41 research outputs found

    Probing vulnerability of the gp41 C-terminal heptad repeat as target for miniprotein HIV inhibitors

    Get PDF
    One of the therapeutic strategies in HIV neutralization is blocking membrane fusion. In this process, tight interaction between the N-terminal and C-terminal heptad-repeat (NHR and CHR) regions of gp41 is essential to promote membranes apposition and merging. We have previously developed single-chain proteins (named covNHR) that accurately mimic the complete gp41 NHR region in its trimeric conformation. They tightly bind CHR-derived peptides and show a potent and broad HIV inhibitory activity in vitro. However, the extremely high binding affinity (sub-picomolar) is not in consonance with their inhibitory activity (nanomolar), likely due to partial or temporal accessibility of their target in the virus. Here, we have designed and characterized two single-chain covNHR miniproteins each encompassing one of the two halves of the NHR region and containing two of the four sub-pockets of the NHR crevice. The two miniproteins fold as trimeric helical bundles as expected but while the C-terminal covNHR (covNHR-C) miniprotein is highly stable, the N-terminal counterpart (covNHR-N) shows only marginal stability that could be improved by engineering an internal disulfide bond. Both miniproteins bind their respective complementary CHR peptides with moderate (micromolar) affinity. Moreover, the covNHR-N miniproteins can access their target in the context of trimeric native envelope proteins and show significant inhibitory activity for several HIV pseudoviruses. In contrast, covNHR-C cannot bind its target sequence and neither inhibits HIV, indicating a higher vulnerability of C-terminal part of CHR. These results may guide the development of novel HIV inhibitors targeting the gp41 CHR region.Spanish Ministry of Economy and Competitiveness (grant: BIO2016-76640-R), ANRS and the Vaccine Research Institute for the Investissements d'Avenir program to C.M. and by the European Fund for Research and Development from the European Union.Departamento de QuĂ­mica FĂ­sica, Facultad de Ciencias, Universidad de Granada. Grupo FQM-171 "BiofĂ­sica y BiotecnologĂ­a Molecular

    Novel chimeric proteins mimicking SARS-CoV-2 spike epitopes with broad inhibitory activity

    Get PDF
    SARS-CoV-2 spike (S) protein mediates virus attachment to the cells and fusion between viral and cell membranes. Membrane fusion is driven by mutual interaction between the highly conserved heptad-repeat regions 1 and 2 (HR1 and HR2) of the S2 subunit of the spike. For this reason, these S2 regions are interesting therapeutic targets for COVID-19. Although HR1 and HR2 have been described as transiently exposed during the fusion process, no significant antibody responses against these S2 regions have been reported. Here we designed chimeric proteins that imitate highly stable HR1 helical trimers and strongly bind to HR2. The proteins have broad inhibitory activity against WT B.1 and BA.1 viruses. Sera from COVID-19 convalescent donors showed significant levels of reactive antibodies (IgG and IgA) against the HR1 mimetic proteins, whereas these antibody responses were absent in sera from uninfected donors. Moreover, both inhibitory activity and antigenicity of the proteins correlate positively with their structural stability but not with the number of amino acid changes in their HR1 sequences, indicating a conformational and conserved nature of the involved epitopes. Our results reveal previously undetected spike epitopes that may guide the design of new robust COVID-19 vaccines and therapies.This work was supported by grants CV20.26565 from the Consejería de Economía y Conocimiento, Junta de Andalucía (Spain), PID2019.107515RB.C21 from the Spanish State Research Agency (SRA/10.13039/501100011033), and co-funded by ERDF/ESF, “A way to make Europe”/“Investing in your future”. The work performed in C.M.'s laboratory was supported by grants from ANRS (Agence Nationale de Recherches sur le SIDA et les hépatites virales), the Investissements d'Avenir program managed by the ANR under reference ANR-10-LABX-77 and EHVA (No. 681032, Horizon 2020). Work in S.B.'s laboratory was supported by grants from the Agence Nationale de la Recherche (ANR) (ANR-11-LABX-0070_TRANSPLANTEX), the INSERM (UMR_S 1109), the Institut Universitaire de France (IUF), all the University of Strasbourg (IDEX UNISTRA), the European Regional Development Fund (European Union) INTERREG V program (project no. 3.2 TRIDIAG) and MSD-Avenir grant AUTOGEN. We are grateful to the Spanish Radiation Synchrotron Source (ALBA), Barcelona, Spain and the European Synchrotron Radiation Facility (ESRF), Grenoble, France, for the provision of time and staff assistance at XALOC (ALBA) and ID30B and ID23-2 (ESRF) beamlines during diffraction data collection. We thank María Carmen Salinas-García for her assistance in carrying out the crystallization screenings. We also thank Pilar González-García for helping us with the statistical analysis

    Clinical reappraisal of SHORT syndrome with PIK3R1 mutations: towards recommendation for molecular testing and management

    Get PDF
    International audienceSHORT syndrome has historically been defined by its acronym: short stature (S), hyperextensibility of joints and/or inguinal hernia (H), ocular depression (O), Rieger abnormality (R) and teething delay (T). More recently several research groups have identified PIK3R1 mutations as responsible for SHORT syndrome. Knowledge of the molecular etiology of SHORT syndrome has permitted a reassessment of the clinical phenotype. The detailed phenotypes of 32 individuals with SHORT syndrome and PIK3R1 mutation, including eight newly ascertained individuals, were studied to fully define the syndrome and the indications for PIK3R1 testing. The major features described in the SHORT acronym were not universally seen and only half (52%) had 4 or more of the classic features. The commonly observed clinical features of SHORT syndrome seen in the cohort included IUGR \textless 10(th) percentile, postnatal growth restriction, lipoatrophy and the characteristic facial gestalt. Anterior chamber defects and insulin resistance or diabetes were also observed but were not as prevalent. The less specific, or minor features of SHORT syndrome include teething delay, thin wrinkled skin, speech delay, sensorineural deafness, hyperextensibility of joints and inguinal hernia. Given the high risk of diabetes mellitus, regular monitoring of glucose metabolism is warranted. An echocardiogram, ophthalmological and hearing assessments are also recommended

    The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: objectives and design

    Get PDF
    Abstract Background Posterior urethral valves (PUV) account for 17% of paediatric end-stage renal disease. A major issue in the management of PUV is prenatal prediction of postnatal renal function. Fetal ultrasound and fetal urine biochemistry are currently employed for this prediction, but clearly lack precision. We previously developed a fetal urine peptide signature that predicted in utero with high precision postnatal renal function in fetuses with PUV. We describe here the objectives and design of the prospective international multicentre ANTENATAL (multicentre validation of a fetal urine peptidome-based classifier to predict postnatal renal function in posterior urethral valves) study, set up to validate this fetal urine peptide signature. Methods Participants will be PUV pregnancies enrolled from 2017 to 2021 and followed up until 2023 in >30 European centres endorsed and supported by European reference networks for rare urological disorders (ERN eUROGEN) and rare kidney diseases (ERN ERKNet). The endpoint will be renal/patient survival at 2 years postnatally. Assuming α = 0.05, 1–β = 0.8 and a mean prevalence of severe renal outcome in PUV individuals of 0.35, 400 patients need to be enrolled to validate the previously reported sensitivity and specificity of the peptide signature. Results In this largest multicentre study of antenatally detected PUV, we anticipate bringing a novel tool to the clinic. Based on urinary peptides and potentially amended in the future with additional omics traits, this tool will be able to precisely quantify postnatal renal survival in PUV pregnancies. The main limitation of the employed approach is the need for specialized equipment. Conclusions Accurate risk assessment in the prenatal period should strongly improve the management of fetuses with PUV

    A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement.

    Get PDF
    BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.journal articleresearch support, non-u.s. gov't2016 Feb2015 10 26importe

    Glycoprotein V : the unsolved GPV puzzle

    No full text
    Glycoprotein V (GPV) is a highly expressed 82 KDa platelet surface transmembrane protein which is loosely attached to the GPIb-IX complex. Despite remaining questions concerning its function, GPV presents several unique features which have repercussions in hematology, atherothrombosis, immunology and transfusion. GPV is specifically expressed in platelets and megakaryocytes and is an ideal marker and reporter gene for the late stages of megakaryopoiesis. The ectodomain of GPV can be released by a number of proteases, namely thrombin, elastase and ADAM10 and 17. Although it was originally proposed as a thrombin receptor, this hypothesis was abandoned since thrombin activation was preserved after blockade of GPV cleavage and in Gp5 knockout mice. The combined potential of GPV to reflect the direct action of thrombin, platelet exposure to strong agonists and inflammatory conditions has led one to evaluate its utility as a marker in the context of atherothrombosis. Increased plasma levels of soluble GPV have notably been recorded in myocardial infarction, stroke and venous thromboembolism. It is also highly valued in transfusion to monitor platelet storage lesions. GPV presents several polymorphisms, which are a possible source of alloantibodies, while autoantibodies have been frequently detected in immune thrombocytopenia. The real biological function of this glycoprotein nevertheless remains an enigma, despite the respectively decreased and increased responses to low concentrations of collagen and thrombin observed in Gp5 knockout mice. Current studies are exploring its role in modulating general or VWF-induced platelet signaling, which could bear relevance in thrombosis and platelet clearance

    Dendritic Cell-Lymphocyte Crosstalk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture.Fil: Su, Bin. Inserm; FranciaFil: Biedma, Marina Elizabeth. Inserm; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lederle, Alexandre. Inserm; FranciaFil: Peressin, Maryse. Inserm; FranciaFil: Lambotin, Mélanie. Inserm; FranciaFil: Proust, Alizé. Inserm; FranciaFil: Decoville, Thomas. Inserm; FranciaFil: Schmidt, Sylvie. Inserm; FranciaFil: Laumond, Géraldine. Inserm; FranciaFil: Moog, Christiane. Inserm; Franci

    Structural and Thermodynamic Analysis of HIV-1 Fusion Inhibition Using Small gp41 Mimetic Proteins

    Get PDF
    Development of effective inhibitors of the fusion between HIV-1 and the host cell membrane mediated by gp41 continues to be a grand challenge due to an incomplete understanding of the molecular and mechanistic details of the fusion process. We previously developed single-chain, chimeric proteins (named covNHR) that accurately mimic the N-heptad repeat (NHR) region of gp41 in a highly stable coiled-coil conformation. These molecules bind strongly to peptides derived from the gp41 C-heptad repeat (CHR) and are potent and broad HIV-1 inhibitors. Here, we investigated two covNHR variants differing in two mutations, V10E and Q123R (equivalent to V38E and Q40R in gp41 sequence) that reproduce the effect of HIV-1 mutations associated with resistance to fusion inhibitors, such as T20 (enfuvirtide). A detailed calorimetric analysis of the binding between the covNHR proteins and CHR peptides (C34 and T20) reveals drastic changes in affinity due to the mutations as a result of local changes in interactions at the site of T20 resistance. The crystallographic structure of the covNHR:C34 complex shows a virtually identical CHR–NHR binding interface to that of the post-fusion structure of gp41 and underlines an important role of buried interfacial water molecules in binding affinity and in development of resistance against CHR peptides. Despite the great difference in affinity, both covNHR variants demonstrate strong inhibitory activity for a wide variety of HIV-1 strains. These properties support the high potential of these covNHR proteins as new potent HIV-1 inhibitors. Our results may guide future inhibition approaches.Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, SpainMinisterio de Economía y Competitividad (grants BIO2016-76640-R and BIO2016-78020-R) y Fondo Europeo para el Desarrollo Regional (FEDER) de la Unión EuropeaANRS and the Vaccine Research Institute for the Investissements d'Avenir program managed by the ANR under reference ANR-10-LABX-7
    corecore