53 research outputs found

    Genotyping of clinically relevant human adenoviruses by array-in-well hybridization assay

    Get PDF
    AbstractA robust oligonucleotide array-in-well hybridization assay using novel up-converting phosphor reporter technology was applied for genotyping clinically relevant human adenovirus types. A total of 231 adenovirus-positive respiratory, ocular swab, stool and other specimens from 219 patients collected between April 2010 and April 2011 were included in the study. After a real-time PCR amplification targeting the adenovirus hexon gene, the array-in-well assay identified the presence of B03 (n = 122; 57.5% of patients), E04 (29; 13.7%), C02 (21; 9.9%), D37 (14; 6.6%), C01 (12; 5.7%), C05 (5; 2.4%), D19 (4; 1.9%), C06 (2; 0.9%), D08 (1; 0.5%), A31 (1; 0.5%) and F41 (1; 0.5%) genotypes among the clinical sample panel. The typing result was obtained for all specimens that could be amplified (n = 223; 97%), and specificity of the typing was confirmed by sequencing specimens representing each of the different genotypes. No hybridization signal was obtained in adenovirus-negative specimens or specimens with other viruses (n = 30). The array-in-well hybridization assay has great potential as a rapid and multiplex platform for the typing of clinically relevant human adenovirus genotypes in different specimen types

    Upconversion Cross-Correlation Spectroscopy of a Sandwich Immunoassay

    Get PDF
    Fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) have enabled biologists to study processes of transport, binding, and enzymatic reactions in living cells. However, applying FCS and FCCS to samples such as whole blood and plasma is complicated as the fluorescence bursts of diffusing labels can be swamped by strong autofluorescence. Here we present cross-correlation spectroscopy based on two upconversion nanoparticles emitting at different wavelengths on the anti-Stokes side of a single excitation laser. This upconversion cross-correlation spectroscopy (UCCS) approach allows us to completely remove all Stokes shifted autofluorescence background in biological material such as plasma. As a proof of concept, we evaluate the applicability of UCCS to a homogeneous sandwich immunoassay for thyroid stimulating hormone measured in buffer solution and in plasma

    Similar temperature sensitivity of soil mineral-associated organic carbon regardless of age

    Get PDF
    Most of the carbon (C) stored in temperate arable soils is present in organic matter (OM) intimately associated with soil minerals and with slow turnover rates. The sensitivity of mineral-associated OM to changes in temperature is crucial for reliable predictions of the response of soil C turnover to global warming and the associated flux of carbon dioxide (CO2) from the soil to the atmosphere. We studied the temperature sensitivity of C in 63 mu m fractions rich in particulate organic matter (POM). The fractions were isolated by physical separation of two light-textured arable soils where the C4-plant silage maize had replaced C3-crops 25 years ago. Differences in C-13 abundance allowed for calculation of the age of C in the soil-size fractions (old C, C3-C > 25 years; recent C, C4-C <25 years). We incubated bulk soils ( <2 mm) and size fractions sequentially at 6, 18, 26 and 34 degrees C (ramping up and down the temperature scale) and calculated the temperature sensitivity of old and recent C from (CO2)-C-12 and (CO2)-C-13 evolution rates. The temperature sensitivity was similar or slightly higher for POM than for MOM. Within the POM fraction, old C3-C was more sensitive to changes in temperature than recent C4-C. For the MOM fraction, the temperature sensitivity was unrelated to the age of C. Quantitative PCR analysis indicated that the proportions of bacteria, archaea and fungi did not change during incubation. Our results suggest that while OM stabilizing mechanisms affect the temperature sensitivity of soil C, temperature sensitivity appears unrelated to the age of mineral-associated OM.Peer reviewe

    Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes

    Get PDF
    Various studies report substantial increases in intrinsic water-use efficiency (Wi), estimated using carbon isotopes in tree rings, suggesting trees are gaining increasingly more carbon per unit water lost due to increases in atmospheric CO2. Usually, reconstructions do not, however, correct for the effect of intrinsic developmental changes in Wi as trees grow larger. Here we show, by comparingWi across varying tree sizes at one CO2 level, that ignoring such developmental effects can severely affect inferences of trees' Wi. Wi doubled or even tripled over a trees' lifespan in three broadleaf species due to changes in tree height and light availability alone, and there are also weak trends for Pine trees. Developmental trends in broadleaf species are as large as the trends previously assigned to CO2 and climate. Credible future tree ring isotope studies require explicit accounting for species-specific developmental effects before CO2 and climate effects are inferred.Peer reviewe

    A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century

    Get PDF
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.</p

    Holistic corpus-based dialectology

    Get PDF
    This paper is concerned with sketching future directions for corpus-based dialectology. We advocate a holistic approach to the study of geographically conditioned linguistic variability, and we present a suitable methodology, 'corpusbased dialectometry', in exactly this spirit. Specifically, we argue that in order to live up to the potential of the corpus-based method, practitioners need to (i) abandon their exclusive focus on individual linguistic features in favor of the study of feature aggregates, (ii) draw on computationally advanced multivariate analysis techniques (such as multidimensional scaling, cluster analysis, and principal component analysis), and (iii) aid interpretation of empirical results by marshalling state-of-the-art data visualization techniques. To exemplify this line of analysis, we present a case study which explores joint frequency variability of 57 morphosyntax features in 34 dialects all over Great Britain

    New Technologies’ Promise to the Self and the Becoming of the Sacred: Insights from Georges Bataille’s Concept of Transgression

    Get PDF
    This article draws on Georges Bataille’s concept of transgression, a key element in Bataille’s theory of the sacred, to highlight structural implications of the way the self-empowerment ethos of new technologies suffuses the digital tracking culture. Pointing to the original conceptual stance of transgression, worked out against prohibition, I first argue that, beyond a critique of new technologies’ promise of self-empowerment as coming at the expense of an acknowledgement of the ultimate taboo—death—is the problem of the sanitizing of the tension between the crossing of the line of the symbolic taboo and prohibition; this undermines a “libidinal investment” towards the sacred, which is central in Bataille’s theory. Second, focussing on “eroticism”, since this embodies the emancipative potential of the Bataillean sacred, I argue that while a fear of eroticism marks out the digital technological realm, this is covered up by the blurring of boundaries between pleasure, fun and sex(iness) that currently governs our experience with technological devices

    Facilitating the development of controlled vocabularies for metabolomics technologies with text mining

    Get PDF
    BACKGROUND: Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually. RESULTS: We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts. CONCLUSIONS: We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods
    • 

    corecore