13 research outputs found

    High-density Au nanorod optical field-emitter arrays

    Get PDF
    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m[superscript −1], and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.United States. Defense Advanced Research Projects Agency (Contract N66001-11-1-4192)Gordon and Betty Moore Foundatio

    A Brain Region-Specific Predictive Gene Map for Autism Derived by Profiling a Reference Gene Set

    Get PDF
    Molecular underpinnings of complex psychiatric disorders such as autism spectrum disorders (ASD) remain largely unresolved. Increasingly, structural variations in discrete chromosomal loci are implicated in ASD, expanding the search space for its disease etiology. We exploited the high genetic heterogeneity of ASD to derive a predictive map of candidate genes by an integrated bioinformatics approach. Using a reference set of 84 Rare and Syndromic candidate ASD genes (AutRef84), we built a composite reference profile based on both functional and expression analyses. First, we created a functional profile of AutRef84 by performing Gene Ontology (GO) enrichment analysis which encompassed three main areas: 1) neurogenesis/projection, 2) cell adhesion, and 3) ion channel activity. Second, we constructed an expression profile of AutRef84 by conducting DAVID analysis which found enrichment in brain regions critical for sensory information processing (olfactory bulb, occipital lobe), executive function (prefrontal cortex), and hormone secretion (pituitary). Disease specificity of this dual AutRef84 profile was demonstrated by comparative analysis with control, diabetes, and non-specific gene sets. We then screened the human genome with the dual AutRef84 profile to derive a set of 460 potential ASD candidate genes. Importantly, the power of our predictive gene map was demonstrated by capturing 18 existing ASD-associated genes which were not part of the AutRef84 input dataset. The remaining 442 genes are entirely novel putative ASD risk genes. Together, we used a composite ASD reference profile to generate a predictive map of novel ASD candidate genes which should be prioritized for future research

    Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders

    Get PDF
    BACKGROUND: Genetic influences on gene expression in the human fetal brain plausibly impact upon a variety of postnatal brain-related traits, including susceptibility to neuropsychiatric disorders. However, to date, there have been no studies that have mapped genome-wide expression quantitative trait loci (eQTL) specifically in the human prenatal brain. RESULTS: We performed deep RNA sequencing and genome-wide genotyping on a unique collection of 120 human brains from the second trimester of gestation to provide the first eQTL dataset derived exclusively from the human fetal brain. We identify high confidence cis-acting eQTL at the individual transcript as well as whole gene level, including many mapping to a common inversion polymorphism on chromosome 17q21. Fetal brain eQTL are enriched among risk variants for postnatal conditions including attention deficit hyperactivity disorder, schizophrenia, and bipolar disorder. We further identify changes in gene expression within the prenatal brain that potentially mediate risk for neuropsychiatric traits, including increased expression of C4A in association with genetic risk for schizophrenia, increased expression of LRRC57 in association with genetic risk for bipolar disorder, and altered expression of multiple genes within the chromosome 17q21 inversion in association with variants influencing the personality trait of neuroticism. CONCLUSIONS: We have mapped eQTL operating in the human fetal brain, providing evidence that these confer risk to certain neuropsychiatric disorders, and identifying gene expression changes that potentially mediate susceptibility to these conditions

    Multiplexing and scaling-down of nanostructured photon-triggered silicon field emitter arrays for maximum total electron yield

    No full text
    Femtosecond ultrabright cathodes with spatially structured emission are a critical technology for applications such as free-electron lasers, tabletop coherent x-ray sources, and ultrafast imaging. In this work, the optimization of the total electron yield of ultrafast photon-triggered field emission cathodes composed of arrays of nanosharp, high-aspect-ratio, single-crystal silicon pillars is explored through the variation of the emitter pitch and height. Arrays of 6 nm tip radius silicon emitters with emitter densities between 1.2 and 73.9 million tips cm−2 (hexagonally packed arrays with emitter pitch between 1.25 and 10 μm) and emitter height between 2.0 and 8.5 μm were characterized using 35 fs 800 nm laser pulses. Three-photon electron emission for low-energy (1 μJ) light pulses was observed, in agreement with the literature. Of the devices tested, the arrays with emitter pitch equal to 2.5 μm produced the highest total electron yield; arrays with larger emitter pitch suffer area sub-utilization, and in devices with smaller emitter pitch the larger emitter density does not compensate the smaller per-emitter current due to the electric field shadowing that results from the proximity of the adjacent tips. Experimental data and simulations suggest that 2 μm tall emitters achieve practical optimal performance as shorter emitters have visibly smaller field factors due to the proximity of the emitter tip to the substrate, and taller emitters show marginal improvement in the electron yield at the expense of greater fabrication difficulty

    Nanostructured Ultrafast Silicon-Tip Optical Field-Emitter Arrays

    No full text
    Femtosecond ultrabright electron sources with spatially structured emission are an enabling technology for free-electron lasers, compact coherent X-ray sources, electron diffractive imaging, and attosecond science. In this work, we report the design, modeling, fabrication, and experimental characterization of a novel ultrafast optical field emission cathode comprised of a large (>100 000 tips), dense (4.6 million tips·cm<sup>–2</sup>), and highly uniform (<1 nm tip radius deviation) array of nanosharp high-aspect-ratio silicon columns. Such field emitters offer an attractive alternative to UV photocathodes while providing a direct means of structuring the emitted electron beam. Detailed measurements and simulations show pC electron bunches can be generated in the multiphoton and tunneling regime within a single optical cycle, enabling significant advances in electron diffractive imaging and coherent X-ray sources on a subfemtosecond time scale, not possible before. At high charge emission yields, a slow rollover in charge is explained as a combination of the onset of tunneling emission and the formation of a virtual cathode
    corecore