8 research outputs found

    Contrasting Heat Stress Response Patterns of Coral Holobionts Across the Red Sea Suggest Distinct Mechanisms of Thermal Tolerance

    Get PDF
    Corals from the northern Red Sea, in particular the Gulf of Aqaba (GoA), have exceptionally high bleaching thresholds approaching \u3e5℃ above their maximum monthly mean (MMM) temperatures. These elevated thresholds are thought to be due to historical selection, as corals passed through the warmer Southern Red Sea during recolonization from the Arabian Sea. To test this hypothesis, we determined thermal tolerance thresholds of GoA versus central Red Sea (CRS) Stylophora pistillata corals using multi-temperature acute thermal stress assays to determine thermal thresholds. Relative thermal thresholds of GoA and CRS corals were indeed similar and exceptionally high (~7℃ above MMM). However, absolute thermal thresholds of CRS corals were on average 3℃ above those of GoA corals. To explore the molecular underpinnings, we determined gene expression and microbiome response of the coral holobiont. Transcriptomic responses differed markedly, with a strong response to the thermal stress in GoA corals and their symbiotic algae versus a remarkably muted response in CRS colonies. Concomitant to this, coral and algal genes showed temperature-induced expression in GoA corals, while exhibiting fixed high expression (front-loading) in CRS corals. Bacterial community composition of GoA corals changed dramatically under heat stress, whereas CRS corals displayed stable assemblages. We interpret the response of GoA corals as that of a resilient population approaching a tipping point in contrast to a pattern of consistently elevated thermal resistance in CRS corals that cannot further attune. Such response differences suggest distinct thermal tolerance mechanisms that may affect the response of coral populations to ocean warming

    The Toxic Effects of Cigarette Additives. Philip Morris' Project Mix Reconsidered: An Analysis of Documents Released through Litigation

    Get PDF
    Stanton Glantz and colleagues analyzed previously secret tobacco industry documents and peer-reviewed published results of Philip Morris' Project MIX about research on cigarette additives, and show that this research on the use of cigarette additives cannot be taken at face value

    Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems

    Get PDF
    We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts

    IHR (2005) Compliance: Laboratory Capacities and Biological Risks

    Get PDF
    This white paper results from research supported by the Naval Postgraduate School’s Project on Advanced Systems and Concepts for Countering Weapons of Mass Destruction (PASCC) via Grant No 244-13-1-0025 awarded by the NAVSUP Fleet Logistics Center San Diego. The views expressed in this report do not necessarily reflect the official policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.In 2005, the United States and the other Member States of the World Health Organization (WHO) agreed to a new approach to global health security. Recognizing that international agreements rooted in the nineteenth century no longer sufficiently addressed the health threats posed by novel, emerging, and reemerging pathogens such as severe acute respiratory syndrome (SARS) and highly pathogenic H5N1 avian influenza, the World Health Assembly (WHA) adopted the revised International Health Regulations [IHR (2005)].1 The revised IHR entered into force in June 2007. IHR (2005) obligate the now- 196 States Parties to develop the core capacities required to detect, assess, report, and respond to public health emergencies of international concern. The regulations cover biological, chemical, radiological/nuclear, and other threats to public health, regardless of origin (naturally, accidentally, or deliberately released)

    Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction

    No full text
    corecore