122 research outputs found

    Discovery of Variability of the Progenitor of SN 2011dh in M51 Using the Large Binocular Telescope

    Full text link
    We show that the candidate progenitor of the core-collapse SN 2011dh in M51 (8 Mpc away) was fading by 0.039 +- 0.006 mag/year during the three years prior to the supernova, and that this level of variability is moderately unusual for other similar stars in M 51. While there are uncertainties about whether the true progenitor was a blue companion to this candidate, the result illustrates that there are no technical challenges to obtaining fairly high precision light curves of supernova progenitors using ground based observations of nearby (<10 Mpc) galaxies with wide field cameras on 8m-class telescopes. While other sources of variability may dominate, it is even possible to reach into the range of evolution rates required by the quasi-static evolution of the stellar envelope. For M 81, where we have many more epochs and a slightly longer time baseline, our formal 3 sigma sensitivity to slow changes is presently 3 millimag/year for a M_V ~= -8 mag star. In short, there is no observational barrier to determining whether the variability properties of stars in their last phases of evolution (post Carbon ignition) are different from earlier phases.Comment: 17 pages, 5 figures, submitted to Ap

    Body weight and the medial longitudinal foot arch : high-arched foot, a hidden problem?

    Get PDF
    This study had two objectives. First, to determine the prevalence of hollow (high-arched) and flat foot among primary school children in Cracow (Poland). Second, to evaluate the relationship between the type of medial longitudinal arch (MLA; determined by the Clarke’s angle) and degree of fatness. The prevalence of underweight, overweight, and obesity was determined by means of IOTF cut-offs with respect to age and gender. A sample of 1,115 children (564 boys and 551 girls) aged between 3 and 13 years was analyzed. In all age groups, regardless of gender, high-arched foot was diagnosed in the majority of children. A distinct increase in the number of children with high-arched foot was observed between 7- and 8-year olds. Regardless of the gender, high-arched foot was more common among underweight children. In the group of obese children, the biggest differences were attributed to gender. High-arched foot was the most frequently observed among boys. In all gender and obesity level groups, the flat foot was more common among boys than among girls. Conclusions: High-arched foot is the most common foot defect among children 3–13 years old regardless of gender. Flat foot is least frequently observed in children 3–13 years old. A statistic correlation between MLA and adiposity is observed. Stronger correlation is observed among girls

    On Absorption by Circumstellar Dust, With the Progenitor of SN2012aw as a Case Study

    Full text link
    We use the progenitor of SN2012aw to illustrate the consequences of modeling circumstellar dust using Galactic (interstellar) extinction laws that (1) ignore dust emission in the near-IR and beyond; (2) average over dust compositions, and (3) mis-characterize the optical/UV absorption by assuming that scattered photons are lost to the observer. The primary consequences for the progenitor of SN2012aw are that both the luminosity and the absorption are significantly over-estimated. In particular, the stellar luminosity is most likely in the range 10^4.8 < L/Lsun < 10^5.0 and the star was not extremely massive for a Type IIP progenitor, with M < 15Msun. Given the properties of the circumstellar dust and the early X-ray/radio detections of SN2012aw, the star was probably obscured by an on-going wind with Mdot ~ 10^-5.5 to 10^-5.0 Msun/year at the time of the explosion, roughly consistent with the expected mass loss rates for a star of its temperature (T_* ~ 3600K) and luminosity. In the spirit of Galactic extinction laws, we supply simple interpolation formulas for circumstellar extinction by dusty graphitic and silicate shells as a function of wavelength (>0.3 micron) and total (absorption plus scattering) V-band optical depth (tau < 20). These do not include the contributions of dust emission, but provide a simple, physical alternative to incorrectly using interstellar extinction laws.Comment: Submitted to Ap

    The Absolute Magnitude of RRc Variables From Statistical Parallax

    Full text link
    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS) for which high-quality light curves, photometry and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of [Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars (M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial, rotational and vertical directions with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we find (W_pi, W_theta, W_z) = (8.5, 213.2, -22.1) km/s with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (63.5, 49.6, 51.3) km/s. Finally, we suggest that UCAC2 proper motion errors may be overestimated by about 25%Comment: Submitted to ApJ. 11 pages including 6 figure

    The Mid-IR Contribution Of Dust Enshrouded Stars In Six Nearby Galaxies

    Full text link
    We measure the integrated contributions of dusty AGB stars and other luminous red mid-IR sources to the mid-IR luminosities of 6 galaxies (M81, NGC 2403, NGC 300, M33 and the Magellanic Clouds). We find the dusty AGB stars whose mid-IR fluxes are dominated by dust rather than photospheric emission contribute from 0.6% (M81) to 5.6% (SMC) of the 3.6 micron flux and 1.0% (M81) to 10.1% (SMC) of the 4.5 micron flux. We find a trend of decreasing AGB contribution with increasing galaxy metallicity, luminosity and mass and decreasing SSFR. However, these galaxy properties are strongly correlated in our sample and the simplest explanation of the trend is galaxy metallicity. Bright, red sources other than dusty AGB stars represent a smaller fraction of the luminosity, ~1.2% at 3.6 microns, however their dust is likely cooler and their contributions are likely larger at longer wavelengths. Excluding the SMC, the contribution from these red sources correlates with the specific star formation rate as we would expect for massive stars. In total, after correcting for dust emission at other wavelengths, the dust around AGB stars radiates 0.1-0.8% of the bolometric luminosities of the galaxies. Thus, hot dust emission from AGB and other luminous dusty stars represent a small fraction of the total luminosities of the galaxies but a significant fraction of their mid-IR emissions.Comment: 9 pages, 6 figures, published in ApJ. For a brief video explaining the key results of this paper, see http://www.youtube.com/user/OSUAstronom

    RR Lyrae variables in M32 and the disk of M31

    Get PDF
    We observed two fields near M32 with the Advanced Camera for Surveys/High Resolution Channel (ACS/HRC) on board the Hubble Space Telescope (HST). The main field, F1, is 1.8 arcmin from the center of M32; the second field, F2, constrains the M31 background, and is 5.4 arcmin distant. Each field was observed for 16-orbits in each of the F435W (narrow B) and F555W (narrow V) filters. The duration of the observations allowed RR Lyrae stars and other short-period variables to be detected. A population of RR Lyrae stars determined to belong to M32 would prove the existence of an ancient population in that galaxy, a subject of some debate. We detected 17 RR Lyrae variables in F1 and 14 in F2. A 1-sigma upper limit of 6 RR Lyrae variables belonging to M32 is inferred from these two fields alone. Use of our two ACS/WFC parallel fields provides better constraints on the M31 background, however, and implies that 73+47_{-3}^{+4} (68 % confidence interval) RR Lyrae variables in F1 belong to M32. We have therefore found evidence for an ancient population in M32. It seems to be nearly indistinguishable from the ancient population of M31. The RR Lyrae stars in the F1 and F2 fields have indistinguishable mean V-band magnitudes, mean periods, distributions in the Bailey diagram and ratios of RRc to RR(tot) types. However, the color distributions in the two fields are different, with a population of red RRab variables in F1 not seen in F2. We suggest that these might be identified with the detected M32 RR Lyrae population, but the small number of stars rules out a definitive claim.Comment: 19 pages, 18 figures, accepted Ap

    SN 2010jl in UGC 5189: Yet another luminous type IIn supernova in a metal-poor galaxy

    Full text link
    We present ASAS data starting 25 days before the discovery of the recent type IIn SN 2010jl, and we compare its light curve to other luminous IIn SNe, showing that it is a luminous (M_I ~ -20.5) event. Its host galaxy, UGC 5189, has a low gas-phase oxygen abundance (12 + log(O/H) = 8.2), which reinforces the emerging trend that over-luminous core-collapse supernovae are found in the low-metallicity tail of the galaxy distribution, similar to the known trend for the hosts of long GRBs. We compile oxygen abundances from the literature and from our own observations of UGC 5189, and we present an unpublished spectrum of the luminous type Ic SN 2010gx that we use to estimate its host metallicity. We discuss these in the context of host metallicity trends for different classes of core-collapse objects. The earliest generations of stars are known to be enhanced in [O/Fe] relative to the Solar mixture; it is therefore likely that the stellar progenitors of these overluminous supernovae are even more iron-poor than they are oxygen-poor. A number of mechanisms and massive star progenitor systems have been proposed to explain the most luminous core-collapse supernovae; any successful theory will need to include the emerging trend that points towards low-metallicity for the massive progenitor stars. This trend for very luminous supernovae to strongly prefer low-metallicity galaxies should be taken into account when considering various aspects of the evolution of the metal-poor early universe. (abridged)Comment: 27 pages, 7 figures, 2 tables. Accepted for publication in Ap

    Crossing the Gould Belt in the Orion vicinity

    Full text link
    We present a study of the large-scale spatial distribution of 6482 RASS X-ray sources in approximately 5000 deg^2 in the direction of Orion. We examine the astrophysical properties of a sub-sample of ~100 optical counterparts, using optical spectroscopy. This sub-sample is used to investigate the space density of the RASS young star candidates by comparing X-ray number counts with Galactic model predictions. We characterize the observed sub-sample in terms of spectral type, lithium content, radial and rotational velocities, as well as iron abundance. A population synthesis model is then applied to analyze the stellar content of the RASS in the studied area. We find that stars associated with the Orion star-forming region do show a high lithium content. A population of late-type stars with lithium equivalent widths larger than Pleiades stars of the same spectral type (hence younger than ~70-100 Myr) is found widely spread over the studied area. Two new young stellar aggregates, namely "X-ray Clump 0534+22" (age~2-10 Myr) and "X-ray Clump 0430-08" (age~2-20 Myr), are also identified. The spectroscopic follow-up and comparison with Galactic model predictions reveal that the X-ray selected stellar population in the direction of Orion is characterized by three distinct components, namely the clustered, the young dispersed, and the widespread field populations. The clustered population is mainly associated with regions of recent or ongoing star formation and correlates spatially with molecular clouds. The dispersed young population follows a broad lane apparently coinciding spatially with the Gould Belt, while the widespread population consists primarily of active field stars older than 100 Myr. We expect the "bi-dimensional" picture emerging from this study to grow in depth as soon as the distance and the kinematics of the studied sources will become available from the future Gaia mission.Comment: 17 pages, 13 figures, 4 tables. Accepted for publication in Astronomy and Astrophysics. Abstract shortene

    A model of AW UMa

    Get PDF
    The contact binary AW UMa has an extreme mass ratio, with the more massive component (the current primary) close to the main sequence, while the low mass star at q ~ 0.1 (the current secondary) has a much larger radius than a main sequence star of a comparable mass. We propose that the current secondary has almost exhausted hydrogen in its center and is much more advanced in its evolution, as suggested by Stepien. Presumably the current secondary lost most of its mass during its evolution with part of it transferred to the current primary. After losing a large fraction of its angular momentum, the binary may evolve into a system of FK Com type.Comment: 5 pages, 6 figures, Accepted to MNRAS, content change
    corecore