities of the VSSA or VISA strain, and hierarchical 

clustering is depicted by the dendrogram. The color scale ranges from 0 (red; less intense) to 

1 (green; intense). Statistical significance is denoted by a single asterisk if determined using 

Student’s t test at the 95% confidence level or by two asterisks if determined by Student’s t 

test with a Bonferroni correction for multiple-hypothesis testing. Reproduced with 

permission from Ref 15. Copyright © 2017 American Society for Microbiology.
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Fig. 9. 
Example of an MVAPACK processing script for a 1D 1H NMR dataset. The numbered steps 

in the flow diagram correspond to the numbered lines in the processing script.
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Table 1:

A list of typical exclusion criteria for a metabolomics clinical study

Exclusion Criteria

   •  Acute illness within 2 weeks

   •  Comorbidity (e.g., chronic lung disease, depression, etc.)

   •  Excessive intake of alcohol

   •  Obesity

   •  Pregnant women or menstruating women

   •  Recreational drug use

   •  Risk of transmitting disease through urine (e.g., hepatitis B or C)

   •  Significant abnormalities in clinical chemistry of hematology

   •  Smoker
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