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Subglacial controls on dynamic thinning at Trinity-Wykeham Glacier, 25 

Prince of Wales Ice Field, Canadian Arctic 26 

Mass loss from glaciers and ice caps represents the largest terrestrial component 27 

of current sea level rise. However, our understanding of how the processes 28 

governing mass loss will respond to climate warming remains incomplete. This 29 

study explores the relationship between surface elevation changes (dh/dt), glacier 30 

velocity changes (du/dt), and bedrock topography at the Trinity-Wykeham 31 

Glacier system (TWG), Canadian High Arctic, using a range of satellite and 32 

airborne datasets. We use measurements of dh/dt from ICESat (2003-2009) and 33 

CryoSat-2 (2010-2016) repeat observations to show that rates of surface lowering 34 

increased from 4 m yr-1 to 6 m yr-1 across the lowermost 10 km of the TWG. We 35 

show that surface flow rates at both Trinity Glacier and Wykeham Glacier 36 

doubled over 16 years, during which time the ice front retreated 4.45 km. The 37 

combination of thinning, acceleration and retreat of the TWG suggests that a 38 

dynamic thinning mechanism is responsible for the observed changes, and we 39 

suggest that both glaciers have transitioned from fully grounded to partially 40 

floating. Furthermore, by comparing the separate glacier troughs we suggest that 41 

the dynamic changes are modulated by both lateral friction from the valley sides 42 

and the complex geometry of the bed. Further, the presence of bedrock ridges 43 

induces crevassing on the surface and provides a direct link for surface meltwater 44 

to reach the bed. We observe supraglacial lakes that drain at the end of summer 45 

and are concurrent with a reduction in glacier velocity, suggesting hydrological 46 

connections between the surface and the bed significantly impact ice flow. The 47 

bedrock topography thus has a primary influence on the nature of the changes in 48 

ice dynamics observed over the last decade.  49 

Keywords: Glacier change, optical remote sensing, Landsat, altimetry, subglacial 50 

topography, dynamic thinning. 51 

1. Introduction 52 

The rate of mass loss from glaciers and ice caps to the ocean has accelerated in response 53 

to global heating (Zemp et al., 2019), but our understanding of the mechanisms 54 

controlling these changes remains incomplete, making future projections of mass loss 55 



from the cryosphere highly uncertain. Central to this problem is the complex nature of 56 

marine-terminating glacier dynamics and their sensitivity to changes at the ice front 57 

(Howat et al., 2008; McMillan et al., 2014; Willis et al., 2018). This is of particular 58 

concern in the Arctic, which continues to warm at twice the rate of lower latitudes 59 

(Overland et al., 2016) due to an amplified increase in northern hemisphere high latitude 60 

temperatures attributed to the strengthening of the ice-albedo positive feedback (Serreze 61 

and Francis, 2006). Elevated Arctic temperatures have resulted in an increasingly 62 

negative surface mass balance for Glaciers and Ice Caps (GIC) across the region 63 

(Serreze and Barry, 2011). However, understanding how the flow of marine-terminating 64 

glaciers is affected by climate warming remains elusive and large uncertainties exist in 65 

estimates of their impact on future sea level. 66 

As the climate continues to warm, changes in ice flow have led, in general, to a 67 

long-term increase in ice discharge from Arctic tidewater glaciers (Gardner et al., 2013), 68 

but the magnitude of this effect varies between individual glacier catchments. 69 

Understanding the drivers of ice dynamic changes across catchments and over time is 70 

key to understanding this variability. In particular, thinning of marine-terminating 71 

glaciers can lead to ungrounding of the glacier from its bed (McMillan et al., 2014), 72 

causing a loss of basal traction and enhancing the flow of ice near the terminus. 73 

Increased ice velocity and buoyancy can lead to further mass loss through increased 74 

calving (James et al., 2014), as well as enlarging the area of contact between ice and the 75 

ocean, causing a positive feedback loop of enhanced submarine melting, thinning, and 76 

retreat (Murray et al., 2010).  77 

Outlet glaciers transport ice from the accumulation area in the ice cap interior to 78 

the surrounding ocean and the rate at which they flow is highly sensitive to local fjord 79 

geometry, i.e. the morphometry of the subglacial bedrock or valley sides (Joughin et al., 80 



2004). However, this effect remains poorly understood due to the lack of high-quality 81 

bedrock elevation data across highly crevassed glaciers confined to small valleys, which 82 

represent technical challenges for the ice penetrating radar instruments used to measure 83 

ice thickness (Conway et al., 2009). The relative influence of other forcing factors also 84 

remains unresolved; high-elevation thickening in interior ice-cap drainage basins, 85 

ocean-induced melt at the glacier terminus and increased surface runoff may all increase 86 

ice discharge in the future. Further, the bedrock geometry may significantly impact the 87 

rate of ice discharge from marine-terminating glaciers where they are grounded below 88 

sea level (van Wychen et al., 2016) or are reverse-sloping. 89 

In this paper, we combine observations from aerogeophysical surveys, satellite 90 

altimeters and satellite multi-spectral imagers acquired between 2000 and 2016 in order 91 

to understand the influence of local fjord geometry on recent dynamic changes at the 92 

Trinity-Wykeham Glacier system (TWG), Nunavut, Canada (van Wychen et al., 2014, 93 

2016; Millan et al., 2017). We had three objectives: (i) to map the bedrock geometry of 94 

the TWG using ice-penetrating radar and analyse the spatial pattern of subglacial 95 

landforms; (ii) to derive annual velocity estimates for each year between 2000 and 96 

2016, and seasonal (spring, summer and winter) velocity estimates for each year 97 

between 2013 and 2016 and to compare this to the pattern of surface elevation change 98 

(dh/dt) over the ICESat (2003-2009) and CryoSat-2 (2010-2016) study periods; (iii) to 99 

assess the interactions between glacier velocity changes, dh/dt and bedrock topography 100 

in order to understand the influence of the glacier bed on changes in glacier dynamics 101 

between 2010 and 2016. 102 



2. The study area 103 

The Queen Elizabeth Islands (QEI), located in the Canadian Arctic (see Figure 1), 104 

contain almost one third of the land-based ice outside the Greenland and Antarctic ice 105 

sheets (Radic and Hock, 2010). Regional rates of mass loss have increased from 6.3 Gt 106 

yr-1 (1991-2005) to 33.1 Gt yr-1 (2005-2014) (Millan et al., 2017). Previously, this 107 

change was thought to be primarily driven by an increase in summer air temperatures 108 

after 2005 leading to a more negative surface mass balance (Gardner et al., 2011; 109 

Lenaerts et al., 2013; Colgan et al., 2015; Millan et al., 2017; Noel et al., 2018). 110 

However, recent studies have suggested that mass loss from selected tidewater glacier 111 

catchments has accelerated in recent years (van Wychen et al., 2016; Millan et al., 112 

2017), but the origin and mechanisms of this loss are not well understood. It is vital to 113 

understand changes across the QEI and the factors controlling them so that we can 114 

accurately determine near-future mass loss from the region and its impact on sea level 115 

changes. 116 

[Insert Figure 1 here] 117 

In the Canadian Arctic, four glaciers (Trinity Glacier, Wykeham Glacier, 118 

Belcher Glacier and Yelverton Glacier) make a significant (>0.1 Gt yr-1) contribution to 119 

regional mass loss via calving at their termini (van Wychen et al., 2014, 2016; Millan et 120 

al., 2017). Notably, ice discharge from the Trinity-Wykeham Glacier system (TWG), 121 

which has a total drainage-basin area of 3,046 km2 and is part of the Prince of Wales Ice 122 

Field (POW) (see Figure 1), increased from 0.55 Gt yr-1 in 2000 to 1.43 Gt yr-1 in 2015, 123 

with the latter representing 63% of the total ice discharge from the QEI in 2015 (van 124 

Wychen et al., 2016). This is considerably larger than the average rate of ice discharge 125 

from other QEI outlet glaciers, largely because flow rates of many glaciers in the region 126 



are well below 1 km yr-1 (van Wychen et al., 2014, 2016). Millan et al. (2017) suggested 127 

that this increase in ice discharge may be driven by the transport of warmer ocean 128 

waters from the Nares Strait, but there is no oceanographic data from the TWG fjord to 129 

support this. In comparison, Cook et al. (2019) show a strong correlation between 130 

atmospheric warming and glacier retreat, but did not include the impact of velocity or 131 

surface elevation changes in their assessment. The impact of subglacial topography, 132 

fjord geometry or bathymetry was not included in any of these studies but may play an 133 

important role in controlling the rate of ice discharge from the TWG and its response to 134 

changes at the ice front. 135 

3. Methodology 136 

In this section we consider the datasets used to derive estimates of the subglacial 137 

topography, dh/dt and mean rates of horizontal glacier velocity change (du/dt). Ice front 138 

retreat rates and predicted areas of flotation are also derived.  139 

3.1. Surface elevation change – ICESat and CryoSat-2 140 

Rates of surface elevation change (dh/dt) over the TWG were measured using repeat 141 

ICESat tracks (2003-2009), and swath-mode processing of the European Space 142 

Agency’s (ESA) CryoSat-2 data (2010-2016). ICESat tracks over 6 years (2003-2009) 143 

were obtained using the Geoscience Laser Altimeter System (GLAS), which acquired 144 

point elevation data from a 64 m diameter footprint on the ground, and at 170 m 145 

intervals along-track (Abshire et al., 2005). GLAS/ICESat L1b Elevation Data Version 146 

34 were downloaded directly from the National Snow and Ice Data Centre (NSIDC) 147 

website (www.nsidc.org/data/gla06). Measuring dh/dt from repeat ICESat tracks is 148 

difficult because the tracks can be offset by as much as 300 m over the TWG. This 149 

http://www.nsidc.org/data/gla06


drawback was overcome by expanding the measurement area across-track by 150 

constructing planar surfaces of surface elevation (m) (h) and acquisition date (days) (t) 151 

within 2-year epochs using Triangular Irregular Networks (TIN) (Pritchard et al., 2009). 152 

We firstly isolated point measurements of elevation (h) and time (t). We then 153 

interpolated these measurements by constructing planar TIN surfaces within a 300 m 154 

radius around the measurement points. Each ICESat track that overlaps with these 155 

surfaces was differenced from it to obtain estimates of elevation change (dh) and the 156 

associated time difference (dt). dh/dt were measured directly from this. Erroneous dh/dt 157 

values (>20 and <-20) were then removed and mean rates of dh/dt were calculated by 158 

averaging within a 300 m radius. This method achieved greater spatial coverage than 159 

previous methods (Felikson et al., 2017) and extended across-track measurements of 160 

dh/dt to 0.8 km from the original ICESat measurements. A detailed review of the 161 

method can be found in Pritchard et al. (2009) and Felikson et al. (2017). The 162 

uncertainty of dh/dt using this method was estimated as ± 0.1 m yr-1 along-track and ± 163 

0.07 m yr-1 across-track (Pritchard et al., 2009). 164 

CryoSat-2 L1b Interferometric Synthetic Aperture Radar (SARIn) data for the 165 

TWG were acquired from the ESA website (ftp://science-pds.cryosat.esa.int/). Surface 166 

elevation was extracted using swath-mode processing of the CryoSat-2 data. This 167 

approach utilised the full altimetric waveform across the satellite ground track to 168 

generate a dense set of elevation points across a swath of up to 5 km (Foresta et al., 169 

2016; Gourmelen et al., 2018). Echoes from across the beam were combined via SAR 170 

processing, in which a global phase unwrapping procedure was applied to account for 171 

steep sloping glacial valleys, both across and along the valley slopes (Gourmelen et al., 172 

2018). This technique led to an improvement in spatial sampling from conventional 173 

CryoSat-2 Point-Of-Closest-Approach (POCA) products by an order of magnitude over 174 

ftp://science-pds.cryosat.esa.int/


the QEI region, and also improved echo location accuracy over sloping terrain 175 

(Wingham et al., 2009). The generation of multiple elevation swaths was then used to 176 

measure dh/dt at greater spatial and temporal resolutions than was previously possible 177 

via POCA, and enhanced dh/dt mapping across the variable terrain of the TWG. The 178 

maximum error for dh/dt from CryoSat-2 swath altimetry was ± 1 m yr-1, although 179 

values are frequently smaller (± 0.5 m yr-1) (Foresta et al., 2016; Gourmelen et al., 180 

2018).  181 

3.2 Subglacial topography 182 

Point measurements of ice thickness were acquired from two separate airborne radar 183 

surveys (see Figure 1) over the TWG; (1) a Scott Polar Research Institute and 184 

University of Texas Institute for Geophysics (SPRI-UTIG) Natural Environment 185 

Research Council (NERC) funded Canadian Arctic Geophysical Exploration (CAGE) 186 

flight on 3 May 2014, equipped with the High Capability Radar Sounder (HiCARS-2) at 187 

60 MHz; and (2) a NASA Operation IceBridge (OIB) mission on 6 May 2014 188 

(Leuschen et al., 2010), using an airborne ice-penetrating radar with a central frequency 189 

of 195 MHz for the Multichannel Coherent Radar Depth Sounder (MCoRDS). The 190 

uncertainty of the HiCARS-2 instrument was ~7 m over smooth surfaces (Peters et al., 191 

2005; Blankenship et al., 2017) but can be as large as 50 m over rough terrain based on 192 

crossover analysis (Young et al., 2017). These values were adopted as an estimate of 193 

uncertainty for the ice thickness values. The ice penetrating radar measurements from 194 

the OIB and CAGE flights were used to derive bedrock elevation by subtracting 195 

measured ice thickness from an independent gridded surface elevation dataset. We used 196 

the 2 m resolution ArcticDEM, obtained from pairs of stereoscopic WorldView imagery 197 

(Noh and Howat, 2015; Morin et al., 2016), for this purpose. 198 



3.3. Annual and seasonal ice surface velocity 199 

Annual and seasonal ice flow estimates were determined using pairs of Landsat 7, 200 

Landsat 8 and ASTER imagery. Each ASTER image was orthorectified using the COSI-201 

corr feature-tracking software (Leprince et al., 2007) and coregistered to the ASTER 202 

GDEM through iterative minimisation of tie-points generated between the image and 203 

the DEM. The image was then resampled onto this new grid and projected onto the 204 

Universal Transverse Mercator (UTM) coordinate system. Every image scene was 205 

clipped to a bounding box of the Global Land Ice Measurements from Space (GLIMS) 206 

(www.glims.org/maps/glims) (Bolch et al., 2014) TWG glacier catchment in order to 207 

reduce processing time. A high pass filter was then applied to each geo-rectified image 208 

in order to enhance the contrast between surface features. 209 

Image pairs with a ~365-day separation were used to estimate annual velocity. 210 

Glacier surface features are likely to undergo significant alterations over the year due to 211 

melting, transient snow cover and changes in the pattern of stress and strain within the 212 

glacier, leading to errors in the feature-tracking result. To avoid such issues, we created 213 

velocity stacks from multiple pairs of satellite images across two epochs, T
0
 and T

1
, to 214 

obtain an annual velocity estimate for T
1
. For example, if T

0
 = 1999 and T

1
 = 2000, the 215 

annual velocity estimate would be for 2000. Annual velocity was estimated by acquiring 216 

images between June and July for years 1999-2016 and pairing each image from T
0
 with 217 

those from T
1
. For years 2013-2016, spring velocity was estimated by setting T

0
 to April 218 

and T
1
 to June. Summer velocity was estimated by setting T

0
 to July and T

1
 to 219 

September (T
0
 was set to June for the summer of 2013 due to the absence of Landsat 8 220 

images in July of that year). Winter velocity (for years 2013-2016) was estimated by 221 

setting T
0
 to October of the previous year and T

1
 to March of the successive year. For 222 

http://www.glims.org/maps/glims


years 2013 and 2014, T
0
 was set to March and T

1
 was set to May due to the absence of 223 

suitable images. Images with significant cloud cover were manually removed.  224 

Glacier surface velocity for each image pair was calculated using the COSI-corr 225 

feature-tracking software (Leprince et al., 2007). Spurious data were removed from 226 

each velocity estimate based on the Signal-to-Noise ratio (SNR), the standard deviation 227 

of ice velocity and the standard deviation of flow direction calculated from the x and y 228 

components of velocity. We defined spurious data as those with a normalised SNR of 229 

less than 0.9, an ice velocity standard deviation of greater than 40 m yr-1 and a flow 230 

direction standard deviation of greater than 20°. For each annual, summer, and winter 231 

velocity estimate we then constructed a velocity stack and merged them together by 232 

taking the median of each cell. An error estimate for each velocity grid is calculated 233 

from the mean displacement over ice-free terrain (assumed to be static) and these are 234 

presented in Table 1. 235 

Table 1. Error estimates for each velocity grid obtained by calculating the mean 236 

displacement across stable terrain. 237 

Velocity Estimate Year Error (m yr-1) 

Annual 2000 19.6 

 2001 12.0 

 2002 13.5 

 2003 25.4 

 2004 18.6 

 2005 39.0 

 2006 73.6 

 2007 21.0 

 2008 15.4 



 2009 28.5 

 2010 59.8 

 2011 63.0 

 2012 84.1 

 2013 85.0 

 2014 17.3 

 2015 8.0 

 2016 10.8 

Spring 2013 46.6 

 2014 25.7 

 2015 68.6 

 2016 90.7 

Summer 2013 46.9 

 2014 56.5 

 2015 80.8 

 2016 112.7 

Winter 2013 92.8 

 2014 56.8 

 2015 24.7 

 2016 28.8 

3.4. Grounding-line and ice-front retreat 238 

The hydrostatic flotation depth (P) measures the thickness of ice required to cause 239 

buoyancy (flotation) and can be used to estimate the position of the grounding-line (the 240 

point of transition between grounded and floating ice). If the terminus of a glacier is 241 

floating it is no longer subject to basal friction, enabling faster flow and higher rates of 242 



ice discharge. P can be estimated based upon the glacier freeboard elevation (h) (Le 243 

Meur et al., 2014), i.e. height above sea level (a.s.l.): 244 

P = 
𝜌ih

𝜌w - 𝜌i
  (1) 245 

where ρ
i
 is the ice density (890 kg m-3) and ρ

w
 is the ocean density (1028 kg m-3). We 246 

estimated h by using a 2010 CryoSat-2 surface elevation swath, which was referenced 247 

to the Earth Gravitational Model (EGM96) geoid. Regions of ice flotation were 248 

estimated by differencing the CAGE-OIB ice thickness grid (resampled to 500 m) from 249 

P. This produced a grid of values denoting floating ice (P < 0). This hydrostatic method 250 

assumes constant ocean and ice densities, as well as accurate surface elevation and ice 251 

thickness data. Because the hydrostatic method is simple and neglects internal stresses 252 

(Le Meur et al., 2014), the location of floating ice is denoted as a prediction rather than 253 

an observation. 254 

The ice front of the TWG was digitised manually using pan-sharpened late-255 

summer Landsat images for every year between 2000 and 2016, setting 31 July as a 256 

baseline. The new ice front positions were used to update the GLIMS catchment 257 

polygons for each year between 2000 and 2016, which we used to clip velocity data and 258 

estimates of ice flotation. We estimated the uncertainty in ice front position estimates to 259 

be half a pixel, in this case ± 8.5 m (pan-sharpened Landsat images have a spatial 260 

resolution of 15 m). 261 



4. Results 262 

4.1. Changes in surface geometry 263 

Between 2003 and 2009, the lowermost 10 km of Trinity Glacier underwent thinning of 264 

3-4 m yr-1. Further up-glacier (17-20 km), rates of thinning were smaller at ~1 m yr-1. 265 

This resulted in a decrease in thinning rates from the glacier snout to 20 km up-glacier 266 

of 0.15 m yr-1 km-1. Between 2010 and 2016, sustained thinning at rates of 4-6 m yr-1 267 

persisted across the lowermost 10 km of Trinity Glacier. Meanwhile, rates of thinning 268 

17-20 km up-glacier were between 0 and 2 m yr-1 (Figure 2b). In comparison, 269 

Wykeham Glacier experienced an asymmetric pattern of thinning across its 6 km-wide 270 

terminus in 2009; its northern tongue thinned at a rate of 4 m yr-1, while its southern 271 

tongue thinned at a rate of 2.5 m yr-1. Thinning on the northern tongue of Wykeham 272 

Glacier decreased from 5 m yr-1 to 2 m yr-1 between the ICESat (2003-2009) and the 273 

CryoSat-2 (2010-2016) observation periods, while thinning of the southern tongue of 274 

Wykeham Glacier increased at the same rate as on Trinity Glacier. Overlapping 275 

measurements between ICESat and CryoSat-2 (Figure 2c) show that dh/dt has become 276 

more negative during the CryoSat-2 study period (2010-2016). Overall, the CryoSat-2 277 

results suggest that rates of surface thinning at the termini of both Trinity Glacier and 278 

Wykeham Glacier increased by 1-2 m yr-1 compared to the ICESat results. 279 

[Insert Figure 2 here] 280 

4.2. Subglacial topography 281 

The bedrock topography of Trinity and Wykeham glaciers remains below sea level for 282 

~40 km and ~30 km inland, respectively (Figure 3). A 30 km-long trough lies beneath 283 

the northern margin of Trinity Glacier (Trough #2), with a similar feature running 284 



parallel to this for 8 km along its southern margin (Trough #1). In contrast, a set of three 285 

overdeepenings characterises the bed of Wykeham Glacier, interspersed with subglacial 286 

ridges that appear to have been eroded by the glacier due to their alignment 287 

perpendicular to ice flow. The most prominent set of these is present ~5 km from the ice 288 

front (Ridges #1) and rises to 200-300 m above the surrounding bed but remaining 289 

below sea level. The overdeepenings beneath Wykeham Glacier, and to a lesser extent 290 

Trinity Glacier, cause sections of the bed to become reverse sloping; that is, they slope 291 

downwards in an up-glacier direction. At the termini of both glaciers a small region of 292 

elevated topography is observed (the ‘pinning point’ in Figure 3) and acts as a barrier to 293 

ice flow.  294 

[Insert Figure 3 here] 295 

4.3. Annual changes in velocity and terminus position 296 

Between 2000 and 2016, velocity at the terminus of Trinity Glacier doubled from ~500 297 

m yr-1 to ~1,000 m yr-1 (Figures 4a and 4b). In contrast, the ice front of Wykeham 298 

Glacier showed more complex behaviour; its southern tongue doubled in speed, while 299 

its northern tongue stabilised (Figures 4a and 4b). An anomalous area of decelerating 300 

flow is observed at the terminus of Wykeham Glacier and had a velocity that remained 301 

constant at 50 m yr-1 between 2000 and 2016. The increase in glacier velocity that 302 

originated at the terminus of Trinity Glacier and the southern tongue of Wykeham 303 

Glacier propagated inland, leading to an almost doubling of flow speed between 2000 304 

and 2016 up to 20 km up-glacier. Velocity at the terminus of Trinity Glacier increased 305 

by 150 m yr-1 between 2003 and 2009 and by a further 200 m yr-1 between 2010 and 306 

2016 (Figures 4c and 4d). Propagation of the velocity increase inland was more 307 

coherent during the CryoSat-2 study period than in the ICESat observation period. A 30 308 



m yr-1 velocity increase on the northern tongue of Wykeham Glacier is observed only 309 

during the ICESat period (Figure 4c). Sections of the lowermost 10 km of Wykeham 310 

Glacier showed a velocity decrease of ~70 m yr-1 between 2003 and 2009 and then a 311 

velocity increase of ~70 m yr-1 between 2010 and 2016. This led to a total change in 312 

du/dt of ~100 m yr-2 at those localities. Overall, du/dt appears to have increased over the 313 

CryoSat-2 study period relative to the ICESat observation period and the region affected 314 

by these changes appears to be spreading inland. 315 

 [Insert Figure 4 here] 316 

Retreat of Trinity Glacier has led to its separation from Wykeham Glacier 317 

(Figure 4b and 4e), with the result that the flow regimes of the two glaciers have 318 

become independent of each other. Three regimes of ice front change have been 319 

identified (Figure 4e): Trinity Glacier (A-A’), the Trinity-Wykeham Glacier confluence 320 

(B-B’), and Wykeham Glacier (C-C’) (Figure 4b). Between 2000 and 2016, Trinity 321 

Glacier retreated 3.56 km while Wykeham Glacier retreated 1.01 km. The Trinity-322 

Wykeham Glacier confluence retreated 4.45 km which was primarily due to rapid 323 

retreat of the ice front between 2009 and 2012. Width averaged retreat of the ice front 324 

decreased from 1.38 km to 1.12 km between the ICESat (2003-2009) and CryoSat-2 325 

(2010-2016) observational periods. 326 

4.4. Seasonal changes in velocity 327 

Seasonal (spring, summer and winter) changes in velocity between 2013 and 2016 are 328 

shown in Figure 5. The velocity of both Trinity and Wykeham glaciers was consistently 329 

highest during spring (Figures 5d and 5h). Within the lowermost 20 km of Trinity 330 

Glacier, winter velocity exceeded summer velocity. In comparison, summer velocity 331 



was higher than winter velocity across Wykeham Glacier until 2016, when the glacier 332 

exhibited a summer slowdown of ~100 m yr-1. The deceleration anomaly observed at 333 

the terminus of Wykeham Glacier in Figure 4a is prominent and flows below 100 m yr-1 334 

during all seasons. At Trinity Glacier, spring velocities increased by 300 m yr-1 between 335 

2013 and 2016, whereas summer velocities decreased by 200-300 m yr-1. At Wykeham 336 

Glacier, spring velocities increased by 100 m yr-1 between 2013 and 2016, while 337 

summer velocities decreased by 50-100 m yr-1. Winter velocities across the lowermost 338 

25 km of Wykeham Glacier increased by 100 m yr-1. In comparison, they remained 339 

stable at Trinity Glacier. 340 

[Insert Figure 5 here] 341 

4.5. Grounding line 342 

Estimates of the location of floating ice are shown in Figure 6, where P denotes the 343 

hydrostatic flotation depth; negative values indicate possible ice flotation (i.e. the ice is 344 

buoyant). We estimate that approximately 6 km2 and 7.5 km2 of the ice fronts of Trinity 345 

and Wykeham glaciers, respectively, were floating in 2014 (Figure 6a). The lowermost 346 

5 km and 4 km of Trinity Glacier and Wykeham Glacier, respectively, have values of P 347 

< 500 m, which may be considered regions susceptible to ice flotation. Almost the 348 

entire calving front of Wykeham Glacier has values of P < 100 m suggesting the 349 

terminus is close to flotation. At the pinning point (see Figure 4a) of Wykeham Glacier 350 

P = 297 m, whereas the region immediately up-glacier is partially floating (P < 0). This 351 

distinction is also made clear by the surface morphology on both glaciers (Figure 6b). 352 

Regions of the ice front that are currently grounded (P > 0) are coincident with areas 353 

where the surface is fractured whereas floating regions have a flatter ice surface 354 

topography.  355 



[Insert Figure 6 here] 356 

5. Discussion 357 

5.1. Changes between 2000 and 2016 358 

At both Trinity and Wykeham glaciers, the rate of surface thinning, as measured by 359 

changes in surface elevation over time, increased from 2003-2009 to 2010-2016 at the 360 

same time as glacier velocity also increased (Table 2). Asynchronous retreat of the ice 361 

front between 2000 and 2016 has led to the separation of Trinity Glacier and Wykeham 362 

Glacier, but both continue to flow through their individual valleys. The simultaneous 363 

thinning, acceleration and ice front retreat at Trinity Glacier are indicative of a dynamic 364 

thinning mechanism for glacier change, which is likely to also be influenced by factors 365 

such as surface melting and subaqueous mass loss from any floating marginal areas. 366 

The surface mass balance of the POW as a whole remained stable until recently, when 367 

surface melt enhanced mass loss from the ice field (Mair et al., 2009; Noel et al., 2018). 368 

The increase in surface melt will also drive a component of the thinning observed here. 369 

While a similar mechanism is likely to be responsible for the changes at Wykeham 370 

Glacier, a bedrock pinning point at the terminus causes the glacier to redistribute ice 371 

into two separate flow units (Figures 3 and 4). 372 

Table 2. Surface elevation change and TWG velocity for three separate time ranges, 373 

taken from independent estimates and this study. 374 

Sensor 
Time 

Period 

Max annual 

velocity at end 

of time range 

(m yr-1) – 

Trinity Glacier 

Max annual 

velocity at end of 

time range (m yr-

1) – Wykeham 

Glacier 

Surface 

Elevation 

Change 

(m yr-1) 

Reference 



Airborne 1995-2000 ~ 600 ~ 250 ~ -0.48 
Abdalati et 

al. (2004) 

ICESat 2003-2009 ~ 700 ~ 300 ~ -4 This Study 

CryoSat-2 2010-2016 ~ 850 ~ 500 ~ -6 This Study 

 375 

Thinning of Trinity Glacier is broadly consistent with previous findings 376 

(Gardner et al., 2011; van Wychen et al., 2016), but our higher spatial and temporal 377 

sampling enables us to observe the spread of thinning inland along the lowermost 20 km 378 

of Trinity Glacier, as well as splitting of ice flow at the terminus of Wykeham Glacier. 379 

Swath-mode processing of SARIn CryoSat-2 data enables quantification of elevation 380 

changes at higher spatial resolution compared to real-beam radar altimeters (Foresta et 381 

al., 2016), whereas previous studies used overlapping airborne surveys and single 382 

DEMs to quantify dh/dt (van Wychen et al., 2016; Mortimer et al., 2018). For example, 383 

van Wychen et al. (2016) showed thinning rates at the TWG along OIB tracks (see 384 

Figure 1 for their location) by comparing them to a 2008 satellite-derived DEM which 385 

captures the broad pattern of thinning across the TWG terminus but does not observe 386 

the detailed spatial extent of dh/dt that CryoSat-2 swath processing provides.  387 

The current study extends previous analyses of ice flow change at the TWG (van 388 

Wychen et al., 2016; Millan et al., 2017) by using Landsat 7, Landsat 8, and ASTER 389 

image pairs with a larger temporal baseline (~365 days). ASTER imagery fills data gaps 390 

between 2003 and 2012 due to the inability of COSI-corr to track features across 391 

Landsat 7 Scan Line Corrector (SLC) errors (Heid and Kaab, 2012). The total 392 

uncertainty, however, is greater than that associated with data from Landsat, most likely 393 

due to the lower accuracy of stereo imagery. The use of Landsat 8 data improves upon 394 



results derived using data from other optical sensors due to its 16-bit radiometric 395 

resolution (Fahnestock et al., 2016), resulting in reduced motion errors and the ability to 396 

better estimate seasonal velocity variations due to its shorter revisit time. Thus, the 397 

different methodologies used to measure surface velocity at the TWG in this study 398 

confirm previous observations of ice flow acceleration at the TWG (van Wychen et al., 399 

2016; Millan et al., 2017) and the presence of rapid annual ice discharge into Nares 400 

Strait and Smith Sound.  401 

5.2. Flotation of the TWG 402 

A key result from this study is that both Trinity and Wykeham glaciers appear to be 403 

floating at their termini. At Trinity Glacier, most of the calving front is floating or near 404 

to floating, whereas the terminus of Wykeham Glacier displays a pattern analogous to a 405 

grounding zone (Fricker et al., 2009). At the front of Wykeham Glacier, a local pinning 406 

point is coincident with the position of a velocity minimum (<100 m yr-1) and grounded 407 

ice. This suggests that as Wykeham Glacier flows into the region of elevated 408 

topography, the ice becomes compressed, decelerates and becomes grounded due to the 409 

reduction in water depth at this point. The flow of ice redistributes its mass around a 410 

bedrock bump as a result of mass conservation (Morlighem et al., 2011), causing the 411 

local reduction in ice thickness. The region immediately behind this grounded terminus 412 

is floating and is coincident with a flat ice surface indicative of low basal traction. The 413 

establishment of this grounding zone produces a backstress on the ice flowing into it 414 

and reduces ice discharge, which partially accounts for the different patterns of dh/dt 415 

and du/dt we observe at the termini of Trinity Glacier and Wykeham Glacier, 416 

respectively. Our measurements of du/dt at the deceleration anomaly differ from Millan 417 

et al. (2017) and van Wychen et al. (2014, 2016) as their early-ablation season imagery 418 



captures small velocity increases that are superimposed on the annual mean velocity 419 

estimate.  420 

The exact cause of flotation is beyond the scope of the present study, but we 421 

suggest three possible influences. Firstly, retreat of Trinity Glacier began in 2005 as its 422 

northern margin became detached, and eventually separated, from Talbot Glacier 423 

(Figure 1). Such lateral disconnection would have reduced the local ice flux and caused 424 

a stress imbalance at the ice front. This reduction in ice flux reduces the ice thickness 425 

and may have induced buoyancy. Flotation of Trinity Glacier in 2014 may be a response 426 

to sustained thinning imposed on an ice front that has stabilised (Figure 4e) and thus 427 

cannot compensate for increases in ice discharge. Secondly, retreat of both glaciers into 428 

a region further below sea level (i.e. a reverse sloping bed) may again have led to an ice 429 

thickness that enables flotation. Thirdly, the relative effects of surface and submarine 430 

melting cannot be discounted, but their impact on ice thickness cannot be accurately 431 

determined here, although summer melting across the QEI appears to be high (Sharp et 432 

al., 2011; Mortimer et al., 2018). Flotation increases the area exposed to basal melting 433 

and reduces basal friction, both of which are likely to be dominant forcing mechanisms 434 

for current rates of thinning and acceleration at the TWG. 435 

5.3. Subglacial controls on dynamic thinning 436 

Our results suggest that the changes in glacier dynamics we have observed at both 437 

Trinity Glacier and Wykeham Glacier are strongly controlled by their subglacial 438 

topography. In particular, the bed of the TWG is grounded below sea level up to 40 km 439 

inland (Figure 3), suggesting changes at the front of both glaciers could propagate 440 

rapidly inland – this process appears to have begun (see Figures 2, 3, 4 and 5). For 441 

example, the disconnection of Trinity Glacier from the neighbouring Talbot Glacier (see 442 



Section 4.2) was enhanced by the presence of a subglacial trough (Trough #2), acting to 443 

channelize the flow of ice to this northern region and further enhance the acceleration of 444 

ice flow. Thus, the initiation of retreat was caused by external forcing factors, but the 445 

subsequent changes appear to be driven by the subglacial topography.  446 

The subglacial topography of Trinity Glacier appears more streamlined in 447 

comparison to the more irregular bed of Wykeham Glacier (Figure 3), where a set of 448 

subglacial ridges aligned perpendicular to ice flow reduces the ice flux. Ice becomes 449 

compressed when it flows into these ridges and causes local thickening upstream of 450 

these obstacles. Locally, this leads to a greater driving stress and faster flow on the 451 

down-glacier side of the ridge, causing extensional flow and thinning (i.e. dynamic 452 

thinning). However, the overall effect of these ridges is to increase the roughness of the 453 

bed and thus enhance the effect of basal friction on the flowing ice mass, hence the 454 

annual velocity is lower than Trinity Glacier. The pinning point at the front of 455 

Wykeham Glacier further complicates the pattern of glacier dynamics and has led to the 456 

establishment of two separate flow units. Rates of thinning on the northern tongue 457 

decreased from ~5-6 m yr-1 (2003-2009) to ~2-4 m yr-1 (2010-2016) due to the flow of 458 

ice on a bed that rises above sea level, causing a local reduction in ice thickness and 459 

flux. Sustained thinning south of the deceleration anomaly is most likely related to the 460 

divergence of ice flow southwards through the terminus overdeepening.  461 

5.4 Seasonal changes at the TWG 462 

Surface melting has been shown to have a strong influence on intra-annual ice flow 463 

variations at several glaciers in the QEI (Bingham et al., 2003; Pimentel et al., 2017) but 464 

no such influence has so far been detected at the TWG. Our new seasonal velocity 465 

results (Figure 5) suggest that the summer slowdown of both Trinity Glacier and 466 



Wykeham Glacier is due to the effective drainage of subglacial meltwater in response to 467 

increased meltwater input from the surface. To investigate this effect further, we 468 

analysed the distribution of supraglacial lakes on the surface of the TWG to assess the 469 

timing of possible lake drainage events. The evolution and drainage of four lakes on the 470 

surfaces of Trinity and Wykeham glaciers is shown in Figure 7. The lakes highlighted 471 

here form across highly crevassed surfaces where subglacial ridges are present, 472 

suggesting lake drainage events are intimately linked to the bedrock topography. 473 

Meltwater that is present in crevasses can drain to the bed once a threshold of water 474 

pressure is passed (Benn et al., 2007); thus the absence of surface meltwater in the latter 475 

images of Figure 7 suggest they have drained to the bed. We do not find evidence for 476 

drained lakes before June which implies that these drainage events occur concurrently 477 

with summer velocity minima. This pattern is indicative of channelization of the 478 

subglacial hydrological system due to enhanced drainage of surface meltwater to the 479 

bed. Channelization of the subglacial hydrological system allows efficient evacuation of 480 

subglacial meltwater and reduced basal slip and this is likely driving the changes in ice 481 

flow during the summer at the TWG. This effect may be enhancing due to the 482 

slowdown of summer velocities from 2013 to 2016, although our short time series 483 

cannot confirm this. 484 

[Insert Figure 7 here] 485 

The influence of glacier hydrology has also been observed in other regions of 486 

the QEI. For example, Bingham et al. (2006) found that John Evans Glacier, to the north 487 

of the TWG on Ellesmere Island (see Figure 1 for its location), responded rapidly to 488 

supraglacial lake drainage events and enhanced its ice flux due to the storage of 489 

meltwater at its bed. Further, meltwater-induced acceleration events may occur at other 490 

tidewater glaciers in the QEI (Pimentel et al., 2017) but the effects of ice melange at the 491 



glacier terminus are also suggested to be important in modulating long-term seasonal 492 

ice flow changes. Meltwater that cannot be evacuated efficiently from the bed may be 493 

stored during winter (Chu et al., 2016) and could provide a mechanism for the enhanced 494 

winter velocity we observe at the TWG. In comparison, the mechanisms involved in 495 

enhancing the velocity of the TWG during spring are more difficult to explain. We 496 

suggest the most plausible mechanism is the reduction of backstress at the ice front, 497 

which may be induced by weakening of sea ice and melange or enhanced subaqueous 498 

melt between April and June when the ablation season begins (Wang et al., 2005). 499 

5.5. Factors affecting future changes to the TWG 500 

The strong dynamic thinning signal over Trinity Glacier compared to other glaciers in 501 

the QEI mirrors the pattern of enhanced low-elevation thinning in the ablation zone of 502 

the Greenland Ice Sheet (Pritchard et al., 2009), and the low-relief bed topography 503 

appears to enhance this effect. Rates of thinning at the TWG are an order of magnitude 504 

greater than the background rate of 0.38 m yr-1 for all glaciers across the QEI between 505 

2003 and 2009 (Gardner et al., 2011), suggesting the dynamic behaviour of both 506 

glaciers has a strong influence on local thinning rates. Future changes at the TWG are 507 

likely to be influenced by (1) lateral and basal topography, (2) seasonal changes in melt 508 

and ice flow related to atmospheric forcing, and (3) enhanced submarine melting in 509 

response to an ungrounded terminus.  510 

 We have shown that subglacial topography strongly influences the current rate 511 

of dh/dt and du/dt. Insights from the recent pattern of velocity change at Trinity Glacier 512 

suggest it will continue to accelerate in the future, and the streamlined nature of its bed 513 

that lies below sea level is likely to intensify this effect further. The presence of ridges 514 

below Wykeham Glacier forms regions of overdeepened bedrock that can initiate rapid 515 



frontal retreat when the glacier retreats on a reverse bed slope, but equally can stabilise 516 

the glacier as it retreats on an uphill bed. Retreat of the deceleration anomaly towards 517 

the southern tongue of Wykeham Glacier may initiate this retreat pattern. Secondly, if 518 

summer warming continues in the coming decades (Serreze and Francis, 2006; 519 

Mortimer et al., 2016), enhanced surface meltwater production may influence seasonal 520 

velocity variability at the TWG. We have shown (see Figure 5) summer velocity 521 

minima which we infer to be a response to enhanced meltwater drainage to the bed of 522 

the TWG. If meltwater production increases, we may observe a lengthening of the 523 

ablation season which will enhance summer velocity minima but also lengthen spring 524 

velocity maxima. Thirdly, where the TWG is floating it is more susceptible to melt 525 

undercutting from both oceanic and freshwater sources. Rignot et al. (2015) showed that 526 

subglacial meltwater plumes can erode the base of a tidewater glacier and enhance sub-527 

surface melting via subglacial meltwater extrusion. Melt undercutting can also occur 528 

due to the intrusion of warm ocean waters beneath the glacier, which Millan et al. 529 

(2017) suggest may have initiated the velocity increase at the TWG. Both of these 530 

effects remain unresolved and require additional data and analysis to constrain their 531 

effects. 532 

6. Summary 533 

This study utilizes near-concurrent airborne geophysical surveys in 2014 to accurately 534 

determine the subglacial topography of the Trinity-Wykeham Glacier system (TWG) on 535 

Ellesmere Island in Arctic Canada. Triangular interpolation of point elevation 536 

measurements from NASA’s ICESat laser altimeter (2004-2009) (Pritchard et al. 2009) 537 

and swath-mode processing of ESA’s CryoSat-2 SARIn mode (Foresta et al., 2016; 538 

Gourmelen et al., 2018) across the QEI’s variable topography (2010-2016) were used to 539 



estimate rates of surface elevation change (dh/dt). Annual and seasonal ice flow changes 540 

were assessed by quantifying displacement between pairs of Landsat and ASTER 541 

satellite image pairs using the COSI-corr feature-tracking software (Leprince et al., 542 

2007). Ice front change was measured by digitising Landsat images and comparing the 543 

locations of successive glacier terminus positions. Regions of glacier flotation were 544 

predicted using the principle of hydrostatic equilibrium.  545 

Rates of thinning increased from 4 m yr-1 in 2009 to 6 m yr-1 in 2016 across the 546 

region of the TWG terminus which is grounded below sea level (40 km inland). 547 

Simultaneously, annual mean glacier velocities at Trinity Glacier and Wykeham Glacier 548 

doubled, which is likely due to an increase in peak flow rates during spring. The 549 

spatially coherent flow increase and thinning observed at Trinity Glacier is enhanced by 550 

a low relief bed topography, while a similar dynamic thinning effect at Wykeham 551 

Glacier is modulated by subglacial ridges that redistribute the flow of ice to the northern 552 

and southern sections of the terminus. We also suggest that both marine glaciers fronts 553 

are now floating, which could lead to enhanced dynamic thinning and retreat in the 554 

near-future. While the origin of these changes remains unresolved, comparisons with 555 

regional glacier changes suggest that elevated summer air temperatures have an 556 

important effect on rates of ice discharge. However, our results show that subglacial 557 

geometry exerts a first order control on the nature of the dynamic changes. The high-558 

resolution bedrock topography presented here will be useful for modelling the TWG 559 

system in order to improve our understanding of how the bedrock topography will 560 

influence future ice dynamics. 561 
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Figures 771 

Figure 1 Location of the (a) Queen Elizabeth Islands (QEI), (b) Prince of Wales Ice 772 

Field (POW) and (c) the Trinity-Wykeham Glacier system (TWG) which drains the 773 

POW. The TWG catchment covers 3,046 km2 (taken from version 5.0 of the Global 774 

Land Ice Measurements from Space (GLIMS) (Bolch et al., 2014) and updated to the 775 

2016 ice front position). Blue lines on (c) are the Operation IceBridge (OIB) flight lines 776 

and the red survey lines are from the Canadian Arctic Geophysical Exploration (CAGE) 777 

survey. Background image in panel (c) is a true colour Landsat image from 5 May 2014.  778 

Figure 2 Surface elevation changes (dh/dt) from the lower parts of Trinity and 779 

Wykeham glaciers from (a) ICESat between 2003 and 2009 and (b) CryoSat-2 between 780 

2010 and 2016. The northern and southern tongue of Wykeham Glacier are annotated 781 

on (a) but are also applicable to (b). (c) A graph showing dh/dt across transect A-A’ 782 

(highlighted in (b)) shows rates of thinning increasing from the ICESat to the CryoSat-2 783 

study period. Panel (a) is underlain by an ASTER image from 14 June 2009 and panel 784 

(b) is underlain by a Landsat 8 panchromatic image from 29 June 2016. 785 

Figure 3 Bedrock topography derived from Natural Neighbour interpolation of the 786 

CAGE-OIB ice thickness measurements and subtracted from the ArcticDEM of ice 787 

surface elevation. Annotations describe key geomorphological features of the subglacial 788 

topography. Dashed lines show 100 m elevation contours and the bold line represents 789 

sea level (0 m). The CAGE-OIB flight lines are superimposed in light grey. The 790 

background image is a Landsat 8 natural colour image from 5 May 2014. 791 

Figure 4 Annual velocity maps over the TWG in (a) 2000 and (b) 2016. The ice front 792 

position in 2000 (dashed black line) and 2016 (solid black line) are shown in (b). 793 

Velocity change (du/dt) is shown for (c) the ICESat observation period (2003-2009) 794 



with a standard error of 3.56 m yr-1 and (d) the Cryosat-2 observation period (2010-795 

2016) with a standard error of 4.97 m yr-1. (a) is underlain by a Landsat 7 image from 796 

16 June 2000, panel (c) is underlain by an ASTER image from 14 June 2009, and panels 797 

(b) and (d) are underlain with a panchromatic Landsat 8 image 29 June 2016. Ice front 798 

change for each year 2000-2016 relative to 30 July 2000 are shown in panel (e) for 799 

Trinity Glacier, Wykeham Glacier and their confluence (profiles indicated on panel (b)). 800 

Figure 5 Seasonal velocity estimates between 2013 and 2016 for Trinity Glacier (a-d) 801 

and Wykeham Glacier (e-h). Spring (April to June) velocity estimates are shown in 802 

panels (a) and (e). Summer (July to September) velocity estimates are shown in panels 803 

(b) and (f). Winter velocity (October to March) estimates are shown in panels (c) and 804 

(g). Panels (d) and (h) shows seasonal velocity along each glacier averaged between 805 

2013 and 2016. 806 

Figure 6 (a) Gridded surface of the hydrostatic flotation depth (P) restricted to showing 807 

those areas most susceptible to flotation (i.e those with a value below 500 m). (b) 808 

Annotated diagram of the TWG ice front showing areas of high crevassing and those 809 

with a smooth surface, which may be related to flotation of the TWG terminus. Both 810 

figures are underlain with a true colour Landsat 8 image from 5 May 2018. 811 

Figure 7 Supraglacial lake drainage events on the surface of both (a-d) Trinity Glacier 812 

and (e-h) Wykeham Glacier. Each image is a pan-sharpened true colour Landsat 8 813 

image from 2016. The dates are shown for each panel. Blue regions of each true colour 814 

image are regions of surface meltwater accumulation. 815 


