387 research outputs found

    Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.

    Get PDF
    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity

    The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is an important opportunistic human pathogen that is highly resistant to osmotic stresses. In order to survive an increase in osmolarity, bacteria immediately take up potassium and small organic compounds, also referred to as compatible solutes. The second messenger c-di-AMP binds to several receptor proteins, most of which are involved in ion and potassium uptake, that help bacteria cope with osmotic stress. In this study, we identified OpuCA, the ATPase component of an uptake system for the compatible solute carnitine, as a cdi-AMP target protein in S. aureus and found that a strain overproducing c-di-AMP showed reduced carnitine uptake. The CBS domains of OpuCA bound to c-di-AMP, and a crystal structure revealed a putative binding pocket for c-di-AMP in the cleft between the two CBS domains. Thus, c-di-AMP is involved in regulating both branches of osmoprotection (potassium uptake and compatible solute uptake), suggesting that c-di-AMP is a general osmotic stress regulato

    The HsiB1C1 (TssB-TssC) complex of the pseudomonas aeruginosa Type VI secretion system forms a bacteriophage tail sheathlike structure

    Get PDF
    Protein secretion systems in Gram-negative bacteria evolved into a variety of molecular nanomachines. They are related to cell envelope complexes, which are involved in assembly of surface appendages or transport of solutes. They are classified as types, the most recent addition being the type VI secretion system (T6SS). The T6SS displays similarities to bacteriophage tail, which drives DNA injection into bacteria. The Hcp protein is related to the T4 bacteriophage tail tube protein gp19, whereas VgrG proteins structurally resemble the gp27/gp5 puncturing device of the phage. The tube and spike of the phage are pushed through the bacterial envelope upon contraction of a tail sheath composed of gp18. In Vibrio cholerae it was proposed that VipA and VipB assemble into a tail sheathlike structure. Here we confirm these previous data by showing that HsiB1 and HsiC1 of the Pseudomonas aeruginosa H1-T6SS assemble into tubules resulting from stacking of cogwheel-like structures showing predominantly 12-fold symmetry. The internal diameter of the cogwheels is ∼100 Å, which is large enough to accommodate an Hcp tube whose external diameter has been reported to be 85 Å. The N-terminal 212 residues of HsiC1 are sufficient to form a stable complex with HsiB1, but the C terminus of HsiC1 is essential for the formation of the tubelike structure. Bioinformatics analysis suggests that HsiC1 displays similarities to gp18-like proteins in its C-terminal region. In conclusion, we provide further structural and mechanistic insights into the T6SS and show that a phage sheathlike structure is likely to be a conserved element across all T6SSs

    Responsive Nanogel Probe for Ratiometric Fluorescent Sensing of pH and Strain in Hydrogels

    Get PDF
    In this study a new pH-responsive nanogel probe containing a complementary nonradiative resonance energy transfer (NRET) fluorophore pair is investigated and its ability to act as a versatile probe of network-related changes in three hydrogels demonstrated. Fluorescent sensing using NRET is a powerful method for studying relationships between Angstrom length-scale structure and macroscopic properties of soft matter. Unfortunately, inclusion of NRET fluorophores into such materials requires material-specific chemistry. Here, low concentrations of preformed nanogel probes were included into hydrogel hosts. Ratiometric photoluminescence (PL) data for the gels labeled with the nanogel probes enabled pH-triggered swelling and deswelling to be studied as well as Ca2+-triggered collapse and solute release. PL measurements during compression of a nanogel probe-labeled nanocomposite gel demonstrated mechanochromic behavior and strain sensing. The new nanogel probes have excellent potential for investigating the internal structures of gels and provide a versatile ratiometric fluorescent platform for studying pH and strain

    Potential role of the posterior cruciate ligament synovio-entheseal complex in joint effusion in early osteoarthritis: a magnetic resonance imaging and histological evaluation of cadaveric tissue and data from the Osteoarthritis Initiative

    Get PDF
    Objective: This study explored posterior cruciate ligament (PCL) synovio-entheseal complex (SEC) microanatomy to determine whether it may participate in the early osteoarthritis (OA) disease process. Methods: SEC microanatomy and OA features were evaluated in 14 non-arthritic cadaveric knees (mean age = 69.9) using magnetic resonance imaging (MRI) and histology. MRI images of 49 subjects selected from the progression cohort of the Osteoarthritis Initiative (OAI) were evaluated by a musculoskeletal radiologist using an original semi-quantitative method for features associated with OA at the PCL tibial enthesis. Statistical analysis was performed using chi-square and Wilcoxon signed-rank tests to evaluate associations between SEC configuration and OA features. Results: The PCL formed a SEC-like structure encompassing bone- and ligament-lining intra-articular cartilages to which the posterior root of the medial meniscus contributed. Degenerative features at the PCL-SEC included: neovascularisation (44%), enthesis chondrocyte clustering (44%), collagen matrix fissuring at the enthesis (56%) and in the PCL itself (67%), tidemark duplication (44%), bone remodelling (44%) and microscopic inflammatory changes (33%). In the OAI cohort, SEC-related pathology included bone marrow lesions (BMLs) (69%) and osteophytosis (94%) at locations that corresponded to SEC-related cartilages. Posterior joint recess effusion (49%) was linked to MRI abnormalities at PCL-SEC cartilages (χ2 = 7.27, P = 0.007). Conclusions: The PCL has a prominent SEC configuration that is associated with microscopic OA changes in aged clinically non-diseased joints. MRI determined knee OA commonly exhibited pathological features at this site which was associated with adjacent joint effusion. Thus, the PCL-SEC could play a hitherto unappreciated role in the early OA disease process

    Diagnostic Accuracy of a High-Sensitivity Cardiac Troponin Assay with a Single Serum Test in the Emergency Department.

    Get PDF
    OBJECTIVES: We sought to evaluate diagnostic accuracy of a high-sensitivity cardiac troponin I (hs-cTnI) assay for acute coronary syndromes (ACS) in the emergency department (ED). The assay has high precision at low concentrations and can detect cTnI in 96.8% of healthy individuals. METHODS: In successive prospective multicenter studies ("testing" and "validation"), we included ED patients with suspected ACS. We drew blood for hs-cTnI [Singulex Clarity® cTnI; 99th percentile, 8.67 ng/L; limit of detection (LoD), 0.08 ng/L] on arrival. Patients also underwent hs-cTnT (Roche Elecsys) testing over ≥3 h. The primary outcome was an adjudicated diagnosis of ACS, defined as acute myocardial infarction (AMI; prevalent or incident), death, or revascularization within 30 days. RESULTS: The testing and validation studies included 665 and 2470 patients, respectively, of which 94 (14.1%) and 565 (22.9%) had ACS. At a 1.5-ng/L cutoff, hs-cTnI had good sensitivity for AMI in both studies (98.7% and 98.1%, respectively) and would have "ruled out" 40.1% and 48.9% patients. However, sensitivity was lower for ACS (95.7% and 90.6%, respectively). At a 0.8-ng/L cutoff, sensitivity for ACS was higher (97.5% and 97.9%, ruling out 28.6% patients in each cohort). The hs-cTnT assay had similar performance at the LoD (24.6% ruled out; 97.2% sensitivity for ACS). CONCLUSIONS: The hs-cTnI assay could immediately rule out AMI in 40% of patients and ACS in >25%, with similar accuracy to hs-cTnT at the LoD. Because of its high precision at low concentrations, this hs-cTnI assay has favorable characteristics for this clinical application

    Inhibition of the Staphylococcus aureus c-di-AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM

    Get PDF
    c-di-AMP is an important second messenger molecule that plays a pivotal role in regulating fundamental cellular processes, including osmotic and cell wall homeostasis in many Gram-positive organisms. In the opportunistic human pathogen Staphylococcus aureus, c-di-AMP is produced by the membrane-anchored DacA enzyme. Inactivation of this enzyme leads to a growth arrest under standard laboratory growth conditions and a re-sensitization of methicillin-resistant S. aureus (MRSA) strains to ß-lactam antibiotics. The gene coding for DacA is part of the conserved three-gene dacA/ybbR/glmM operon that also encodes the proposed DacA regulator YbbR and the essential phosphoglucosamine mutase GlmM, which is required for the production of glucosamine-1-phosphate, an early intermediate of peptidoglycan synthesis. These three proteins are thought to form a complex in vivo and, in this manner, help to fine-tune the cellular c-di-AMP levels. To further characterize this important regulatory complex, we conducted a comprehensive structural and functional analysis of the S. aureus DacA and GlmM enzymes by determining the structures of the S. aureus GlmM enzyme and the catalytic domain of DacA. Both proteins were found to be dimers in solution as well as in the crystal structures. Further site-directed mutagenesis, structural and enzymatic studies showed that multiple DacA dimers need to interact for enzymatic activity. We also show that DacA and GlmM form a stable complex in vitro and that S. aureus GlmM, but not Escherichia coli or Pseudomonas aeruginosa GlmM, acts as a strong inhibitor of DacA function without the requirement of any additional cellular factor. Based on Small Angle X-ray Scattering (SAXS) data, a model of the complex revealed that GlmM likely inhibits DacA by masking the active site of the cyclase and preventing higher oligomer formation. Together these results provide an important mechanistic insight into how c-di-AMP production can be regulated in the cell

    Molecular cloning and expression analysis of a zebrafish novel zinc finger protein gene rnf141

    Get PDF
    ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates

    Alteration of the embryo transcriptome of hexaploid winter wheat (Triticum aestivum cv. Mercia) during maturation and germination

    Get PDF
    Grain dormancy and germination are areas of biology that are of considerable interest to the cereal community. We have used a 9,155-feature wheat unigene cDNA microarray resource to investigate changes in the wheat embryo transcriptome during late grain development and maturation and during the first 48 h of postimbibition germination. In the embryo 392 mRNAs accumulated by twofold or greater over the time course from 21 days postanthesis (dpa) to 40 dpa and on through 1 and 2 days postgermination. These included mRNAs encoding proteins involved in amino acid biosynthesis and metabolism, cell division and subsequent cell development, signal transduction, lipid metabolism, energy production, protein turnover, respiration, initiation of transcription, initiation of translation and ribosomal composition. A number of mRNAs encoding proteins of unknown function also accumulated over the time course. Conversely 163 sequences showed decreases of twofold or greater over the time course. A small number of mRNAs also showed rapid accumulation specifically during the first 48 h of germination. We also examined alterations in the accumulation of transcripts encoding proteins involved in abscisic acid signalling. Thus, we describe changes in the level of transcripts encoding wheat Viviparous 1 (Vp1) and other interacting proteins. Interestingly, the transcript encoding wheat Viviparous-interacting protein 1 showed a pattern of accumulation that correlates inversely with germination. Our data suggests that the majority of the transcripts required for germination accumulate in the embryo prior to germination and we discuss the implications of these findings with regard to manipulation of germination in wheat
    corecore