208 research outputs found
Optical lattice quantum simulator for QED in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect
Spontaneous creation of electron-positron pairs out of the vacuum due to a
strong electric field is a spectacular manifestation of the relativistic
energy-momentum relation for the Dirac fermions. This fundamental prediction of
Quantum Electrodynamics (QED) has not yet been confirmed experimentally as the
generation of a sufficiently strong electric field extending over a large
enough space-time volume still presents a challenge. Surprisingly, distant
areas of physics may help us to circumvent this difficulty. In condensed matter
and solid state physics (areas commonly considered as low energy physics), one
usually deals with quasi-particles instead of real electrons and positrons.
Since their mass gap can often be freely tuned, it is much easier to create
these light quasi-particles by an analogue of the Sauter-Schwinger effect. This
motivates our proposal of a quantum simulator in which excitations of
ultra-cold atoms moving in a bichromatic optical lattice represent particles
and antiparticles (holes) satisfying a discretized version of the Dirac
equation together with fermionic anti-commutation relations. Using the language
of second quantization, we are able to construct an analogue of the spontaneous
pair creation which can be realized in an (almost) table-top experiment.Comment: 21 pages, 10 figure
Relativistic quantum mechanics with trapped ions
We consider the quantum simulation of relativistic quantum mechanics, as
described by the Dirac equation and classical potentials, in trapped-ion
systems. We concentrate on three problems of growing complexity. First, we
study the bidimensional relativistic scattering of single Dirac particles by a
linear potential. Furthermore, we explore the case of a Dirac particle in a
magnetic field and its topological properties. Finally, we analyze the problem
of two Dirac particles that are coupled by a controllable and confining
potential. The latter interaction may be useful to study important phenomena as
the confinement and asymptotic freedom of quarks.Comment: 17 pages, 4 figure
Charged particle decay of hot and rotating Mo nuclei in fusion-evaporation reactions
A study of fusion-evaporation and (partly) fusion-fission channels for the
Mo compound nucleus, produced at different excitation energies in the
reaction Ti + Ca at 300, 450 and 600 MeV beam energies, is
presented. Fusion-evaporation and fusion-fission cross sections have been
extracted and compared with the existing systematics. Experimental data
concerning light charged particles have been compared with the prediction of
the statistical model in its implementation in the Gemini++ code, well suited
even for high spin systems, in order to tune the main model parameters in a
mass region not abundantly covered by exclusive experimental data.
Multiplicities for light charged particles emitted in fusion evaporation events
are also presented. Some discrepancies with respect to the prediction of the
statistical model have been found for forward emitted -particles; they
may be due both to pre-equilibrium emission and to reaction channels (such as
Deep Inelastic Collisions, QuasiFission/QuasiFusion) different from the
compound nucleus formation.Comment: 14 pages, 14 figure
Moving in an environment of induced sensorimotor incongruence does not influence pain sensitivity in healthy volunteers: A randomised within-subject experiment
Objectives: It has been proposed that in the same way that conflict between vestibular and visual inputs leads to motion sickness, conflict between motor commands and sensory information associated with these commands may contribute to some chronic pain states. Attempts to test this hypothesis by artificially inducing a state of sensorimotor incongruence and assessing self-reported pain have yielded equivocal results. To help clarify the effect sensorimotor incongruence has on pain we investigated the effect of moving in an environment of induced incongruence on pressure pain thresholds (PPT) and the pain experienced immediately on completion of PPT testing.
Methods: Thirty-five healthy subjects performed synchronous and asynchronous upper-limb movements with and without mirror visual feedback in random order. We measured PPT over the elbow and the pain evoked by testing. Generalised linear mixed-models were performed for each outcome. Condition (four levels) and baseline values for each outcome were within-subject factors.
Results: There was no effect of condition on PPT (p = 0.887) or pressure-evoked pain (p = 0.771). A sensitivity analysis using only the first PPT measure after each condition confirmed the result (p = 0.867).
Discussion: Inducing a state of movement related sensorimotor incongruence in the upper-limb of healthy volunteers does not influence PPT, nor the pain evoked by testing. We found no evidence that sensorimotor incongruence upregulates the nociceptive system in healthy volunteer
Ensembl Genomes 2022: an expanding genome resource for non-vertebrates
Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here we present our largest increase in plant, metazoan and fungal genomes since the project’s inception creating one of the world’s most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We also detail our new efforts in gene annotation, our emerging support for pangenome analysis and efforts to accelerate data dissemination through the Ensembl Rapid Release resource. We also present our new AlphaFold visualisation. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl’s release cycle
Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones
Environmental change has been proposed as a factor that contributed to the extinction of the Neanderthals in Europe during MIS3. Currently, the different local environmental conditions experienced at the time when Anatomically Modern Humans (AMH) met Neanderthals are not well known. In the Western Pyrenees, particularly, in the eastern end of the Cantabrian coast of the Iberian Peninsula, extensive evidence of Neanderthal and subsequent AMH activity exists, making it an ideal area in which to explore the palaeoenvironments experienced and resources exploited by both human species during the Middle to Upper Palaeolithic transition. Red deer and horse were analysed using bone collagen stable isotope analysis to reconstruct environmental conditions across the transition. A shift in the ecological niche of horses after the Mousterian demonstrates a change in environment, towards more open vegetation, linked to wider climatic change. In the Mousterian, Aurignacian and Gravettian, high inter-individual nitrogen ranges were observed in both herbivores. This could indicate that these individuals were procured from areas isotopically different in nitrogen. Differences in sulphur values between sites suggest some variability in the hunting locations exploited, reflecting the human use of different parts of the landscape. An alternative and complementary explanation proposed is that there were climatic fluctuations within the time of formation of these archaeological levels, as observed in pollen, marine and ice cores.This research was funded by the European Commission through a Marie Curie Career Integration Grant (FP7-
PEOPLE-2012-CIG-322112), by the Spanish Ministry of Economy and Competitiveness (HAR2012-33956 and
Ramon y Cajal-2011-00695), the University of Cantabria and Campus International to ABMA. Radiocarbon
dating at ORAU was funded by MINECO-HAR2012-33956 project. J.J was supported initially by the FP7-
PEOPLE-2012-CIG-322112 and later by a Marie Curie Individual Fellowship (H2020-MSCA-IF-2014-656122).
Laboratory work, associated research expenses and isotopic analysis were kindly funded by the Max Planck
Society to M.R
Interpreting ancient food practices:Stable isotope and molecular analyses of visible and absorbed residues from a year-long cooking experiment
Chemical analyses of carbonized and absorbed organic residues from archaeological ceramic cooking vessels can provide a unique window into the culinary cultures of ancient people, resource use, and environmental effects by identifying ingredients used in ancient meals. However, it remains uncertain whether recovered organic residues represent only the final foodstuffs prepared or are the accumulation of various cooking events within the same vessel. To assess this, we cooked seven mixtures of C3 and C4 foodstuffs in unglazed pots once per week for one year, then changed recipes between pots for the final cooking events. We conducted bulk stable-isotope analysis and lipid residue analysis on the charred food macro-remains, carbonized thin layer organic patina residues and absorbed lipids over the course of the experiment. Our results indicate that: (1) the composition of charred macro-remains represent the final foodstuffs cooked within vessels, (2) thin-layer patina residues represent a mixture of previous cooking events with bias towards the final product(s) cooked in the pot, and (3) absorbed lipid residues are developed over a number of cooking events and are replaced slowly over time, with little evidence of the final recipe ingredients
Geophysical and geochemical survey of a large marine pockmark on the Malin Shelf, Ireland
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q01011, doi:10.1029/2011GC003787.Marine pockmarks are a specific type of seabed geological setting resembling craters or pits and are considered seabed surface expressions of fluid flow in the subsurface. A large composite pockmark on the Malin Shelf, off the northern coast of Ireland was surveyed and ground truthed to assess its activity and investigate fluid related processes in the subsurface. Geophysical (including acoustic and electromagnetic) data confirmed the subsurface presence of signatures typical of fluids within the sediment. Shallow seismic profiling revealed a large shallow gas pocket and typical gas related indicators such as acoustic blanking and enhanced reflectors present underneath and around the large pockmark. Sulphate profiles indicate that gas from the shallow reservoir has been migrating upwards, at least recently. However, there are no chimney structures observed in the sub-bottom data and the migration pathways are not apparent. Electromagnetic data show slightly elevated electrical conductivity on the edges of the pockmarks and a drop below regional levels within the confines of the pockmark, suggesting changes in physical properties of the sediment. Nuclear Magnetic Resonance (NMR) experiments were employed to characterize the organic component of sediments from selected depths. Very strong microbial signatures were evident in all NMR spectra but microbes outside the pockmark appear to be much more active than inside. These observations coincide with spikes in conductivity and the lateral gas bearing body suggesting that there is an increase in microbial activity and biomass when gas is present.We wish to thank the Geological Survey of Ireland, the
INtegrated Mapping FOr the Sustainable Development of Ireland’s MArine Resource (INFOMAR) program, the Irish
Environmental Protection Agency, Science Foundation of
Ireland, QUESTOR (Queens University Belfast) and the Irish
Council for Science, engineering and technology for funding
this research. AJS thanks NSERC, (Strategic and Discovery
Programs), the Canada Foundation for Innovation (CFI), and
the Ministry of Research and Innovation (MRI) for providing
Canadian funding. The survey data utilized in the research has
been co‐funded by the Geological Survey of Ireland and the Offshore
Irish Petroleum Infrastructure Programme (PIP; Ref. No:
IS05/16 Malin Basin EM).2012-07-1
The (n, gamma) campaigns at EXILL
At the PF1B cold neutron beam line at the Institut Laue Langevin, the EXILL array consisting of EXOGAM, GASP and ILL-Clover detectors was used to perform (n, gamma) measurements at very high coincidence rates. About ten different reactions were measured in autumn 2012 using a highly collimated cold neutron beam. In spring 2013, the EXOGAM array was combined with 16 LaBr3(Ce) scintillators in the EXILL&FATIMA campaign for the measurement of lifetimes using the generalised centroid difference method. We report on the properties of the set-ups and present first results from both campaigns
- …