204 research outputs found

    Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants

    Get PDF
    BACKGROUND: Carbon and nitrogen are two signals that influence plant growth and development. It is known that carbon- and nitrogen-signaling pathways influence one another to affect gene expression, but little is known about which genes are regulated by interactions between carbon and nitrogen signaling or the mechanisms by which the different pathways interact. RESULTS: Microarray analysis was used to study global changes in mRNA levels due to carbon and nitrogen in Arabidopsis thaliana. An informatic analysis using InterAct Class enabled us to classify genes on the basis of their responses to carbon or nitrogen treatments. This analysis provides in vivo evidence supporting the hypothesis that plants have a carbon/nitrogen (CN)-sensing/regulatory mechanism, as we have identified over 300 genes whose response to combined CN treatment is different from that expected from expression values due to carbon and nitrogen treatments separately. Metabolism, energy and protein synthesis were found to be significantly affected by interactions between carbon and nitrogen signaling. Identified putative cis-acting regulatory elements involved in mediating CN-responsive gene expression suggest multiple mechanisms for CN responsiveness. One mechanism invokes the existence of a single CN-responsive cis element, while another invokes the existence of cis elements that promote nitrogen-responsive gene expression only when present in combination with a carbon-responsive cis element. CONCLUSION: This study has allowed us to identify genes and processes regulated by interactions between carbon and nitrogen signaling and take a first step in uncovering how carbon- and nitrogen-signaling pathways interact to regulate transcription

    Genome-wide investigation of light and carbon signaling interactions in Arabidopsis

    Get PDF
    BACKGROUND: Light and carbon are two essential signals influencing plant growth and development. Little is known about how carbon and light signaling pathways intersect or influence one another to affect gene expression. RESULTS: Microarrays are used to investigate carbon and light signaling interactions at a genome-wide level in Arabidopsis thaliana. A classification system, 'InterAct Class', is used to classify genes on the basis of their expression profiles. InterAct classes and the genes within them are placed into theoretical models describing interactions between carbon and light signaling. Within InterAct classes there are genes regulated by carbon (201 genes), light (77 genes) or through carbon and light interactions (1,247 genes). We determined whether genes involved in specific biological processes are over-represented in the population of genes regulated by carbon and/or light signaling. Of 29 primary functional categories identified by the Munich Information Center for Protein Sequences, five show over-representation of genes regulated by carbon and/or light. Metabolism has the highest representation of genes regulated by carbon and light interactions and includes the secondary functional categories of carbon-containing-compound/carbohydrate metabolism, amino-acid metabolism, lipid metabolism, fatty-acid metabolism and isoprenoid metabolism. Genes that share a similar InterAct class expression profile and are involved in the same biological process are used to identify putative cis elements possibly involved in responses to both carbon and light signals. CONCLUSIONS: The work presented here represents a method to organize and classify microarray datasets, enabling one to investigate signaling interactions and to identify putative cis elements in silico through the analysis of genes that share a similar expression profile and biological function

    The RCSB PDB information portal for structural genomics

    Get PDF
    The RCSB Protein Data Bank (PDB) offers online tools, summary reports and target information related to the worldwide structural genomics initiatives from its portal at . There are currently three components to this site: Structural Genomics Initiatives contains information and links on each structural genomics site, including progress reports, target lists, target status, targets in the PDB and level of sequence redundancy; Targets provides combined target information, protocols and other data associated with protein structure determination; and Structures offers an assessment of the progress of structural genomics based on the functional coverage of the human genome by PDB structures, structural genomics targets and homology models. Functional coverage can be examined according to enzyme classification, gene ontology (biological process, cell component and molecular function) and disease

    REBASEā€”a database for DNA restriction and modification: enzymes, genes and genomes

    Get PDF
    REBASE is a comprehensive database of information about restriction enzymes, DNA methyltransferases and related proteins involved in the biological process of restrictionā€“modification (Rā€“M). It contains fully referenced information about recognition and cleavage sites, isoschizomers, neoschizomers, commercial availability, methylation sensitivity, crystal and sequence data. Experimentally characterized homing endonucleases are also included. The fastest growing segment of REBASE contains the putative Rā€“M systems found in the sequence databases. Comprehensive descriptions of the Rā€“M content of all fully sequenced genomes are available including summary schematics. The contents of REBASE may be browsed from the web (http://rebase.neb.com) and selected compilations can be downloaded by ftp (ftp.neb.com). Additionally, monthly updates can be requested via email

    Substrate binding disrupts dimerization and induces nucleotide exchange of the chloroplast GTPase Toc33

    No full text
    GTPases act as molecular switches to control many cellular processes, including signalling, protein translation and targeting. Switch activity can be regulated by external effector proteins or intrinsic properties, such as dimerization. The recognition and translocation of pre-proteins into chloroplasts [via the TOC/TIC (translocator at the outer envelope membrane of chloroplasts/inner envelope membrane of chloroplasts)] is controlled by two homologous receptor GTPases, Toc33 and Toc159, whose reversible dimerization is proposed to regulate translocation of incoming proteins in a GTP-dependent manner. Toc33 is a homodimerizing GTPase. Functional analysis suggests that homodimerization is a key step in the translocation process, the molecular functions of which, as well as the elements regulating this event, are largely unknown. In the present study, we show that homodimerization reduces the rate of nucleotide exchange, which is consistent with the observed orientation of the monomers in the crystal structure. Pre-protein binding induces a dissociation of the Toc33 homodimer and results in the exchange of GDP for GTP. Thus homodimerization does not serve to activate the GTPase activity as discussed many times previously, but to control the nucleotide-loading state. We discuss this novel regulatory mode and its impact on the current models of protein import into the chloroplast

    The protein structure initiative structural genomics knowledgebase

    Get PDF
    The Protein Structure Initiative Structural Genomics Knowledgebase (PSI SGKB, http://kb.psi-structuralgenomics.org) has been created to turn the products of the PSI structural genomics effort into knowledge that can be used by the biological research community to understand living systems and disease. This resource provides central access to structures in the Protein Data Bank (PDB), along with functional annotations, associated homology models, worldwide protein target tracking information, available protocols and the potential to obtain DNA materials for many of the targets. It also offers the ability to search all of the structural and methodological publications and the innovative technologies that were catalyzed by the PSI's high-throughput research efforts. In collaboration with the Nature Publishing Group, the PSI SGKB provides a research library, editorials about new research advances, news and an events calendar to present a broader view of structural biology and structural genomics. By making these resources freely available, the PSI SGKB serves as a bridge to connect the structural biology and the greater biomedical communities

    Utopia documents: linking scholarly literature with research data

    Get PDF
    Motivation: In recent years, the gulf between the mass of accumulating-research data and the massive literature describing and analyzing those data has widened. The need for intelligent tools to bridge this gap, to rescue the knowledge being systematically isolated in literature and data silos, is now widely acknowledged

    Flexible structural protein alignment by a sequence of local transformations

    Get PDF
    Motivation: Throughout evolution, homologous proteins have common regions that stay semi-rigid relative to each other and other parts that vary in a more noticeable way. In order to compare the increasing number of structures in the PDB, flexible geometrical alignments are needed, that are reliable and easy to use

    SSMap: A new UniProt-PDB mapping resource for the curation of structural-related information in the UniProt/Swiss-Prot Knowledgebase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequences and structures provide valuable complementary information on protein features and functions. However, it is not always straightforward for users to gather information concurrently from the sequence and structure levels. The UniProt knowledgebase (UniProtKB) strives to help users on this undertaking by providing complete cross-references to Protein Data Bank (PDB) as well as coherent feature annotation using available structural information. In this study, SSMap ā€“ a new UniProt-PDB residue-residue level mapping ā€“ was generated. The primary objective of this mapping is not only to facilitate the two tasks mentioned above, but also to palliate a number of shortcomings of existent mappings. SSMap is the first isoform sequence-specific mapping resource and is up-to-date for UniProtKB annotation tasks. The method employed by SSMap differs from the other mapping resources in that it stresses on the correct reconstruction of the PDB sequence from structures, and on the correct attribution of a UniProtKB entry to each PDB chain by using a series of post-processing steps.</p> <p>Results</p> <p>SSMap was compared to other existing mapping resources in terms of the correctness of the attribution of PDB chains to UniProtKB entries, and of the quality of the pairwise alignments supporting the residue-residue mapping. It was found that SSMap shared about 80% of the mappings with other mapping sources. New and alternative mappings proposed by SSMap were mostly good as assessed by manual verification of data subsets. As for local pairwise alignments, it was shown that major discrepancies (both in terms of alignment lengths and boundaries), when present, were often due to differences in methodologies used for the mappings.</p> <p>Conclusion</p> <p>SSMap provides an independent, good quality UniProt-PDB mapping. The systematic comparison conducted in this study allows the further identification of general problems in UniProt-PDB mappings so that both the coverage and the quality of the mappings can be systematically improved for the benefit of the scientific community. SSMap mapping is currently used to provide PDB cross-references in UniProtKB.</p
    • ā€¦
    corecore