231 research outputs found

    Synchronous motion of two vertically excited planar elastic pendula

    Get PDF
    The dynamics of two planar elastic pendula mounted on the horizontally excited platform have been studied. We give evidence that the pendula can exhibit synchronous oscillatory and rotation motion and show that stable in-phase and anti-phase synchronous states always co-exist. The complete bifurcational scenario leading from synchronous to asynchronous motion is shown. We argue that our results are robust as they exist in the wide range of the system parameters.Comment: Submitte

    Husimi Transform of an Operator Product

    Get PDF
    It is shown that the series derived by Mizrahi, giving the Husimi transform (or covariant symbol) of an operator product, is absolutely convergent for a large class of operators. In particular, the generalized Liouville equation, describing the time evolution of the Husimi function, is absolutely convergent for a large class of Hamiltonians. By contrast, the series derived by Groenewold, giving the Weyl transform of an operator product, is often only asymptotic, or even undefined. The result is used to derive an alternative way of expressing expectation values in terms of the Husimi function. The advantage of this formula is that it applies in many of the cases where the anti-Husimi transform (or contravariant symbol) is so highly singular that it fails to exist as a tempered distribution.Comment: AMS-Latex, 13 page

    ‘Ethnic group’, the state and the politics of representation

    Get PDF
    The assertion, even if only by implication, that ‘ethnic group’ categories represent ‘real’ tangible entities, indeed identities, is commonplace not only in the realms of political and policy discourse but also amongst contemporary social scientists. This paper, following Brubaker (2002), questions this position in a number of key respects: of these three issues will dominate the discussion that follows. First, there is an interrogation of the proposition that those to whom the categories/labels refer constitute sociologically meaningful ‘groups’ as distinct from (mere) human collectivities. Secondly, there is the question of how these categories emerge, i.e. exactly what series of events, negotiations and contestations lie behind their construction and social acceptance. Thirdly, and as a corollary to the latter point, we explore the process of reification that leads to these categories being seen to represent ‘real things in the world’ (ibid.)

    The Outcome of the Axillofemoral Bypass: A Retrospective Analysis of 45 Patients

    Get PDF
    Purpose This study was designed to retrospectively analyze outcomes of axillofemoral bypass (AxFB) operations performed in patients with severe comorbidities. Methods All patients (n = 45) who received an AxFB between 1990 and 2005 for aortoiliac occlusive disease (AIOD, n = 35) or infectious aortic disease (IAD, n = 10) were included. Information on patency of the bypass and mortality was retrieved from patient records. A Kaplan-Meier survival analysis was performed to illustrate survival rates, limb salvage, and primary and secondary patency. Results Included patients had several comorbidities and a high operative risk. In this group, a 30-day mortality rate of 20% was found: 17% for the AIOD group, and 30% for the IAD group. During 5-year follow-up 20 patients died, of which 15 during the first year after operation. Survival rates were at 64 and 41% at 1 and 5 years and limb salvage rates were 84% for both these years. Primary patency rates at 1 and 5 years were 72 and 58%, respectively, and secondary patency rates were 86% at both time points. Conclusions High mortality rates were found in AIOD or IAD patients who received an AxFB. However, for high-risk patients with an already reduced life expectancy, the AxFB remains an alternative with acceptable patency rate

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Nucleic Acids Res

    Get PDF
    Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors

    Cold-Induced Changes in the Protein Ubiquitin

    Get PDF
    Conformational changes are essential for protein-protein and protein-ligand recognition. Here we probed changes in the structure of the protein ubiquitin at low temperatures in supercooled water using NMR spectroscopy. We demonstrate that ubiquitin is well folded down to 263 K, although slight rearrangements in the hydrophobic core occur. However, amide proton chemical shifts show non-linear temperature dependence in supercooled solution and backbone hydrogen bonds become weaker in the region that is most prone to cold-denaturation. Our data suggest that the weakening of the hydrogen bonds in the β-sheet of ubiquitin might be one of the first events that occur during cold-denaturation of ubiquitin. Interestingly, the same region is strongly involved in ubiquitin-protein complexes suggesting that this part of ubiquitin more easily adjusts to conformational changes required for complex formation

    Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy

    Get PDF
    FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein

    Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis
    corecore