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We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of
two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse
magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome´ lattices. Our
approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference
between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we
compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of
different lengths. A very large number, e.g., up to 1081 for the square lattice, of exact lattice path integrals are
obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition tem-
perature as a continuous function of the field. In particular, we can analyze measurable effects on the super-
conducting transition temperatureTc(B) as a function of the magnetic fieldB, originating from the electron
trajectories over loops of various lengths. In addition to systematically deriving previously observed features
and understanding the physical origin of the dips inTc(B) as a result of multiple-loop quantum interference
effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of
square networks. Our approach allows us to analyze the complex structure present in the phase boundaries
from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices. The
physical origin of the structures in the phase diagrams is derived in terms of the size of regions of the lattice
explored by the electrons. Namely, the larger the region of the sample the electrons can explore~and thus the
larger the number of paths the electron can take!, the finer and sharper structure appears in the phase boundary.
Our results for kagome´ and honeycomb lattices compare very well with recent experimental measurements by
Xiao et al. @preceding paper, Phys. Rev. B65, 214503~2001!#.

DOI: 10.1103/PhysRevB.65.214504 PACS number~s!: 74.50.1r

I. INTRODUCTION

When immersed in an externally applied magnetic field,
superconducting networks1 made of thin wires, proximity-
effect junctions, and tunnel junctions exhibit complex and
interesting forms of phase diagrams. These superconducting
networks have been studied in various kinds of geometries,
including simple1 and complex2,3 periodic lattices, regular
fractals,4 bond-percolation networks,5 disordered arrays,6 and
quasiperiodic lattices.7–11 The rich structure present in the
resistive transition temperature as a function of the magnetic
field, namely, the superconducting-normal phase diagram,
has a rich structure that has been the subject of various ex-
perimental and theoretical investigations.9,12–16

A. Physics of the phase diagram

The rich structure in the phase diagram is essentially a
result of the quantum interference effect or frustration due to
the magnetic field and the built-in multiconnectedness of the
networks. The magnetic fluxes through the cells of various
areas, measured in units of the superconducting flux quantum
F0[hc/2e, are useful parameters to characterize the inter-
ference effect. At zero magnetic field, the quantum interfer-
ence effect is absent, and therefore the resistive transition
temperature should have a peak. Also, due to gauge invari-

ance, physical quantities should be periodic functions of the
cell fluxes, with a period ofF0. These arguments qualita-
tively explain the apparent periodic or quasiperiodic struc-
tures observed in phase diagrams of networks of various ge-
ometries.

To gain a quantitative description of the phase diagrams,
we employ the mean-field theory which is very effective in
serving such a purpose. For wire networks, the mean-field
expression is given by the Landau-Ginsburg equation ex-
pressed in terms of the order parameters at the nodes.12 For a
junction array, one has a set of self-consistent equations13,14

for the thermally averaged pair wave functions of the grains.
Such equations are linearized near the transition point, and
the highest temperature at which a nontrivial solution first
appears is identified as the transition temperature. Therefore,
one is left to find the top spectral edge of eigenvalue prob-
lems. The equations for a junction array can be mapped onto
a tight-binding Schro¨dinger problem for an electron hopping
on a lattice immersed in a magnetic field. The equations for
a wire network are in general more difficult to solve, because
the eigenvalue appears in a nonlinear way.

Numerical results have been obtained for phase diagrams
of networks of various geometries. All of them compare very
well with the corresponding experimental data; the locations
of the peaks of various sizes are correctly predicted and the
relative heights of the peaks are also reproduced with occa-
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sional small deviations. The success of mean-field theory14,15

suggests that much of the frustration effect in a statistical
problem can be accounted for in terms of quantum interfer-
ence effect of linear wave mechanics.

B. Many-loop generalization
of the standard Aharonov-Bohm effect

In this paper, we systematically investigate the field-
dependent superconducting-normal phase for a variety of
two-dimensional superconducting networks. The basis of our
approach is an analytic study of electron quantum interfer-
ence effects originating from sums over magnetic phase fac-
tors on closed lattice paths. The sums of these phase factors,
called lattice path integrals, are many-loop generalizations
of the standard one-loop Aharonov-Bohm-type argument,
where the electron wave function picks up a phase factor
eiF each time it goes around a closed loop enclosing a net
flux F.

We compute analytically the lattice path integrals up to
very long lengths for various types of lattices. These lattice
path integrals contain the quantum interference of enormous
numbers of closed paths. Through an iterative approach,
these results then enable us to obtain the corresponding
phase boundaries14,15 as continuous functions of the strength
of the applied field. This method provides a systematic ap-
proximation scheme, through finite truncations, for the spec-
tral edges of eigenvalue problems from which our mean-field
phase diagrams can be computed. Thus, we can gain consid-
erable theoretical insight into the physical origin of the struc-
ture in the phase diagrams. This approach also enables us to
analyze the structure of the phase boundaries from the view-
point of the geometric features of the networks. We apply
this approach to study the phase boundaries of square, hon-
eycomb, triangular, and kagome´ lattices. Our studies provide
a complete and detailed analysis of the relationship between
the phase diagram structures and the corresponding network
geometries.

C. Organization of the paper

This paper is organized as follows. In Sec. II, we describe
the general formulation of our approach to the determination
of phase diagrams for a variety of periodic superconducting
networks. To illustrate our calculational scheme, we first
compute the Little-Parks oscillatory phase boundary of a
single superconducting loop in Sec. III. In Sec. IV, we apply
this approach to the superconducting square network. We
devote Sec. V to a discussion of a very important and inter-
esting feature observed in the phase boundary of the square
network, namely, the self-similarity. The superconducting
honeycomb, triangular, and kagome´ networks are studied
based on the same approach, respectively, in Secs. VI, VII,
and VIII. In Sec. IX, we discuss some general trends in the
application of this approach to these types of networks stud-
ied above. Comparisons of the phase boundaries between a
single superconducting loop and the corresponding super-
conducting network are also made. Furthermore, we present
a brief discussion on the relationship between our approach

and other related methods. In Sec. X, we compare the phase
boundaries of honeycomb and kagome´ lattices. The last sec-
tion summarizes our results.

II. GENERAL FORMALISM

The physics ofTc(B), the superconducting-normal phase
boundary as a function of the fieldB, is determined by the
electronic kinetic energy because the applied field induces a
diamagnetic current in the superconductor.1 This current
~proportional to the velocity! determines the kinetic energy
of the system. In other words, the kinetic energy can be
written in terms of the temperature as

2
\2

2m*
,2;2

\2

2m* j~T!2
;Tc~B!2Tc~0!,

where, for any superconductor,m* is twice the electron mass
and

j~T!5
j~0!

A12Tc~B!/Tc~0!

is the temperature-dependent coherence length. The problem
of obtaining Tc(B) is then mapped to that of finding the
spectral edges of tight-binding electrons on the correspond-
ing lattice. Thus, assuming a unit hopping integral between
adjacent sites, we consider the Hamiltonian

H5(̂
i j &

ci
†cj exp~ iAi j !, ~1!

which describes the kinetic energy of electrons hopping on a
discrete lattice subject to a perpendicular magnetic field.
Here ^ i j & refers to nearest-neighbor sites and the magnetic
phase

Ai j 52pE
j

i

A•dl

is 2p times the line integral of the vector potential,A, along
the bond fromj to i in units of theF05hc/2e.

A. Sums over closed paths

The lattice path integralm l is defined as

m l[ (
all closed lattice pathsgof length l

eiFg. ~2!

By closed paths of lengthl we mean the paths starting and
ending at the same site after traversingl steps on the lattice
andFg is the sum over phases of the bonds on the pathg.
Let uC i& denote a localized electron state centered at sitei. It
is not difficult to notice thatm l corresponds precisely to the
quantum mechanical expectation value^C i uHl uC i&, which
summarizes the contribution to the electron kinetic energy of
all closed paths ofl steps. The physical meaning of the lat-
tice path integral

m l5^C i uHl uC i&
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thus becomes clear. The HamiltonianH is appliedl times to
the initial stateuC i&, resulting in the new state

uC f&5Hl uC i&

located at the end of the path traversingl lattice bonds. Be-
cause of the presence of a magnetic field, a magnetic phase
factoreiAi j is acquired by an electron when hopping fromj to
the adjacent sitei. The lattice path integralm l is nonzero
only when the path ends at the starting site. In other words,
m l is the sum of the contributions from allclosedpaths ofl
steps starting and ending at the same site, each one weighted
by its corresponding phase factoreiFg where

Fg

2p
5net flux enclosed by the closed pathg.

B. Quantum interference

It is important to stress thatFg depends crucially on the
traveling route of the path.14,15For instance,Fg will be posi-
tive ~negative! by traversing a polygon loop counterclock-
wise ~clockwise!. Therefore,quantum interferenceinforma-
tion contained inm l arises because the phase factors of
different closed paths, including those from all kinds of dis-
tinct loops and separate contributions from the same loop,
interfere with each other. Sometimes, the phases correspond-
ing to subloops of a main path cancel.

To analytically compute14,15the lattice path integralsm l is
in general a difficult task sincem l involves an enormous
number of different paths~growing rapidly when l in-
creases!, each one determined by its corresponding net mag-
netic phase factor. We have developed systematic and effi-
cient methods to calculate the lattice path integrals for a
number of distinct lattices. The techniques involve succes-
sively iterating the constructed recursion relations and ex-
ploiting the symmetries of the underlying lattices. The tech-
nical details of the implementation will be presented
elsewhere. Below we will only list the first few calculated
lattice path integrals in relevant places. Results for the lattice
path integrals of largerl will not be presented due to their
lengthy expressions, but will be used in some of our calcu-
lations.

In summary, the lattice path integrals summarize the elec-
tron quantum interference effects originating from sums over
magnetic phase factors on closed lattice paths. The sums of
these phase factors, the lattice path integrals, are many-loop
generalizations of the standard one-loop Aharonov-Bohm-
type argument, where the electron wave function picks up a
phase factoreiF each time it goes around a closed loop en-
closing a net fluxF.

C. Computation of the energy eigenvalues from lattice
path integrals

We now outline the scheme for obtaining the eigenvalues
from the calculated lattice path integrals. Let us apply the
Hamiltonian to the starting state

uc1&[uC i&,

which is a localized state centered at an arbitrary sitei on the
lattice, and perform the following expansions:

Huc1&5a1uc1&1b2uc2&

and forn.1

Hucn&5bnucn21&1anucn&1bn11ucn11&.

The Hamiltonian matrix in the basisucn& is obviously in a
real tridiagonal form. Each new state in this method expands
outward by one more step from the site where the starting
state is located. Note that thean’s and bn11’s are gauge-
invariant quantities. Through these parameters we can con-
struct the truncated Hamiltonian matricesH (n), which are the
nth-order approximation toH. For instance,

H (2)5Fa1 b2

b2 a2
G ,

H (3)5F a1 b2 0

b2 a2 b3

0 b3 a3

G ,

H (4)5F a1 b2 0 0

b2 a2 b3 0

0 b3 a3 b4

0 0 b4 a4

G ,

and so on. The quantity we desire, i.e., the top spectral edge,
can then be obtained by solving the eigenvalues ofH (n) and
will be designated byTc

(n) , which is thenth-order approxi-
mant to the phase boundary. This scheme is useful because
finite truncations give good approximations toTc(B).

The coefficientsan’s andbn11’s can be exactly expressed
in terms of the lattice path integrals in a systematic manner,
which will be presented below, respectively, for the bipartite
and nonbipartite lattices. In general, given the lattice path
integrals up to the orderm2L21, which contains information
on the quantum interference effects due to closed paths of
2L21 steps, we can obtain the coefficients up toaL andbL .
Thus, theLth-order truncation of the Hamiltonian matrix can
be constructed, and subsequentlyTc

(L) can be obtained.

1. For bipartite lattices

We first discuss the case for bipartite lattices where the
lattice path integrals of odd number steps are identically
zero, i.e.,

m2l 1150.

It is evident that

an50

for any n. To compute thebn11’s, we define an auxiliary
matrix B with the first row elements given by

B1,l[m2l .
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The other rows are evaluated by using only one immediate
predecessor row. Namely, fork>2 andl>1

Bk,l5
Bk21,l 11

Bk21,1
2(

i 50

l 21

Bk,iBk21,l 2 i , ~3!

where

Bn,0[1

for n>1. Thebn11’s are obtained from the elements of first
columns of the matrixB as

bn115ABn,1. ~4!

Below we explicitly express the first fewbn11’s in terms of
the lattice path integrals noting thatm2 is always equal toz,
the coordination number of the lattice:

b25Am25Az,

b35Am4

z
2z,

b45Am622m4z1z3

m42z2
2

m42z2

z
.

These expressions are applicable to any type of bipartite
lattice.

It is worthwhile to point out that the number of elements
on a specific row is always less than that on the immediate
predecessor row by 1. For instance, for a specifick, if the
matrix elements run fromBk,1 to Bk,l , the elements in the
next row run fromBk11,1 to Bk11,l 21. Therefore, given the
lattice path integrals up tom2L , the matrixB consists ofL
rows. TheLth ~last! row has only one elementBL,1 from
which we can deducebL11. It is clear now that the highest-
order approximationTc

(L11) to the phase boundary can be
obtained fromm2 ,m4 , . . . ,m2L .

2. For nonbipartite lattices

Turning to the nonbipartite lattice case, we now define an
auxiliary matrixN with the first row elements given by

N1,l[m l .

The other rows are evaluated by using only one immediate
predecessor row. Namely, fork>2 andl>1,

Nk,l5
Nk21,l 122Nk21,1Nk21,l 11

Nk21,22Nk21,1
2

2(
i 50

l 21

Nk,iNk21,l 2 i ,

~5!

whereNn,0[1 for n>1. Thean’s and bn11’s are obtained
from the elements of the first and second columns as

an5Nn,1 ~6!

and

bn115ANn,22Nn,1
2 . ~7!

Below we explicitly express the first fewan’s andbn11’s in
terms of the lattice path integrals:

a150,

a25
m3

z
,

a35
m5z222m4m3z1m3

3

m4z22m3
2z2z4

and

b25Az,

b35Am4

z
2

m3
2

z2
2z.

The above expressions are valid for any type of nonbipartite
lattice.

It is worth stressing that the number of elements on a
specific row is always less than that on the immediate pre-
decessor row by 2. For instance, for a specifick, if the matrix
elements run fromNk,1 to Nk,l , the elements in the next row
run fromNk11,1 to Nk11,l 22. Therefore, given the lattice path
integrals up tom2L11, the matrixN consists ofL11 rows.
The Lth row has only three elementsNL,1 , NL,2 , andNL,3 ,
wherebL11 can be obtained fromNL,2 , and NL,3 . The (L
11)th ~last! row has only one elementNL11,1 from which
we can deduceaL11. It is clear now that the highest-order
approximationTc

(L11) to the phase boundary can be obtained
from m1 ,m2 , . . . ,m2L11.

III. SIMPLE ILLUSTRATION:
A SINGLE SUPERCONDUCTING LOOP

Before we study the lattice cases, we apply the formalism
described above to three simple single-cell cases. Namely,
we calculate, respectively, the transition temperature of a
single superconducting loop in the shape of a square, a hexa-
gon, and a triangle. Exact solutions of the phase boundaries
can be obtained for these simple cases. For all of these,F
5f/2p stands for the magnetic flux through these elemen-
tary cells, in units ofF0.

The lattice path integralsm l now correspond to the sums
over all closed paths ofl steps on a single cell. Closed-form
results for the lattice path integrals are derived. They are,
respectively,

m2l
(s)5Cl

2l12(
k51

[ l /2]

Cl 22k
2l cos~kf!

on a square,

m2l
(h)5Cl

2l12(
k51

[ l /3]

Cl 23k
2l cos~kf!

on a hexagon, and
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m2l
(t)5Cl

2l12(
k51

[ l /3]

Cl 23k
2l cos~2kf!,

m2l 11
(t) 52 (

k50

[( l 21)/3]

Cl 23k21
2l 11 cos@~2k11!f#

on a triangle. Here

Cn
m5

m!

n! ~m2n!!

is the binomial coefficient, and the notation@x# means the
largest integer equal to or smaller thanx. Through these re-
sults for the lattice path integrals, it is straightforward to
compute the parametersan’s and bn11’s. In fact, for these
small simple systems, the iterative process terminates very
quickly. In other words, the parametersan’s andbn11’s be-
come identically zero after a few iterations. Hence, the cor-
responding exact tridiagonal Hamiltonian matrices can be
readily constructed.

A. Square loop

Denoting the tridiagonal Hamiltonian matrix for the
square loop byHs , we find that

Hs5A23
0 1 0 0

1 0 UcosS f

2 D U 0

0 UcosS f

2 D U 0 UsinS f

2 D U
0 0 UsinS f

2 D U 0
4 ,

which is obtained by using onlym2 , m4, andm6. A closed-
form expression for the top eigenvalue ofHs can be easily
obtained:

Tc~f!5A212 cosS f

2 D .

B. Hexagonal loop

Similarly, denoting the tridiagonal Hamiltonian matrix for
the hexagon loop byHh , we find that

Hh53
0 A2 0 0 0 0

A2 0 1 0 0 0

0 1 0 A11cos~f! 0 0

0 0 A11cos~f! 0 A12cos~f! 0

0 0 0 A12cos~f! 0 1

0 0 0 0 1 0

4 ,

which is obtained by using onlym2 , m4 , m6 , m8, andm10. Let j be an integer; the top eigenvalue ofHh can be expressed as
follows:

Tc~f!5

¦

A212 cosS f

3
1

2p

3 D for 2
3

2
13 j <

f

2p
<2

1

2
13 j ,

2 cosS f

6 D for 2
1

2
16 j <

f

2p
<

1

2
16 j ,

A212 cosS f

3
2

2p

3 D for
1

2
13 j <

f

2p
<

3

2
13 j ,

22 cosS f

6 D for
5

2
16 j <

f

2p
<

7

2
16 j .

C. Triangular loop

Denoting the tridiagonal Hamiltonian matrix for the triangle loop byHt , we find that

Ht5F 0 A2 0

A2 cos~f! usin~f!u

0 usin~f!u 2cos~f!
G ,
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which is obtained by using onlym1–m5. The top eigenvalue ofHt can be expressed as follows:

Tc~f!55
2 cosS f

3
1

2p

3 D for 2
3

2
13 j <

f

2p
<2

1

2
13 j ,

2 cosS f

3 D for 2
1

2
13 j <

f

2p
<

1

2
13 j ,

2 cosS f

3
2

2p

3 D for
1

2
13 j <

f

2p
<

3

2
13 j .

In Fig. 1, we plot the superconducting transition tempera-
ture, DTc(F)[Tc(0)2Tc(F)522Tc(F), respectively, of
a square loop, a hexagon loop, and a triangle loop for22
<F<2. It is evident that these phase diagrams are qualita-
tively identical. Also, theDTc(F) shown are periodic func-
tions of F and the period of the oscillation in the flux is
equal toF0. As expected,DTc(F) have their minima atF
5 j F0 and their maxima atF5 j F0/2.

It is interesting to note thatDTc(F) has the largest mag-
nitude for the triangular loop and the smallest for the hex-
agonal loop. It will be seen in Sec. X that this one-loop
general behavior carries over to the network cases, in spite of
the distinctive differences in the fine structure of their phase
boundaries. These results are consistent with the ones ob-
tained numerically in Ref. 2.

IV. SQUARE LATTICE

For the square lattice, we denote the lattice path integrals
by s2l . In other words,s2l is the exact sum of the phase
factors of all 2l -step closed paths on the square lattice. Be-
low f/2p corresponds to the magnetic flux through an el-
ementary square plaquette, i.e.,

f

2p
5c2B.

Throughout this paper,c denotes the lattice constant of all
the lattices considered in this work. The results for
s2 ,s4 , . . . ,s12 are

s254,

s452818 cosf,

s652321144 cosf124 cos 2f,

s85215612016 cosf1616 cos 2f196 cos 3f116 cos4f,

s10521944126320 cosf111080 cos 2f13120 cos 3f

1840 cos 4f1160 cos 5f140 cos 6f,

s1252402801337560 cosf1174384 cos 2f

167256 cos 3f123928 cos 4f17272 cos 5f

12400 cos 6f1528 cos 7f1144 cos 8f124 cos 9f.

We have computed the lattice path integrals for the square
lattice up tos138, which are obtained byexactly summing up
;1081 closed paths. The first few lattice path integrals can be
quickly obtained analytically by hand. We have usedMAPLE

symbolic manipulation software to obtain lattice path inte-
grals of longer lengths. For these, it is convenient to optimize
the algorithm by exploiting the symmetries of the problem.
These calculated lattice path integralss2l ’s have enabled us
to obtain the phase boundary up toTc

(70)(f).
It is instructive to explain how the first few lattice path

integrals are obtained. This will also clarify their physical
meaning. Since there is no path of one step for returning an
electron to its initial site,s1 is always equal to zero. Indeed,
all lattice path integralss2l 11 involving an odd number of
steps are equal to zero. Now let us compute the next lattice
path integral, with two steps. There are four closed paths of
two steps each@retracing each other on one bond (•↔),
where the dot• indicates the initial site#, thus

s254•↔54ei0f545z,

wherez is the coordination number of the lattice.
There are 28 closed paths of four steps each: four retrac-

ing twice on one bond (
•↔
↔ ), 12 starting from a site connect-

ing two adjacent bonds and retracing once on each bond
(↔•↔), and 12 moving two bonds away and then two

FIG. 1. The oscillatory phase boundaryDTc(F) for a single
superconducting loop. The top curve corresponds to a triangle
~dashed line! the middle a square~dotted line!, and the bottom a
hexagon~solid line!. F is the magnetic flux through these cells in
units of F0.
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bonds back to the original site (
•→
←

→
←). Since all of them

enclose no area~i.e., no flux!, then

s4
no flux54

↔
•↔112↔•↔112

←
•→

←
→528.

Among the four-step closed paths, eight of them enclose
adjacent square cells~four counterclockwise and four clock-
wise! contributing

4eif14e2 if58 cosf

to s4. Thus it follows thats4 5 2818 cosf. Higher-order
integralss2l can be similarly constructed.

It is straightforward to compute the nonzero parameters
bn from the obtained results fors2l . The corresponding trun-
cated HamiltoniansH (n) can then be readily constructed. For
instance, the second-order truncation of the Hamiltonian is

H (2)5F0 2

2 0G .

Its corresponding top eigenvalue isTc
(2)(f)52, which does

not depend onf. This is understandable from the fact that
the shortest length for a closed path on the square lattice to
enclose the magnetic flux is forl 54 while H (2) only con-
tains elements derived fromm2. The third-order truncation of
the Hamiltonian is

H (3)5F 0 2 0

2 0 A312 cosf

0 A312 cosf 0
G .

Its corresponding top eigenvalue is

Tc
(3)~f!5A712 cosf.

The fourth-order truncation of the Hamiltonian,H (4), is

3
0 2 0 0

2 0 A312 cosf 0

0 A312 cosf 0 A318 cosf18 cos2f

312 cosf

0 0 A318 cosf18 cos2f

312 cosf
0

4 .

Its corresponding top eigenvalue is

Tc
(4)~f!5A2A3 cos2f17 cosf161a

312 cosf
,

where

a5A9 cos4f126 cos3f145 cos2f154 cosf127.

In Fig. 2, we show the superconducting transition tem-
peratures

DTc
(n)~F!5Tc~0!2Tc

(n)~F!

as functions ofF[f/2p for various values ofn for the
square network obtained from the truncated Hamiltonians
H (n). HereTc(0) equals 4, which is the largest eigenvalue of
tight-binding electrons confined on the square lattice in the
absence of a magnetic field. It is important to stress that as
the order of approximation is increased, more geometrical
information of the lattice is included in the interference treat-
ment and more fine structures are resolved. At every step,
i.e., for a given size of the network, we can observe the
corresponding dips appearing and then becoming sharper.
We emphasize that our highest-order approximantTc

(70)(F)

has closely reached the infinite-system-size limitDTc(F).
The flux values where the cusps and dips occur have also
been labeled.

V. SELF-SIMILARITY IN THE PHASE BOUNDARY
OF THE SUPERCONDUCTING SQUARE WIRE NETWORK

In this section, we explicitly demonstrate an important
property: the self-similarity of the phase boundary of the
superconducting square wire network. This is exemplified in
Fig. 3, where we useDTc

(70)(F) for DTc(F) and omit the
superscript. In~a!, we plot DTc(F) for F in the interval
between 0 and 1. In~b! and ~c!, we plot DTc(F) for F,
respectively, in the ranges@0.333.1/3,0.4765# and
@0.5235,0.667.2/3#. Figures 3~b! and 3~c! can be regarded
as the first generation of the original diagram~a!, in the sense
that ~b! is enlarged from the maximum in the left part of~a!
and~c! is enlarged from the maximum in the right part of~a!.

This enlargement process is continued as follows:~d! with
FP@0.37553/8,0.3978# and ~e! with FP@0.4025,0.4286
.3/7# are, respectively, the enlargements of the left and right
maxima of ~b!. Similarly, ~f! with FP@0.5714
.4/7,0.5975# and ~g! with FP@0.6022,0.62555/8# are, re-
spectively, the enlargements of the left and right maxima of
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~c!. Figures 3~d!, 3~e!, 3~f!, and 3~g! can be regarded as the
second generation of the original phase diagram~a!. In this
way, it is straightforward to deduce that the third generation
of ~a! will consist of eight phase diagrams: each of~d!, ~e!,
~f!, and~g! contributes two diagrams. It is evident that these
phase diagrams resemble one another except that the phase
diagrams gradually become asymmetric.

As shown in these figures, we also label the values ofF

indicating the cusps and dips inDTc(F). These nine flux
values are characteristic of each phase diagram. Indeed, there
are general relations between these sets of flux values in
different generations. Let$p0 /q0% represent the set of these
flux values in~a!, i.e., p0 /q051/4, 2/7, 1/3, 2/5, 1/2, 3/5,
2/3, 5/7, and 3/4. Denoting the set of characteristic flux val-
ues in any of the phase diagrams in the first generation by
$p1 /q1%, we find that the corresponding flux values in~b! are
given by

p1

q1
5

q0

3q02p0
,

and those in~c! are given by

p1

q1
5

p01q0

p012q0
.

For instance, givenp0 /q051/2 in ~a!, we have the corre-
sponding

p1 /q152/~621!52/5

in ~b! and

p1 /q15~112!/~114!53/5

in ~c!. Furthermore, let$p2 /q2% stand for the sets of the
corresponding flux values in the second-generation diagrams.
In the second-generation diagrams@~d!–~g!# only five char-
acteristic cusps and dips out of nine are observable. There we
find that thep2 /q2 in ~d! are related to thep1 /q1 in ~b! by

p2

q2
5

q1

3q12p1
,

p2 /q2 in ~e! are related to p1 /q1 in ~c! by p2 /q2
5q1 /(3q12p1), p2 /q2 in ~f! are related top1 /q1 in ~b! by

p2

q2
5

p11q1

p112q1
,

andp2 /q2 in ~g! are related top1 /q1 in ~c! by p2 /q25(p1
1q1)/(p112q1).

We now summarize our construction of the hierarchy of
these phase diagrams. As discussed previously, every dia-
gram can generate two diagrams to the next generation: one
is enlarged from the left maximum and the other from the
right maximum of this diagram. Thus, starting from the
original phase diagram, i.e.,DTc(F) for FP@0,1#, we can
generate 2n diagrams to thenth generation forn>1. Fur-
thermore, each diagram covers a distinct range ofF from
Fmin to Fmax. Let us arrange these diagrams in the following
way, as we did in Fig. 3. We put all the diagrams belonging
to the same generation in a row in such an order that from
the left to the rightFmin ~or Fmax) increases from the small-
est to the largest. It is evident that half of them (2n21 dia-
grams! haveFmax,1/2 and the other half haveFmin.1/2. It
is not difficult to see that this kind of arrangement will be
automatically satisfied in the following way. Following the
same order of the diagrams in the previous generation and
using them one by one, we put two new generated diagrams

FIG. 2. Superconducting transition temperature for the square
network as a continuous function of the applied magnetic field:
DTc

(n)(F)5Tc(0)2Tc
(n)(F) vs F, the magnetic flux through an

elementary square cell. In~a! we show the superconducting-normal
phase boundaries computed from the truncated HamiltoniansH (n)

for F in the range between 0.2 and 0.8. We omit the parts of
DTc

(n)(F) for FP@0, 0.2# and@0.8, 1# since there are no interesting
features in these portions ofDTc

(n)(F). From top to bottom, the
orders of truncation aren55 ~top curve!, 6, 7, 8, 10, 15, 23, 39, and
70. Note the development of fine structures and cusps. The conver-
gence is monotonic. Note also that the closeness between the curves
for DTc

(39)(F) andDTc
(70)(F) implies thatDTc

(70)(F) has achieved
close convergence to the infinite system sizeDTc(F). The inset
schematically depicts a square lattice. In~b!, we plot DTc(F) for
FP@0.2, 0.8# and label the values of the magnetic flux where ob-
servable cusps and dips occur. They includeF51/4, 2/7, 3/10, 1/3,
3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 7/10, 5/7, and 3/4. Here
DTc(F)[DTc

(70)(F)5Tc(0)2Tc
(70)(F), our calculated highest-

order approximant.
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side by side with the one from the left maximum to the left
and the one from the right maximum to the right. It is inter-
esting to notice that, for each generation, the diagrams lo-
cated at the left part ofF51/2 are mirror images of those
located at the right part. This symmetry originates from the
property that the phase diagram ofDTc(F) with FP@0,1# is
symmetric aroundF51/2.

Indeed, there are one-to-one correspondences between the
sets of the characteristic flux values, where cusps and dips in
the phase boundaries occur, in different generations. Let us
label the diagrams from left to right in thenth generation by
D i

(n) with i running from 1 to 2n. Similarly, the diagrams in
the (n11)th generation are labeled byD i

(n11) with i running
from 1 to 2n11. Now let $pn /qn% represent the sets of the
flux values characterizing the cusps and dips inDTc(F) in
any of the phase diagrams in thenth generation and
$pn11 /qn11% be the sets belonging to the diagrams in the
(n11)th generation. The relations between the
(pn11 /qn11)’s and the (pn /qn)’s are as follows. For 1< i
<2n, thepn11 /qn11 in the diagramD i

(n11) @one of the dia-
grams in the (n11)th generation that located on the left-
hand side ofF51/2# is related to thepn /qn in D i

(n) by

pn11

qn11
5

qn

3qn2pn
,

and for 2n11< i<2n11, the pn11 /qn11 in the diagram
D i

(n11) @the second half of the diagrams in the (n11)th
generation that located on the right-hand side ofF51/2# is
related to thepn /qn in D i 22n

(n) by

pn11

qn11
5

pn1qn

pn12qn
.

Self-similarity in theDTc(F) curve is a consequence of
the fractal energy spectrum of Bloch electrons in a magnetic
field which was examined in detail by Hofstadter.17 How-
ever, as far as we are aware, the explicit derivation of the
self-similarity of the measurable part, the lowest-energy
state, was not presented before.

Recently, the influence of classical chaos on this so-called
‘‘Hofstadter’s butterfly’’ has been studied.18 Furthermore, a
semiclassical theory for the dynamics of electrons in a mag-
netic Bloch band has been developed and used to explain the
clustering structure of the spectrum.19

FIG. 3. Field-dependent transition temperatureDTc(F) of the superconducting square network for various different ranges ofF
from ~a! to ~g!, respectively, FP@0,1#, @0.333.1/3, 0.4765#, @0.5235, 0.667.2/3#, @0.37553/8, 0.3978#, @0.4025, 0.4286.3/7#,
@0.5714.4/7, 0.5975#, and@0.6022, 0.62555/8#. It is clear that~b! is enlarged from the maximum in the left part of~a! and~c! is enlarged
from the maximum in the right part of~a!. Similarly, ~d! and~e! are, respectively, the enlargements of the left and right maxima of~b! while
~f! and~g! are, respectively, the enlargements of the left and right maxima of~c!. We also include the labeling of the values ofF where there
are cusps and dips inDTc(F). For the relations between these sets of flux values in different frames, see the text. The self-similarity in the
phase boundary can be concluded from the resemblance of these figures though an asymetry in the height develops in each successive
magnification.
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VI. HONEYCOMB LATTICE

For the honeycomb lattice, we denote the lattice path in-
tegrals byh2l . In other words,h2l is the exact sum of the
phase factors of all 2l -step closed paths on the honeycomb
lattice. In this section,f/2p corresponds to the magnetic
flux through an elementary honeycomb plaquette, i.e.,

f

2p
5

3A3c2B

2F0
.

The results forh2 ,h4 , . . . ,h20 are

h253,

h4515,

h658716 cosf,

h85543196 cosf,

h105354311080 cosf130 cos 2f,

h12523859110560 cosf1726 cos 2f124cos 3f,

h145164769196096 cosf111130 cos 2f1798 cos 3f

142 cos 4f,

h16511627191839040 cosf1138720 cos 2f

115648 cos 3f11536 cos 4f196 cos 5f,

h185836389517143210 cosf11537668 cos 2f

1237714cos 3f133246 cos 4f13834cos 5f

1252 cos 6f118 cos 7f,

h20561216275159862000 cosf115829200 cos 2f

13103320 cos 3f1555390 cos 4f189520 cos 5f

110920 cos 6f11320 cos 7f1120 cos 8f.

Notice thath2 andh4 involve paths that enclose zero net
flux. There are three closed paths of two-steps each. Thus,
h253, the coordination number of the lattice.h6 is the first
lattice path integral with a net flux~in this case flux through
one hexagon!. There are three counterclockwise and three
clockwise six-step paths going through a hexagon. Thus, the
term 6 cosf in h6. It is possible to derive the first few path
integrals analytically ‘‘by hand’’ by just counting paths and
keeping track of the enclosed flux. The longer-length ones
can be computed via symbolic manipulation software.

We have computed the lattice path integrals for the hon-
eycomb lattice up toh206, which are obtained byexactly

summing up;1096 closed paths. These calculatedh2l ’s have
enabled us to obtain the phase boundary up toTc

(104)(f).
It is straightforward to compute the nonzero parameters

bn from the obtained results forh2l . The corresponding trun-
cated HamiltoniansH (n) can then be readily constructed. For
instance, the second-order truncation of the Hamiltonian is

H (2)5F 0 A3

A3 0 G .

Its corresponding top eigenvalue isTc
(2)5A3. The third-

order truncation of the Hamiltonian is

H (3)5F 0 A3 0

A3 0 A2

0 A2 0
G .

Its corresponding top eigenvalue isTc
(3)5A5. BothTc

(2) and
Tc

(3) are independent off. This is understandable from the
fact that the shortest length for a closed path on the honey-
comb lattice to enclose the magnetic flux is forl 56 while
H (2) and H (3) only contain elements derived fromm2 and
m4. The fourth-order truncation of the Hamiltonian is

H (4)5F 0 A3 0 0

A3 0 A2 0

0 A2 0 A21cosf

0 0 A21cosf 0

G .

Its corresponding top eigenvalue is

Tc
(4)~f!5

1

2
A1412 cosf12A2512 cosf1cos2f.

In Fig. 4, we show the superconducting transition tem-
peraturesDTc

(n)(F)5Tc(0)2Tc
(n)(F) as functions ofF

[f/2p for variousn for the honeycomb network obtained
from the truncated HamiltoniansH (n). HereTc(0) equals 3,
which is the largest eigenvalue of tight-binding electrons
confined on the honeycomb lattice in the absence of a mag-
netic field.

We observe that as the order of approximation is in-
creased, more geometrical information of the lattice is in-
cluded in theinterference treatmentand more fine structures
are resolved. This explainsthe origin of the fine structure
observed: the more geometric information on the lattice is
explored by the paths of the electrons, the sharper the fine
structures.

We emphasize that our highest-order approximant
Tc

(104)(F) has closely reached the infinite-system-size limit
DTc(F). The flux values where the cusps and dips occurred
have also been labeled. In general, besides the cusp atF
51/2, there are cusps at

F5
m

2m11

YEONG-LIEH LIN AND FRANCO NORI PHYSICAL REVIEW B65 214504

214504-10



and

F5
m11

2m11

with m>1. Our computed phase boundary compares well
with the observed cusps present in experiments.20,21

VII. TRIANGULAR LATTICE

For the triangular lattice, we denote the lattice path inte-
grals byt l . In other words,t l is the exact sum of the phase

factors of all l-step closed paths on the triangular lattice. In
this section,f/2p corresponds to the magnetic flux through
an elementary triangular plaquette, i.e.,

f

2p
5

A3c2B

4F0
.

The results fort2 throught10 are

t256,

t3512 cosf,

FIG. 4. Superconducting tran-
sition temperature for the honey-
comb network as a continuous
function of the applied magnetic
field: DTc

(n)(F)5Tc(0)
2Tc

(n)(F) vs F, the magnetic
flux through an elementary hex-
agonal cell. In~a! we show the
superconducting-normal phase
boundaries computed from the
truncated HamiltoniansH (n) for
F in the range between 0.3 and
0.7. We omit the parts of
DTc

(n)(F) for FP@0, 0.3# and
@0.7, 1# since there are no inter-
esting features in these portions of
DTc

(n)(F). From top to bottom,
the orders of truncation aren59
~top curve!, 10, 13, 16, 21, 31,
41, and 104. Note the develop-
ment of fine structures and cusps.
The convergence is monotonic.
We believe thatDTc

(104)(F) has
achieved close convergence to the
infinite system sizeDTc(F). The
inset schematically depicts a hon-
eycomb lattice. In ~b!, we
plot DTc(F) for FP@0.3, 0.7#
and label the values of the mag-
netic flux where observable cusps
and dips occur. They include
F51/3, 2/5, 3/7, 4/9, 5/11, 6/13,
7/15, 8/17, 1/2, 9/17, 8/15, 7/13,
6/11, 5/9, 4/7, 3/5, and 2/3. Here
DTc(F)[DTc

(104)(F)5Tc(0)
2Tc

(104)(F), our calculated
highest-order approximant.
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t4566124 cos 2f,

t55300 cosf160 cos 3f,

t6510201840 cos 2f1168 cos 4f112 cos 6f,

t756888 cosf12604 cos 3f1504 cos 5f184 cos 7f,

t8519890123904 cos 2f18568 cos 4f11968 cos 6f

1432 cos 8f148 cos 10f,

t95164124 cosf185944 cos 3f129628 cos 5f

18496 cos 7f11980 cos 9f1432 cos 11f

136 cos 13f,

t1054499761654840 cos 2f1317940 cos 4f

1114360 cos 6f137560 cos 8f110380 cos 10f

12700 cos 12f1540 cos 14f160 cos 16f.

Here we explain how the first few lattice path integrals are

FIG. 5. Superconducting tran-
sition temperature for the triangu-
lar network as a continuous func-
tion of the applied magnetic field:
DTc

(n)(F)5Tc(0)2Tc
(n)(F) vs

F, the magnetic flux through an
elementary triangular cell. In~a!
we show the superconducting-
normal phase boundaries com-
puted from the truncated Hamilto-
nians H (n) for F in the range
between 0.15 and 0.85. We omit
the parts of DTc

(n)(F) for F
P@0, 0.15# and @0.85, 1# since
there are no interesting features in
these portions ofDTc

(n)(F). From
top to bottom, the orders of trun-
cation aren55 ~top curve!, 6, 7,
10, 15, 29, and 60. Note the devel-
opment of fine structures and
cusps. The convergence is mono-
tonic and rapid. Note also that the
closeness between the curves for
DTc

(29)(F) andDTc
(60)(F) implies

thatDTc
(60)(F) has achieved close

convergence to the infinite system
sizeDTc(F). The inset schemati-
cally depicts a triangular lattice. In
~b!, we plot DTc(F) for F
P@0.15, 0.85#, our calculated
highest-order approximation to
DTc(F), and label the values of
the magnetic flux where observ-
able cusps and dips occur. They
include F51/5, 1/4, 5/16, 1/3,
3/8, 2/5, 5/12, 3/7, 7/16, 4/9, 9/20,
1/2, 11/20, 5/9, 9/16, 4/7, 7/12,
3/5, 5/8, 2/3, 11/16, 3/4, and 4/5.
Here DTc(F)[DTc

(60)(F)
5Tc(0)2Tc

(60)(F), our calcu-
lated highest-order approximant.
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obtained. Since there is no path of one step for returning an
electron to its initial site,t1 is always equal to zero. There are
six closed paths of two steps each@retracing each other on
one bond (•↔), where the dot• indicates the initial site#,
thus

t256•↔56ei0f565z,

wherez is the coordination number of the lattice.
There are 12 three-step closed paths enclosing a triangular

cell @three counterclockwise (•,ª ), and three clockwise
(•,¢ )#. Thus

t356•,ª 16•,¢ 56eif16e2 if512 cosf.

There are 66 closed paths of four steps each enclosing
zero flux each: six retracing twice on one bond (

•↔
↔ ), 30

starting from a site connecting two adjacent bonds and re-
tracing once on each bond (↔•↔), and 30 moving two
bonds away and then two bonds back to the original site
(
•→
←

→
←). Since all of them enclose no area~i.e., no flux!, then

t4
no flux56

↔
•↔130↔•↔130

←
•→

←
→566.

Among the four-step closed paths, 24 of them enclose
adjacent cells enclosing two triangles (12 counterclockwise
and 12 clockwise! and contribute

t4
two cells only512e2if112e22if524 cos 2f

to t4 . Thus, it follows thatt4566124 cos 2f.
Note thatt2l (t2l 11) consist of only even~odd! harmonics

of the flux. We have computed the lattice path integrals for
the triangular lattice up tot119, which are obtained by ex-
actly summing up;1090 closed paths. These calculatedt l ’s
have enabled us to obtain the phase boundary up toTc

(60)(f).
By using the calculated results fort l , the parametersan

and bn , and subsequently the corresponding truncated
Hamiltonians H (n), can be obtained. For instance, the
second-order truncation of the Hamiltonian is

H (2)5F 0 A6

A6 2 cosfG .

Its corresponding top eigenvalue is

Tc
(2)~f!5cosf1A61cos2f.

The third-order truncation of the Hamiltonian is

H (3)5F 0 A6 0

A6 2 cosf A114 cos2f

0 A114 cos2f
28 cosf116 cos3f

114 cos2f

G .

Its corresponding top eigenvalueTc
(3)(f) can also be ob-

tained analytically.
In Fig. 5, we show the superconducting transition tem-

peratures,DTc
(n)(F)5Tc(0)2Tc

(n)(F), as functions ofF

[f/2p for various n for the triangular network obtained
from the truncated HamiltoniansH (n). HereTc(0) equals 6,
which is the largest eigenvalue of tight-binding electrons
confined on the triangular lattice in the absence of a mag-
netic field. The following physical picture is clear from those
plots: as the order of approximation is increased, more geo-
metrical information of the lattice is included in the interfer-
ence treatment and more fine structures are resolved.

FIG. 6. Superconducting transition temperature for the kagome´
network as a function of the applied magnetic field:DTc

(n)(F)
5Tc(0)2Tc

(n)(F) vs F, the magnetic flux through an elementary
triangular cell. In~a! we show the superconducting-normal phase
boundaries computed from the truncated HamiltoniansH (n) for
F in the range between 0 and 1. From top to bottom, the orders of
truncation aren54 ~top curve!, 5, 6, 8, 10, 19, and 50. Note the
development of fine structures and cusps. The convergence is
monotonic. Note also that the closeness between the curves for
DTc

(19)(F) and DTc
(50)(F) implies that DTc

(50)(F) has achieved
close convergence to the infinite system sizeDTc(F). The inset
schematically depicts a kagome´ lattice. In ~b!, we plotDTc(F) for
FP@0, 1# and label the values of the magnetic flux where observ-
able cusps and dips occur. They includeF51/12, 1/8, 4/25, 1/4,
1/3, 3/8, 5/8, 2/3, 3/4, 19/24, 7/8 and 11/12. HereDTc(F)
[DTc

(50)(F)5Tc(0)2Tc
(50)(F), our calculated highest-order ap-

proximant. Note the absence of the cusp atF51/2. This distinct
feature is in sharp contrast to the cases for square, honeycomb, and
triangular networks.
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Our highest-order approximant,Tc
(60)(F) has closely

reached the infinite- system- size limitDTc(F). The flux
values where the cusps occurred have also been labeled. In
general, besides the cusps atF51/2, 1/5, 4/5, 5/16, 11/16,
there are cusps and dips at

F5
m

2m12

and

F5
m12

2m12
,

with m>1.

VIII. KAGOME´ LATTICE

Our computed phase boundary compares well with the
observed cusps present in a series of interesting
experiments.20,21

For the kagome´ lattice,15,20–24we denote the lattice path
integrals bykl . In other words,kl is the exact sum of the
phase factors of alll-step closed paths on the kagome´ lattice.
Heref/2p corresponds to the magnetic flux through an el-
ementary triangular plaquette, i.e.,

f

2p
5

A3c2B

4F0
.

The results fork2 throughk11 are

k254,

k354 cosf,

k4528,

k5560 cosf,

k65244116 cos 2f14 cos 6f,

k75756 cosf128 cos 7f,

k8524121416 cos 2f196 cos 6f180 cos 8f,

k959216 cosf176 cos 3f136 cos 5f1756 cos 7f

1120 cos 9f,

k1052580417560 cos 2f11860 cos 6f12480 cos 8f

1100 cos 10f120 cos 14f,

k115112420 cosf12816 cos 3f11276 cos 5f

114608 cos 7f14400 cos 9f144 cos 11f

144 cos 13f1176 cos 15f.

Note thatk2l (k2l 11) comprise only even~odd! harmonics of
the flux. We have computed the lattice path integrals for the
kagomélattice up tot99, which are obtained by exactly sum-

FIG. 7. DTc(F)’s as functions ofF between 0 and 1 for the
superconducting square, honeycomb, triangular, and kagome´ net-
works, respectively, from~a! to ~d!. Notice the difference in the
vertical scales.
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ming up;1058 closed paths. These calculatedkl ’s have en-
abled us to obtain the phase boundary up toTc

(50)(f).
By using the calculated results forkl , the parametersan

and bn , and subsequently the corresponding truncated
Hamiltonians H (n), can be obtained. For instance, the
second-order truncation of the Hamiltonian is

H (2)5F0 2

2 cosfG .
Its corresponding top eigenvalue is

Tc
(2)~f!5

1

2
~cosf1A161cos2f!.

The third-order truncation of the Hamiltonian is

H (3)5F 0 2 0

2 cosf A32cos2f

0 A32cos2f
cosf1cos3f

32cos2f

G .

Its corresponding top eigenvalueTc
(3)(f) can also be ob-

tained analytically.
In Fig. 6, we show the superconducting transition tem-

peraturesDTc
(n)(F)5Tc(0)2Tc

(n)(F) as functions ofF
[f/2p for variousn for the kagome´ network obtained from
the truncated HamiltoniansH (n). HereTc(0) equals 4 which
is the largest eigenvalue of tight-binding electrons confined
on the kagom e lattice in the absence of the magnetic field. It
is seen that as the order of the approximation is increased,
more geometrical information of the lattice is included in the
interference treatment and more fine structures are resolved.
We emphasize that our highest-order approximantTc

(50)(F)
has closely reached the infinite-system-size limitDTc(F).
The flux values where the cusps and dips occurred have also
been labeled. Our computed phase boundary compares well
with the observed cusps present in a series of interesting
experiments.20,21 See also the systematic calculations in
Ref. 22.

IX. DISCUSSION

In the following, we discuss the general trends in the ap-
proximants for these phase diagrams presented in the above
sections.

A. Comparison of the structure in the phase boundaries

In the lower-order approximants, the first noticeable de-
velopment in the phase boundaries of square, honeycomb,
and triangular lattices is the formation of dips when the flux
per elementary plaquette is equal tomF0/2, wherem is an
integer. When the order of approximation is increased, the
dips atF51/2 become sharper and at the same time more
fine structures~other local minima! begin to emerge. Even-
tually, the dips at various different flux values become cusps.

It is interesting to notice that, among these three lattices,
the development of the cusps is most rapid for the triangular

case while the honeycomb is the slowest. This difference
originates from the fact that for identical lengths, lattice path
integrals for the triangular lattice contain the richestquantum
interferenceeffects because the number of paths and the ar-
eas they enclose are both the largest. For the kagome´ net-
work, the rapid development of cusps at

Fkagome´5
1

8
,
1

4
,
3

8
,
5

8
,
3

4
,
7

8

can be seen from lower-order approximants. For an addi-
tional discussion of the kagome´ case, see Ref. 15. For exten-
sions of these techniques to other problems, see Ref. 25.

In general, the resulting phase diagrams—with the occur-
rence of cusps and dips at different sets of flux values—are a
direct consequence of the geometries of the lattices, which is
explicitly reflected in the corresponding expressions of the
lattice path integrals. We stress that our evaluation of the
lattice path integrals to extremely long lengths has enabled
our calculatedTc(B) to achieve close convergence to the
infinite system size. Indeed, forn.10, important features in
the phase boundaries of square, triangular, and kagom e net-
works are well developed.

Finally, in order to facilitate a comparison between the
different phase boundaries, in Fig. 7 we plotDTc(F) as a
function of F for the square, honeycomb, triangular, and
kagomésuperconducting networks. Here theDTc(F)’s are
taken from their respective highest-order approximants and
F is the flux through their respective elementary cells as
discussed in the previous sections. Here we omit the sub-
scripts indicating the order of approximation. The values of
the magnetic flux corresponding to a number of prominent
cusps and dips are also labeled.

B. Comparison of the phase boundaries of the single-loop
and lattice cases

From Figs. 1 and 7~a!–7~c!, we can readily see the differ-
ences between the phase boundaries of a single supercon-
ducting cell and its corresponding superconducting network.
For both cases,DTc varies periodically with the magnetic
flux through a single elementary cell and has the same period
F0 of oscillation. We now focus onDTc(F) for F in the
interval between 0 and 1.DTc(F) is symmetric aroundF
51/2. However, there are many distinct features between
DTc of a single cell and that of a network. These differences
are due to long-range correlations of the many-loop effect
present in the lattice. For a single superconducting cell,
DTc(F) increases monotonically fromF50 to F51/2 and
decreases monotonically fromF51/2 to F51. The maxi-
mum at F51/2 exhibits a sharp peak. Indeed, the overall
shape ofDTc(F) resembles the combination of two identical
half parabolas, both reaching their maximum atF51/2. On
the contrary, the overall shape ofDTc(F) for the corre-
sponding superconducting networks looks like downward
parabolas with many local cusps betweenF50 andF51.
The most prominent cusps are located atF51/2. The posi-
tions of other cusps and dips depend on the underlying lattice
types of the networks.
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C. Differences between our approach and the traditional
moments and Lanczos methods

In electronic structure calculations there is a method to
compute the density of states called the moments method.
This is similar to our approach in the sense thatm l can be
interpreted as the moments^C i uHl uC i&. However, there are
several important differences between the standard ‘‘mo-
ments method’’ and our problem. The typical use of the mo-
ments method~i! focuses on computation of the electronic
density of states~instead of superconductingTc’s!, ~ii ! is
totally numerical~instead of mostly analytical!, ~iii ! is done
at zero magnetic field~instead of obtaining expressions with
an explicit field dependence!, ~iv! does not focus on the ex-
plicit computation of lattice path integrals, and~v! does not
study the physical effects of quantum interference~which is
at the heart of our calculation and physical interpretation!. In
conclusion, the traditional use of the moments method in
solid-state physics is significantly different from the ap-
proach and problem studied here.

Another way to diagonalize Hamiltonians is called the
Lanczos method. This method directly obtains the tridiagonal
form, without computing the moments, and thus differs in a
significant way from the approach used here~where the ex-
plicit computation of the moments is one of our goals, since
they can be used for other electronic property calculations!.
Furthermore, it is not convenient to use the standard Lanczos
method in our particular problem because it is extremely
difficult to directly derive the parameters and the states of the
iterative tridiagonalization procedure. This is so because of
the presence of the magnetic field. On the other hand, the
moments method provides standard procedures to diagonal-
ize a matrix after the moments are computed.

D. Commensurability and other matching effects

An essential physics issue in this problem iscommensu-
rability. Another one isquantum interference—due to the
motion of electrons in multiconnected geometries. This sec-
tion briefly overviews related systems where commensura-
bility and matching effects~due to externally applied mag-
netic fields! play an important role. The first example will be
flux pinning.

Flux pinning in type-II superconductors is of both techno-
logical and scientific interest. While most experiments focus
on the effects of random pinning distributions, some investi-
gations have been carried out on periodic arrays of pinning
sites.1,26 These find striking peaks in the magnetization27 and
critical currentJc . These peaks are believed to arise from the
greatly enhanced pinning that occurs when parts of the vor-
tex lattice~VL ! become commensurate with~i.e., match! the
underlying periodic array of pinning sites. Under such con-
ditions, high-stability vortex configurations are produced
which persist under an increasing current or external field.

Other important vortex matching effects have also re-
cently been observed in a variety of different superconduct-
ing systems,28–30 including long Josephson junctions with
periodically spaced grooves,29 superconducting networks,26

and the matching of the VL to the crystal structure of
YBa2Cu3O7 due to intrinsic pinning.30

Matching effects between a vortex lattice and periodic
pinning arrays produce a rich variety of effects.31 The dy-
namics observed in these systems is quite different from the
one found for random arrays of pinning sites~see, e.g., Ref.
32 and references therein!.

Nonsuperconducting systems also exhibit magnetic-field-
tuned matching effects, notably in relation to electron motion
in periodic structures where unusual behaviors arise due to
the incommensurability of the magnetic length with the lat-
tice spacing. A recent example of these is provided by the
anomalous Hall plateaus of ‘‘electron pinball’’33 orbits scat-
tering from a regular array of antidots.

Commensurate effects also play central roles in many
other areas of physics, including plasmas, nonlinear
dynamics,34 the growth of crystal surfaces, domain walls in
incommensurate solids, quasicrystals, and Wigner crystals,
as well as spin and charge density waves. The next section
discusses in some detail an example in nonlinear dynamics
~which is virtually unknown in the solid-state literature! that
produces a fractal phase boundary which is strikingly similar
to the one measured for square superconducting networks—
because both are determined by commensurability effects.

E. Kagomé-pinned vortices: ‘‘Correlated melting’’
and cooperative ring excitations for doubly degenerate

ground states

Notice that the fluxoid configurations forf 51/2 for the
superconducting networks~e.g., Fig. 3 of Xiaoet al., in the
companion article20! has two ground states that correspond to
the two degenerate ground states of the second matching
field of vortices in type-II superconductors with a kagome´
periodic array of pinning sites. The latter has been system-
atically studied in Ref. 24.

The kagome´ pinning potential at the second matching
field shows novel and interesting dynamics as a function of
temperature,24 including a phase with rotating vortex tri-
angles caged by kagome´ hexagons~‘‘cooperative ring el-
ementary excitations’’!, and there is geometric frustration for
T→0 with a doubly degenerate ground state. At finite tem-
peratures, the three vortices inside the kagom e hexagon can
move and rotate by 60°. This is done cooperatively by the
three vortices. They motion is similar to the ‘‘cooperative
ring exchange’’ motion proposed by Feynman for elementary
excitations in helium 4.

In other words, for the second matching field for the
kagomépinning lattice, the elementary excitation of the three
interstitial vortices is a 60° rotation, rotating as a cooperative
ring. These types of collective or correlated cooperative ring
exchanges have also been studied in the context of the quan-
tum Hall effect.

For increasing temperatures, a novel type of melting24 ap-
pears, which is not treated here using our path-integral ap-
proach, but can be studied using other techniques.24 This can
be described as ‘‘correlated melting’’ in the sense that the
‘‘triangle’’ or ‘‘loop’’ first melts in the angular coordinate,
while the radial coordinate does not melt until much higher
temperatures are reached. The elementary excitations are the
thermal analog of certain types ofsqueezed states~where

YEONG-LIEH LIN AND FRANCO NORI PHYSICAL REVIEW B65 214504

214504-16



fluctuations strongly affect a coordinate and less the other
coordinate!. They are also analogs of therotational isomers
or ‘‘comformations’’ that are often found in molecules,
where three atoms and molecules can cooperatively oscillate
back and forth between two degenerate ground states.

This type of ‘‘controlled melting’’ or ‘‘correlated
melting’’24 of the particles inside a potential energy trap
could also be visualized with a colloidal suspension sur-
rounded by six pinned~e.g., by laser tweezers! charged par-
ticles. This type of ‘‘vortex-analog’’ experiment is easier to
visualize ~e.g., via optical microscope! than using vortices.
Still, Lorentz microscopy techniques35 could directly image
such motions in the vortex case.

F. Fractal phase boundaries and fractal boundaries of basins
of attraction

There is a striking similarity between two apparently un-
related problems: the superconducting-normal phase bound-
ary of a square superconducting network~our Fig. 2! and the
fractal phase boundary~see, for instance, Fig. 6.26 of Ref.
34! of basins of attraction of a dynamical systems map stud-
ied last century by Weierstrass and generalized much later by
Hardy in 1916.

The reason for this very interesting similarity among these
two apparently unrelated problems is because the commen-
surability condition dominates both problems and produces a
large dip at 1/2 and smaller dips at 1/4, 1/3, 2/5, etc., as
discussed previously in this work.

It is interesting to summarize how to obtain the Weier-
strass fractal boundary of two basins of attraction.34 Consider
the dynamical mapM,

~xk11 ,uk11!5M ~xk ,uk!,

defined by

xk115lxk1cosuk

and

uk1152uk~mod 2p!.

When 1,l,2, the mapM has two attractors, atx5
6`. Indeed, since the eigenvalues of the Jacobian matrix are
2 andl.1, there are no finite attractors. Therefore,

MN~x0 ,u0!5„xN ,uNmod~2p!…,

andxN tends to either1` or 2` asN→`, except for the
unstable boundary set

x5 f ~u!,

for which xN remains finite.
To locate thisx5 f (u) boundary set, first note that

uk52ku0~mod 2p!.

The map is noninvertible since it is two to one. However, any
xN can be selected and then find one orbit that ends at
(xN ,uN), by using the aboveuk and taking

xk215l21@xk2cos~2k21u0!#.

FIG. 8. DTc(F) vs F. ~a! is for the superconducting honey-
comb network forF in the range@0,1#. ~b!, ~c!, and~d! are for the
superconducting kagome´ network forF, respectively, in the ranges
@0, 1/8#, @1/8, 1/4#, and@1/4, 3/8#.
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For a given (xN ,uN), this orbit starts at

x05l21xN2 (
l 50

N21

l2 l 21cos~2lu0!.

Those (x0 ,u0) such thatxN is finite asN→`, define the
boundaryx5 f (u) between the two basins. Therefore the re-
lation between thesex andu is given by

x52(
l 50

`

l2 l 21cos~2lu0![ f ~u!. ~8!

This sum obviously converges, sincel.1. However, its
derivative

d f~u!

du
5

1

2 (
l 50

` S 2

l D l 11

sin~2lu!

diverges, sincel,2. Thus, f (u) is nondifferentiable. Like
our superconducting-normal phase boundary, it has a large
cusp at 1/2 and smaller cusps at 1/3, 1/4, 2/5, etc. Moreover,
it is also symmetric around 1/2, and it strongly resembles the
DTc(F) @obtained nearR(T)50# for a square lattice. In-
deed,DTc(F) corresponds tox, F to u, andl corresponds
to how close the measurement is done to the critical point.

Whenl approaches 2 from below, the fractal dimension
dc approaches 1~mean-field limit, when the measurement is
not done close to the critical point!. Whenl approaches 1
from above, the fractal dimensiondc approaches 2, from
below.

The fractal dimension ofx5 f (u), Eq. ~8! above, is

dc522
ln l

ln 2
.

The precise value ofdc depends on the value ofl. Recall
that 1,l,2. For l sligthly less than 2, the fractal dimen-
sion dc approaches 1, and the dips are not pronounced. This
is similar to the superconducting-normal phase boundaries
measured not too close toTc @e.g., at midpoint drop for the
R(T) plot#. When the phase boundary is measured very near
Tc @whenR(T) is very near zero#, the number of discernible
dips grows and they become very sharp~see, e.g., Figs. 10
and 11 of Ref. 14!. This would corespond tol slightly above
1; thus, the fractal dimensiondc of the Weierstrass function
would be closer to 2~i.e., a ‘‘rougher’’ or ‘‘spikier’’ curve!.

Indeed, Ref. 14 solved forDTc(F) beyond the mean-field
theory approximation, obtaining a phase boundary similar to
the Weierstrass function forl slightly above 1, anddc near
2. That superconducting-normal phase boundary in Ref. 14
has very sharp cusps and dips, and~like the Weierstrass func-
tion! it is a phase boundary between attractors. The map for
the superconducting networks is obtained from a real-space
renormalization-group technique. The mean-field limit pro-
vides a smoother phase boundary withl closer to 1. The
real-space bond decimation scheme of Ref. 14 also favors
fluxes of the formF52lF0. This is clear from the way the
real-space renormalization-group scheme is constructed,
where four elementary cells are ‘‘blocked away’’ into a larger

cell with new renormalized effective couplings. Four of these
supercells are then blocked away into another, larger cell,
enclosing 16 elementary cells~or 4 supercells!. This process
is iterated, until the renormalization-group~RG! procedure
coverges~at the phase boundary! or diverges to fixed points
located away from the fixed point~e.g.,1`). This ~beyond-
mean-field! RG iteration14 and the Weierstrass iteration in-
volve very similar types of maps and this generates the strik-
ingly similar curves.

In summary, the Weierstrass function and our real-space
renormalization-group approach14 both produce phase
boundaries which are strikingly similar. In particular, both
are nondifferetiable, symmetric around 1/2, and have a very
similar hierarchy of cusps.

X. COMPARISON OF THE PHASE BOUNDARIES
OF SUPERCONDUCTING HONEYCOMB

AND KAGOMÉ NETWORKS

Here we discuss an interesting relation between the phase
boundaries of superconducting honeycomb and kagome´ net-
works which is due to thegeometricalarrangements of these
two types of lattices. Indeed, and as kindly pointed out to us
by Xiao and Chaikin~e.g., see Ref. 20!, it is very useful to
focus on the region 0<F<1 for the honeycomb network
and the region 0<F<1/8 for the kagome´ network.

As shown in Figs. 8~a!–8~d!, though the overall shapes of
the phase diagrams are different, there is a one-to-one corre-
spondence between the dips in the honeycombDTc(F) for
F, the flux through an elementary hexagon, in the range
@0,1# and those in the kagome´ DTc(F) for F, the flux
through an elementary triangle, in the ranges@0,1/8#,
@1/8,1/4#, and@1/4,3/8#. To state this relationship more pre-
cisely, let $p/q% be the set of flux values characterizing a
number of dips in theDTc(F) curve for the honeycomb
network. For instance, as labeled in~a!,

$p/q%51/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3.

It is observed that the corresponding set of flux values for the
dips to occur in the kagome´ DTc(F) curve would be$p/8q%
whenF lies in the range@0,1/8#. Similarly, the correspond-
ing sets read, respectively,

F5H 1

8
1

p

8q
5

p1q

8q J
for FP@1/8, 1/4# and

F5H 1

4
1

p

8q
5

p12q

8q J
for FP@1/4, 3/8#. Note that forF in the range@1/4, 3/8#,
the dips in theDTc(F) curve become less evident: only five
flux values are observed and labeled. The location and mag-
nitude of the dips found here are consistent with recent very
interesting experiments by the NEC and Princeton
groups.20,21

Recall that kagome´ magnets are known to have degener-
ate ground states~see, e.g., Ref. 23 and references therein!.
Likewise, for superconducting kagome´ networks at half fill-
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ing, there are several possible ways to arrange fluxes, pro-
ducing a large degeneracy in theT50 ground state.15 This
issue of degeneracy between two states has been systemati-
cally studied as a function of temperature via computer simu-
lations on superconducting samples with a kagome´-arranged
periodic array of pinning sites.24 The second matching field
in this system has two fluxons per pinning site. This corre-
sponds to thef 51/2 state in the kagom e superconducting
network. For this value of the externally applied magnetic
field, every hexagon has two states~with entropykB ln 2). N
hexagons would have 2N states and a very large entropy

S(N hexagons);NkB ln 2.

Thus, at the second matching field, superconductors with
either a kagome´ or an hexagonal array of pinning sites both
have ‘‘low-energy states’’ with a very large degeneracy and a
huge ~low-T) entropy. Thus, when cooling from high tem-
peratures, it is difficult to find a uniqueT50 ground state.
Transport measurements and mean-field theory perhaps
might not be sufficient to fully elucidate the role of bistabil-
ity and degeneracy in this system. In order to explore this
scenario in a more systematic manner, different tools~e.g.,
flux imaging techniques35 and computer simulations24 of vor-
tex dynamics on kagome´ lattices! might be needed.

After this work was completed, we became aware of a
very interesting relevant work by Park and Huse in Ref. 22.
Using Ginzburg-Landau theory, they study superconducting
kagoméwire networks in a transverse magnetic field when
the magnetic flux through an elementary triangle is a half of
a flux quantum. They calculate the helicity moduli of each
phase to estimate the Kosterlitz-Thouless~KT! transition
temperatures. At the KT temperatures, they estimate the bar-
riers to move vortices and the effects that lift the large de-
generacy in the possible flux patterns.

XI. SUMMARY

In conclusion, we present a detailed study of the mean-
field superconducting-normal phase boundaries of supercon-
ducting square, honeycomb, triangular, and kagome´ net-

works. Our investigations are based on studying the quantum
interference effects arising from the summation of all the
closed paths the electron can take on the underlying lattices.
Other problems25 have also been studied in terms of the
quantum interference of electron paths. We then adopt a sys-
tematic approximation scheme to obtain the spectral edges of
the corresponding eigenvalue problems, and relate the fea-
tures in the phase boundaries with the geometry of the un-
derlying lattice being explored by the moving electrons.
When the electrons are allowed to explore a sizable region of
the network, our calculations have quickly reached very
close convergence to the infinite-system size-results. There
are two particular advantageous aspects of this approach.
First, it enables us to evaluate the superconducting transition
temperature as acontinuousfunction of the applied magnetic
field. Second, it enables us to achieve a step-by-step deriva-
tion of thephysical originof the many structures in the phase
diagrams—in terms of the regions of the lattice explored by
the electrons. In particular, the larger the region of the net-
work the electrons can explore~and thus more paths are
available for the electron!, the finer structure appears in the
phase boundary and the sharper the cusps become. We find
many new interesting features in these phase diagrams,
which compare well with experiments.
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