27 research outputs found

    Integration of North and South American Players in Japan's Professional Baseball Leagues

    Get PDF
    Teams in Japan’s two professional baseball leagues began to add foreign players to their rosters in the early 1950s, with the average number of foreign players per team reaching 5.79 in 2004. One reason for their increased use of foreign players was that foreign hitters substantially outperformed Japanese hitters. We show that the pace of team integration with African-American, Latino, and Caucasian players varied substantially across teams, a pattern also observed in North American professional baseball leagues. Using team data for the 1958-2004 seasons, econometric analysis shows that good teams that experienced a poor season played foreign players more frequently in the next season’s games.Baseball, Japan, integration, NPB, sports, team

    Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies

    Get PDF
    Identification of metabolites in non-targeted metabolomics continues to be a bottleneck in metabolomics studies in large human cohorts. Unidentified metabolites frequently emerge in the results of association studies linking metabolite levels to, for example, clinical phenotypes. For further analyses these unknown metabolites must be identified. Current approaches utilize chemical information, such as spectral details and fragmentation characteristics to determine components of unknown metabolites. Here, we propose a systems biology model exploiting the internal correlation structure of metabolite levels in combination with existing biochemical and genetic information to characterize properties of unknown molecules. Levels of 758 metabolites (439 known, 319 unknown) in human blood samples of 2279 subjects were measured using a non-targeted metabolomics platform (LC-MS and GC-MS). We reconstructed the structure of biochemical pathways that are imprinted in these metabolomics data by building an empirical network model based on 1040 significant partial correlations between metabolites. We further added associations of these metabolites to 134 genes from genome-wide association studies as well as reactions and functional relations to genes from the public database Recon 2 to the network model. From the local neighborhood in the network, we were able to predict the pathway annotation of 180 unknown metabolites. Furthermore, we classified 100 pairs of known and unknown and 45 pairs of unknown metabolites to 21 types of reactions based on their mass differences. As a proof of concept, we then looked further into the special case of predicted dehydrogenation reactions leading us to the selection of 39 candidate molecules for 5 unknown metabolites. Finally, we could verify 2 of those candidates by applying LC-MS analyses of commercially available candidate substances. The formerly unknown metabolites X-13891 and X-13069 were shown to be 2-dodecendioic acid and 9-tetradecenoic acid, respectively. Our data-driven approach based on measured metabolite levels and genetic associations as well as information from public resources can be used alone or together with methods utilizing spectral patterns as a complementary, automated and powerful method to characterize unknown metabolites

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
    corecore