198 research outputs found

    EB Ford revisited: assessing the long-term stability of wing-spot patterns and population genetic structure of the meadow brown butterfly on the Isles of Scilly

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Data files of wing spot sizes and AFLP genotypes available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.j7v42.Understanding selection in the wild remains a major aim of evolutionary ecology and work by Ford and colleagues on the meadow brown butterfly Maniola jurtina did much to ignite this agenda. A great deal of their work was conducted during the 1950s on the Isles of Scilly. They documented island-specific wing-spot patterns that remained consistent over about a decade, but patterns on some islands changed after environmental perturbation. It was suggested that these wing-spot patterns reflected island-specific selection and that there was little migration between islands. However, genetic studies to test the underlying assumption of restricted migration are lacking and it is also unknown whether the originally described wing-spot patterns have persisted over time. We therefore collected female butterflies from five of Ford's original study locations, including three large islands (St Mary's, St Martin's and Tresco) and two small islands (Tean and St Helen's). Wing-spot patterns had not changed appreciably over time on three of the islands (two large and one small), but were significantly different on the other two. Furthermore, analysis of 176 amplified fragment length polymorphisms revealed significant genome-wide differentiation among the five islands. Our findings are consistent with Ford's conclusions that despite the close proximity of these islands, there is restricted gene flow among them.Heredity advance online publication, 2 November 2016; doi:10.1038/hdy.2016.94.We thank the Genetics Society for a fieldwork grant (to DJH) that funded the collection trip and DJH thanks Mike Johnson for sparking interest in this area. SWB is supported by the Australian Research Council and a Ramsay Fellowship, NW by a Royal Society Wolfson Fellowship and NERC and DJH by the Leverhulme Trust

    Deeply buried glacigenic debris-flows imaged in 3D seismic data from early Quaternary sediments of the northern North Sea

    Get PDF
    Debris flows composed of diamictic glacial sediment are found on the continental slope offshore of many former ice streams in the Arctic and Antarctic (Vorren et al. 1998). The debris flows are often stacked, making up important building-blocks of the major trough-mouth fans that form huge depocentres on high-latitude margins (e.g. Laberg & Vorren 1995; King et al. 1996; Taylor et al. 2002). Such debris flows have been investigated previously using 2D-seismic methods and have also been mapped in plan using side-scan sonar and multibeam systems (Vogt et al. 1993; Dowdeswell et al. 1996; Nygård et al. 2002 ; Pedrosa et al. 2011). 3D-seismic data can be used to image and map these and other glacigenic landforms buried within Quaternary sediments (e.g. Dowdeswell & Ottesen 2013 ).This is the author accepted manuscript. The final version is available from[the Geological Society of London. via https://doi.org/10.1144/M46.13

    Unusual iceberg ploughmarks on the Norwegian continental shelf

    Get PDF
    Iceberg ploughmarks are produced when the keels of drifting icebergs impinge upon and cut into seafloor sediments. They are common landforms of high-latitude shelves and fjords, especially in water shallower than about 500 m, where they are easily detected using modern multibeam echo-sounding and earlier side-scan sonar systems (e.g. Lien 1983; Dowdeswell et al. 1993). In addition, similar buried morphological features have been identified within Quaternary sediments on palaeo-shelves, imaged using 3-dimensional seismic methods (e.g. Andreassen et al. 2007; Dowdeswell & Ottesen 2013).This is the author accepted manuscript. The final version is available from Geological Society of London via https://doi.org/10.1144/M46.12

    A tidewater glacier landform assemblage in Belcher Inlet, Canadian Arctic

    Get PDF
    Belcher Glacier, a 35 km-long tidewater outlet glacier of the 12,000 km² ice cap on Devon Island (Dowdeswell et al. 2004), is one of the fastest-flowing glaciers in the Canadian Arctic (Van Wychen et al. 2014) (Fig. 1). Belcher Glacier and neighbouring Fitzroy Glacier to the southeast account for about 55% of the iceberg calving loss from the Devon Ice Cap (Van Wychen et al. 2014). The terminus of Belcher Glacier remained relatively stable between the 1960s (light blue dashed line in Fig. 1a) and 2000 (Landsat 7 satellite image in Fig. 1a). In contrast, the unnamed glacier immediately to the north retreated 2 km during this period (Fig. 1a). Belcher Glacier and the unnamed glacier retreated around 500 m and 250 m, respectively, between 2000 and 2014 (dark blue dashed line in Fig. 1a). The bed topography of Belcher Glacier, which is around 250 m below sea level at the present-day glacier margin (Fig. 1c) and remains below sea level in the lower 11 km of the glacier, suggests that its terminus region may become unstable in the event of future retreat. Seafloor mapping of Belcher Inlet beyond the termini of Belcher Glacier and the unnamed glacier (Fig. 1a), together with sub-bottom profiling, provide information about the dynamic behaviour of tidewater glaciers.This is the author accepted manuscript. The final version is available from Geological Society of London via https://doi.org/10.1144/M46.14

    Greenland subglacial lakes detected by radar

    Get PDF
    This is the final version of the article. Available from AGU via the DOI in this record.Subglacial lakes are an established and important component of the basal hydrological system of the Antarctic ice sheets, but none have been reported from Greenland. Here we present airborne radio echo sounder (RES) measurements that provide the first clear evidence for the existence of subglacial lakes in Greenland. Two lakes, with areas ~8 and ~10 km2, are found in the northwest sector of the ice sheet, ~40 km from the ice margin, and below 757 and 809 m of ice, respectively. The setting of the Greenland lakes differs from those of Antarctic subglacial lakes, being beneath relatively thin and cold ice, pointing to a fundamental difference in their nature and genesis. Possibilities that the lakes consist of either ancient saline water in a closed system or are part of a fresh, modern open hydrological system are discussed, with the latter interpretation considered more likely.Funding was provided by NERC grant NE/ H020667. Additional support was provided by NASA grant NNX11AD33G and the G. Unger Vetlesen foundation

    Subglacial controls on dynamic thinning at Trinity-Wykeham Glacier, Prince of Wales Ice Field, Canadian Arctic

    Get PDF
    Mass loss from glaciers and ice caps represents the largest terrestrial component of current sea level rise. However, our understanding of how the processes governing mass loss will respond to climate warming remains incomplete. This study explores the relationship between surface elevation changes (dh/dt), glacier velocity changes (du/dt), and bedrock topography at the Trinity-Wykeham Glacier system (TWG), Canadian High Arctic, using a range of satellite and airborne datasets. We use measurements of dh/dt from ICESat (2003-2009) and CryoSat-2 (2010-2016) repeat observations to show that rates of surface lowering increased from 4 m yr-1 to 6 m yr-1 across the lowermost 10 km of the TWG. We show that surface flow rates at both Trinity Glacier and Wykeham Glacier doubled over 16 years, during which time the ice front retreated 4.45 km. The combination of thinning, acceleration and retreat of the TWG suggests that a dynamic thinning mechanism is responsible for the observed changes, and we suggest that both glaciers have transitioned from fully grounded to partially floating. Furthermore, by comparing the separate glacier troughs we suggest that the dynamic changes are modulated by both lateral friction from the valley sides and the complex geometry of the bed. Further, the presence of bedrock ridges induces crevassing on the surface and provides a direct link for surface meltwater to reach the bed. We observe supraglacial lakes that drain at the end of summer and are concurrent with a reduction in glacier velocity, suggesting hydrological connections between the surface and the bed significantly impact ice flow. The bedrock topography thus has a primary influence on the nature of the changes in ice dynamics observed over the last decade.</p

    Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping

    Get PDF
    New multibeam (swath) bathymetric sonar data acquired using an EM120 system on the RRS James Clark Ross, supplemented by sub-bottom profiling, reveals the underwater morphology of a not, vert, similar 12,000 km2 area in the northern part of the mainly submarine South Sandwich volcanic arc. The new data extend between 55° 45′S and 57° 20′S and include Protector Shoal and the areas around Zavodovski, Visokoi and the Candlemas islands groups. Each of these areas is a discrete volcanic center. The entirely submarine Protector Shoal area, close to the northern limit of the arc, forms a 55 km long east–west-trending seamount chain that is at least partly of silicic composition. The seamounts are comparable to small subaerial stratovolcanoes in size, with volumes up to 83 km3, indicating that they are the product of multiple eruptions over extended periods. Zavodovski, Visokoi and the Candlemas island group are the summits of three 3–3.5 km high volcanic edifices. The bathymetric data show evidence for relationships between constructional volcanic features, including migrating volcanic centers, structurally controlled constructional ridges, satellite lava flows and domes, and mass wasting of the edifices. Mass wasting takes place mainly by strong erosion at sea level, and dispersal of this material along chutes, probably as turbidity currents and other mass flows that deposit in extensive sediment wave fields. Large scale mass wasting structures include movement of unconsolidated debris in slides, slumps and debris avalanches. Volcanism is migrating westward relative to the underlying plate and major volcanoes are asymmetrical, being steep with abundant recent volcanism on their western flanks, and gently sloping with extinct, eroded volcanic sequences to their east. This is consistent with the calculated rate of subduction erosion of the fore-arc

    Tracking the provenance of Greenland-sourced, Holocene aged, individual sand-sized ice-rafted debris using the Pb-isotope compositions of feldspars and 40Ar/39Ar ages of hornblendes

    Get PDF
    The provenance of sand-sized ice-rafted debris (IRD) sourced from Greenland is currently difficult to determine. Such knowledge, if it could be ascertained with a high degree of certainty, could be applied to the Greenland-proximal marine records to improve both our understanding of modern-day spatial patterns of iceberg rafting and the past history of the Greenland Ice Sheet (GIS). Recent studies have highlighted the utility of the Pb-isotope composition of individual sand-sized feldspars and the 40Ar/39Ar ages of individual sand-sized hornblendes in this regard. However, before any such provenance toolkit can be applied to the palaeo-record, it is necessary first to determine whether this approach can be used to track the sources of known recent Greenland-proximal IRD deposition. To this end we present new records of the Pb-isotope composition and the 40Ar/39Ar ages of individual sand-sized grains of feldspars and hornblendes, respectively, from modern Greenland glacifluvial and fjord sands and Holocene to modern Greenland-proximal marine sediments. These new data demonstrate that sand-sized feldspars and hornblendes glacially eroded by the GIS exhibit distinct intra- and inter-tectonic terrane differences in their Pb-isotope compositions and ages and that these differences are clearly expressed in the geochemistry and geochronology of sand-sized IRD deposited in marine sediments around Greenland. Although overlap exists between some Greenland-proximal IRD ‘source fields’ defined by these data, our approach has the potential to both better understand spatial patterns of Greenland-derived IRD in the modern day as well as during past episodes of iceberg calving
    • …
    corecore