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[1] Subglacial lakes are an established and important com-
ponent of the basal hydrological system of the Antarctic ice
sheets, but none have been reported from Greenland. Here
we present airborne radio echo sounder (RES) measurements
that provide the first clear evidence for the existence of
subglacial lakes in Greenland. Two lakes, with areas ~8 and
~10 km2, are found in the northwest sector of the ice sheet,
~40 km from the ice margin, and below 757 and 809m of
ice, respectively. The setting of the Greenland lakes differs
from those of Antarctic subglacial lakes, being beneath
relatively thin and cold ice, pointing to a fundamental
difference in their nature and genesis. Possibilities that the
lakes consist of either ancient saline water in a closed system
or are part of a fresh, modern open hydrological system are
discussed, with the latter interpretation considered more likely.
Citation: Palmer, S. J., J. A. Dowdeswell, P. Christoffersen,
D. A. Young, D. D. Blankenship, J. S. Greenbaum, T. Benham,
J. Bamber, and M. J. Siegert (2013), Greenland subglacial lakes
detected by radar, Geophys. Res. Lett., 40, 6154–6159, doi:10.1002/
2013GL058383.

1. Introduction

[2] Subglacial lakes are important because their presence
influences ice motion [Stearns et al., 2008] and, possibly,
the initiation of fast-flowing ice streams [Bell et al., 2007].
They are also among the most extreme viable habitats on
Earth [Siegert et al., 2001]. Since the first Antarctic subglacial
lake was detected nearly 50 years ago [Robin et al., 1970], 379
subglacial lakes have been identified throughout the continent
[Wright and Siegert, 2012]. The majority of these lakes were
discovered using RES and are typically found in close proxim-
ity (<200 km) to ice divides, the boundaries between ice sheet
drainage basins. The remaining lakes were detected beneath or
adjacent to fast-flowing ice streams using satellite altimetry
[Ridley et al., 1993] and interferometric synthetic aperture
radar (InSAR) [Gray et al., 2005]. These altimetric and
InSAR observations reveal substantial loss and/or gain of
water and, consequently, a highly active basal hydrology in

some places [Fricker et al., 2007; Smith et al., 2009]. No lakes
have been reported from beneath the Greenland ice sheet,
however, despite the previous close examination of RES data
from surveys covering this ice sheet with a higher flightline
density compared to most surveys in Antarctica [Oswald and
Gogineni, 2012]. The absence of subglacial lake detections
in Greenland may be related to subglacial lake instability
[Pattyn, 2008], as well as the effectiveness of the Greenland
ice sheet at transferring subglacial water to the ice sheet margin
[Livingstone et al., 2013]. The inability of RES to detect water
through its backscatter amplitude if water depths are less than
~10m thick [Gorman and Siegert, 1999] and may additionally
explain why small lakes are not easily identified. Here through
analysis of airborne RES measurements acquired across the
northwest Greenland ice sheet in May 2012, we present
evidence for two subglacial lakes that satisfy established
subglacial lake detection criteria [Siegert et al., 1996].

2. Methods

[3] To obtain RES measurements of ice thickness, we used
a Basler BT-67 aircraft equipped with the University of
Texas Institute for Geophysics High-Capability Radar
Sounder-2 (HiCARS-2) [Peters et al., 2005]. Radar data
were acquired on 10 May 2012 along flightlines shown in
Figure 1a. Data were processed using pulse limited SAR
focusing [Peters et al., 2007]. Radargrams were then
interpreted interactively to identify ice surface and subglacial
echoes, yielding ice thickness over the survey region. Point
measurements of ice thickness were interpolated using a
natural neighbor algorithm to a 500m regular grid in a polar
stereographic map projection. Subglacial bed elevation was
then derived by subtracting the interpolated ice thickness
data from the Spot5 stereoscopic survey of Polar Ice:
Reference Images and Topographies[Korona et al., 2009]
ice surface elevation model, after first applying a geoid
correction. In order to improve data coverage in the study area,
we supplemented our radar measurements with data acquired
by the University of Kansas Multichannel Coherent Radar
Depth Sounder instrument [Gogineni et al., 2001]. These data
were acquired on the same day as our RES data, during
NASA’s Operation IceBridge mission [Leuschen, 2013].

3. Results

[4] The presence of pooled basal water is indicated by basal
radar reflectors that are bright (~10–20 dB higher than from
surrounding bed regions), flat, and specular (Figure 2).
These reflectors closely resemble those from well-known
Antarctic deep water subglacial lakes, such as Lake Vostok
[Oswald and Robin, 1973], which gives us confidence in our
interpretation. The radar transect shows that Lake 1 (L1) is
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>1.1 km long and Lake 2 (L2) is> 2.4 km long. The lakes are
located in a 980 km2 drainage basin and positioned 16.0 km
and 11.5 km from the nearest ice divide, respectively
(Figure 1b). Furthermore, they reside in topographic minima
separated by a 200m high, 2.5 km long ridge. The mean
(above sea level) lake-surface elevations (±1σ) are 559 ± 4m
at Lake 1 and 560± 8m at Lake 2, whereas the overlying ice
thicknesses are 757 ± 4m and 809 ± 6m, respectively. In the
center of L2 there is a 43m long topographic feature with a
mean elevation of 565 ± 2m that exhibits a 10 dB lower
radar echo strength, indicating the presence of a subglacial
island (Figure 2). Such features have been found in deep
Antarctic lakes, for example, Lake Vostok [Siegert et al.,
2001]. We detect the subglacial lakes on a single radar
transect, so we are unable to determine if the lakes are in
hydrostatic equilibrium with the overlying ice because the
angle between the maximum lake surface slope and flightline
orientation is unknown. As horizontal lake extents are of the
order of two ice thicknesses, bridging stresses within the
overlying ice may prevent hydrostatic equilibrium from
fully developing. Using the radar information to specify
bed topography, we estimate the lake areas to be ~8 km2 for
L1 and ~10 km2 for L2 (Figure 1b). Radar surface echo
strengths are consistent with dry firn at the surface when the
line was flown.
[5] Bed reflectance data for the primary flightline, shown in

Figure 2, were derived from the raw HiCARS-2 bed echoes by
applying a constant ice attenuation correction of 45 dBkm�1.
Although englacial ice attenuation varies spatially [Matsuoka,
2011], we do not expect such variation to be important in our

study area, where slow flow cannot induce large spatial varia-
tion of temperature within the ice.
[6] The physical setting of the two Greenland subglacial

lakes is compared with that of the rest of the Greenland ice
sheet bed (Figure 3), focusing on geothermal heat flux esti-
mated from satellite magnetometry [Maule et al., 2005], ice
thickness from RES measurements, ice surface slope
[Bamber et al., 2013], and ice surface flow speeds [Joughin
et al., 2010]. Whereas values of geothermal heat flux and ice
flow speed at L1 and L2 are typical for the Greenland ice sheet,
values of ice thickness and ice surface elevation fall outside the
75th percentile of the ice-sheet-wide distributions (Figure 3),
which is unsurprising given the proximity to the ice margin.
[7] The same comparison was made between the settings

of L1 and L2 and the Antarctic drainage basins comprising
the “Southern Transantarctic” region (hereinafter “ST
basin” following Zwally et al. [2012]), in which 145 subgla-
cial lakes have been identified so far [Wright and Siegert,
2012]. The ST basin has an area of ~1.7M km2, similar to
that of the entire Greenland ice sheet. We found that heat
flux values at L1 and L2 are higher than the 75th percentile
of the distribution of values for these Antarctic subglacial
lakes. By contrast, ice thickness and ice surface slopes
measured above L1 and L2 are at the extreme lower end
and extreme upper end, respectively, of the distribution of
values for Antarctic subglacial lakes. Assuming that basal
water pressure is equal to the ice overburden pressure [Shreve,
1972], this leads to values of basal hydropotential gradient
at L1 and L2 3 to 4 times larger than the highest hydro-
potential gradients at known subglacial lakes in the ST

Figure 1. Flight-line map and derived bed elevation from northwest Greenland. (a) Regional context of the study area
shown on a Landsat image acquired on 1 August 2002, showing radar flightlines (red lines), the ice divide (dashed black line),
and the settlement of Qaanaaq (white circle). (b) Subglacial bed elevations (color) derived from airborne ice thickness
measurements along flightlines. Black lines delineate contours of basal hydraulic potential; thick black lines show the inferred
extent of observed subglacial lakes; and dashed black lines show possible previous larger extent. Radargrams for the labeled
flightlines are shown in Figure 2.
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basin. The physical setting of L1 and L2 is, therefore, unusual
compared to the typical settings of both the Greenland and
Antarctic ice sheets.
[8] To investigate the thermal setting around L1 and L2,

we calculate the steady state ice temperature profiles above
each lake using an analytical expression for ice flowing
solely by internal deformation [Robin, 1955] and a Clausius-
Clapeyron gradient of 8.7 × 10�4 °Cm�1 [Paterson, 1994].
Using the mean ice surface temperature for the period 2000–
2010 derived from NASA’s Moderate Resolution Imaging
Spectroradiometer instrument (�22°C) [Hall et al., 2013],
an accumulation rate of 0.3myr�1 from a regional climate
model [Ettema et al., 2010] and a geothermal heat flux esti-
mate of 60mWm�2 [Maule et al., 2005], the basal tempera-
tures would be ~�8°C at the lake locations, i.e., well below
the pressure-dependent melting point (�0.7°C). Under such
conditions, ice around the lakes would be frozen to the bed
and the lakes would therefore be hydrologically isolated and
form closed systems, which could explain their preservation.
Due to the large uncertainties in geothermal heat flux in
Greenland, and the fact that high values (>100 mWm�2) have
been inferred from RES data in the central and northeastern
part of the ice sheet [Fahnestock et al., 2001], we cannot rule
out the possibility that the geothermal heat flux is higher than
60mWm�2 in the study area. However, the low ice flow

speeds above the lakes (6myr�1 and 15myr�1; Figure 3)
are consistent with motion due to internal deformation alone,
which suggests that the ice around L1 and L2 is below the
pressure-melting point (i.e., frozen to the bed).

4. Discussion

[9] There are two main possibilities for the presence of the
subglacial lakes we have detected in the northwest part of the
Greenland ice sheet, linked to the presence of either a closed
or open hydrological system at the bed. In the first case, the
lakes might resemble that found beneath 450m of ice, 4 km
from the terminus of Taylor Glacier in the McMurdo Dry
Valleys, East Antarctica [Hubbard et al., 2004], a region
where mean annual surface temperatures (�17°C) and basal
temperatures (�8°C) are similar to those in our study area.
The Taylor Glacier subglacial lake consists of brine that
may have been cryoconcentrated to ~1375mM prior to isola-
tion from direct contact with the atmosphere, about 1.5 Ma
ago [Mickuchi et al., 2009]. Geochemical and DNA analyses
of this brine following an outburst event show that it supports
a metabolically active, largely marine microbial assemblage.
If L1 and L2 were formed through a similar process, they
may have been isolated since the region was last overridden
by ice, which is likely to be following the Eemian

Figure 2. Radar evidence for subglacial lakes. Radargrams showing data acquired along flightlines labeled in Figure 1,
showing subglacial lakes (L1 and L2) on profile A-A′ (GOG2/F04T01a), with bed reflection strength shown below. Areas
of subhorizontal and brightly reflecting bed on profiles B-B′ (20120510_01_035) and C-C′ (20120510_01_074) are indicated
by white bars below the radargrams. These areas could indicate the presence of saturated sediment at the bed and therefore
may indicate previous subglacial lake extent.
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interglacial, 135–115 ka BP [Funder et al., 2011]. We esti-
mate that the salt concentration must be at least ~1900mM
(roughly 3 times the salinity of seawater) for the brine to have
a freezing point of �8°C.
[10] RES data acquired on flightlines adjacent to the pri-

mary flightline (Figure 2) reveal areas of “wet-bed” surround-
ing the subglacial lakes, identified by their subhorizontal,
highly reflective character. This raises the possibility that L1
and L2 were once up to 3 times larger than their current extent
and suggests they contain spare capacity for additional water
storage. Such a contraction of lake extent may have occurred
through the process of basal ice accretion, which, in a closed
system, would increase the salinity of lake water due to rejec-
tion of solutes by freezing. The rate at which solutes are
rejected by basal ice accretion is, however, insufficient to

explain the required high level of salinity needed for the
lakes to form a closed system in thermal equilibrium at
�8°C. Thermodynamic modeling of a freezing subglacial
environment beneath slow-moving ice in a similar environ-
ment yields an increase in salinity of just a few per mille
over the last glacial period [Christoffersen and Tulaczyk,
2003]. Hence, if the lakes form a closed system of saline
water, the high salinity should have been attained prior to
the last glaciation. The most obvious source of such water
is the sea, but given the lakes present elevation at >500m
above sea level, it is unlikely that the sea had access to these
lakes at any time since the Eemian interglacial.
[11] A second possible reason for the presence of the sub-

glacial lakes is that they form an open system, with basal
freezing sustaining by inputs of supraglacial water from the

Figure 3. Boxplots showing distributions of (a) geothermal heat flux, (b) ice thickness, (c) ice surface slopes, and (d) ice
surface flow speeds for the ST basin (blue), the 145 known ST basin subglacial lakes (green), and the Greenland ice sheet
(red). Half of each distribution lies within the “boxes,”with the median value represented by the central vertical line. The low-
est 25% of each distribution lies to the left of the “box” and the highest 25% to the right. The values of each parameter for the
subglacial lakes we report are shown as red circles. Shown inset in blue is the location of the ST basin.
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ice sheet surface. Archival Landsat data reveal a ~0.8 km2

supraglacial lake within 1 km down ice flow of the location
of L1 on 18 July 2012 (Figure 4) and Moderate Resolution
Imaging Spectroradiometer-derived observations of ice sheet
surface temperatures indicate that the ice sheet above the
subglacial lake experienced several days of melting each year
during the period 2000 to 2012 [Hall et al., 2013]. Surface
meltwater is known to reach the bed via the process of
hydrofracturing following supraglacial lake drainage [Das
et al., 2008], presenting the possibility that the subglacial
lakes are sustained by freshwater derived from the ice surface.
Assuming an average water depth of 2m, this supraglacial
lake could hold 1.6 ×106 m3 of water, sufficient to propagate
a fracture through 800m of ice to the bed [Krawczynski

et al., 2009]. As the supraglacial lake is down ice flow of
L1, the water would need to be routed down a steep reverse
slope, up ice flow, to the lake. Such bed relief is seen in our
radar data downstream of L1, suggesting the routing of water
from the surface to L1 via the bed is possible. Furthermore,
complex ice terrain at the surface of the supraglacial lake,
shown in Figure 4, provides evidence that the supraglacial lake
drained in the recent past.
[12] Given the low basal ice temperatures, an additional

source of heat would be required to sustain fresh water at,
or above, the local freezing point. We exclude frictional
heating as a viable heat source because the low surface veloc-
ities are consistent with motion due solely to internal defor-
mation. However, a freezing rate of 6mmyr �1 across the

Figure 4. Evidence for supraglacial lake drainage in the study area. (a) Detected subglacial lakes (red outline) with possible
previous extent (white dashed) and outline of a supraglacial lake (solid blue outline in green box) shown enlarged in panels (b)
and (c). The background image in panels Figures 4a and 4c is a 15m resolution panchromatic Landsat 8 image acquired on 29
May 2013. The Landsat 7 image in Figure 4b was acquired on 18 July 2012 and shows a supraglacial lake with a partially
frozen “lid” (stripes due to a scanner malfunction). Complex ice terrain at the supraglacial lake surface in Figure 4c provides
evidence that this lake has catastrophically drained over the course of the year.
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surfaces of L1 and L2 would provide sufficient energy
through latent heat of fusion to sustain fresh water at the local
melting point (�0.7°C). If the nearby supraglacial lake were
to drain completely to the bed every 15 years or less, it would
replenish the subglacial lakes at a rate sufficient to balance
this freezing rate; thus, in this interpretation, the lakes are part
of the modern open hydrological system of the ice sheet.
[13] While the previous lack of RES evidence for subglacial

lakes in Greenland is not evidence of their absence, it appears
from existing radar data that such lakes are much less common
than in Antarctica. The setting of the subglacial lakes reported
here point to cold thermal conditions, surface-meltwater in-
puts, and inefficient drainage as key criteria for the formation
of subglacial lakes in Greenland. The relatively large supply of
surface meltwater to the base of much of the Greenland ice
sheet through surface-lake hydrofracturing and drainage may
mean that a greater proportion of the Greenland ice sheet is un-
derlain by a drainage system that is more efficient than that be-
neath much of Antarctica, implying that subglacial lake
development is restricted spatially.
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