34 research outputs found

    A new role for tamoxifen in oestrogen receptor-negative breast cancer when it is combined with epigallocatechin gallate

    Get PDF
    We have previously shown that tamoxifen+epigallocatechin gallate (EGCG) is synergistically cytotoxic towards oestrogen receptor (ER)-negative breast cancer cells. To determine if this response would correlate with significant tumour suppression in vivo, athymic nude female mice were implanted with MDA-MB-231 cells and treated with tamoxifen, EGCG, EGCG+tamoxifen, or vehicle control for 10 weeks. Tumour volume in EGCG- (25 mg kg−1)+tamoxifen (75 Όg kg−1)-treated mice decreased by 71% as compared with vehicle control (P<0.05), whereas tumour weight was decreased by 80% compared with control (P<0.01). Epigallocatechin gallate treatment did not alter ER protein expression in MDA-MB-231 cells and thus was not a mechanism for the observed tumour suppression. However, western blotting of tumour extracts demonstrated that epidermal growth factor receptor (EGFR; 85% lower than control), pEGFR (78% lower than control), mammalian target of rapamycin (mTOR; 78% lower than control), and CYP1B1 (75% lower than control) were significantly lower after the combination treatment as compared with all other treatments. Nuclear factor-ÎșB (NF-ÎșB), b-Raf, p-MEK, S6K, 4EBP1, Akt, vascular EGFR-1 (VEGFR-1) and VEGF expressions were decreased in control but not in the individual treatments, whereas MEK, phospholipase D 1/2, TGFα, and ERK expressions were not changed after any treatment. The results demonstrate that tamoxifen at realistic doses (75 Όg kg−1) can suppress the growth of ER-negative breast cancer when combined with EGCG. In addition, the dominant mechanism for tumour suppression is the concomitant decrease in tumour protein expressions of mTOR and the EGFR

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology

    Get PDF
    Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Rapid linkage disequilibrium decay in the Lr10 gene in wild emmer wheat (Triticum dicoccoides) populations

    Full text link
    INTRODUCTION: Recombination is a key evolutionary factor enhancing diversity. However, the effect of recombination on diversity in inbreeding species is expected to be low. To estimate this effect, recombination and diversity patterns of Lr10 gene were studied in natural populations of the inbreeder species, wild emmer wheat (Triticum dicoccoides). Wild emmer wheat is the progenitor of most cultivated wheats and it harbors rich genetic resources for disease resistance. Lr10 is a leaf rust resistance gene encoding three domains: a coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NBS-LRR). RESULTS: Lr10 was sequenced from 58 accessions representing 12 diverse habitats in Israel. Diversity analysis revealed a high rate of synonymous and non-synonymous substitutions (d (S) = 0.029, d (N) = 0.018, respectively) in the NBS-LRR domains. Moreover, in contrast to other resistance genes, in Lr10 the CC domain was more diverse than the NBS-LRR domains (d (S) = 0.069 vs. 0.029, d (N) = 0.094 vs. 0.018) and was subjected to positive selection in some of the populations. Seventeen recombination events were detected between haplotypes, especially in the CC domain. Linkage disequilibrium (LD) analysis has shown a rapid decay from r (2) = 0.5 to r (2) = 0.1 within a 2-kb span. CONCLUSION: These results suggest that recombination is a diversifying force for the R-gene, Lr10, in the selfing species T. dicoccoides. This is the first report of a short-range LD decay in wild emmer wheat
    corecore