9 research outputs found

    Towards a better future for biodiversity and people: Modelling Nature Futures

    Get PDF
    The Nature Futures Framework (NFF) is a heuristic tool for co-creating positive futures for nature and people. It seeks to open up a diversity of futures through mainly three value perspectives on nature – Nature for Nature, Nature for Society, and Nature as Culture. This paper describes how the NFF can be applied in modelling to support decision-making. First, we describe key considerations for the NFF in developing qualitative and quantitative scenarios: i) multiple value perspectives on nature as a state space where pathways improving nature toward a frontier can be represented, ii) mutually reinforcing key feedbacks of social-ecological systems that are important for nature conservation and human wellbeing, iii) indicators of multiple knowledge systems describing the evolution of complex social-ecological dynamics. We then present three approaches to modelling Nature Futures scenarios in the review, screening, and design phases of policy processes. This paper seeks to facilitate the integration of relational values of nature in models and strengthen modelled linkages across biodiversity, nature’s contributions to people, and quality of life

    Climate change, tropical fisheries and prospects for sustainable development

    No full text
    Tropical fisheries substantially contribute to the well-being of societies in both the tropics and the extratropics, the latter through ‘telecoupling’ — linkages between distant human–natural systems. Tropical marine habitats and fish stocks, however, are vulnerable to the physical and biogeochemical oceanic changes associated with rising greenhouse gases. These changes to fish stocks, and subsequent impacts on fish production, have substantial implications for the UN Sustainable Development Goals. In this Review, we synthesize the effects of climate change on tropical marine fisheries, highlighting the socio-economic impacts to both tropical and extratropical nations, and discuss potential adaptation measures. Driven by ocean warming, acidification, deoxygenation and sea-level rise, the maximum catch potential of tropical fish stocks in some tropical exclusive economic zones is projected to decline by up to 40% by the 2050s under the RCP8.5 emissions scenario, relative to the 2000s. Climate-driven reductions in fisheries production and alterations in fish-species composition will subsequently increase the vulnerability of tropical countries with limited adaptive capacity. Thus, given the billions of people dependent on tropical marine fisheries in some capacity, there is a clear need to account for the effects of climate change on these resources and identify practical adaptations when building climate-resilient sustainable-development pathways

    A Global Ocean Oxygen Database and Atlas for Assessing and Predicting Deoxygenation and Ocean Health in the Open and Coastal Ocean

    Get PDF
    In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources)

    A Global Ocean Oxygen Database and Atlas for Assessing and Predicting Deoxygenation and Ocean Health in the Open and Coastal Ocean

    No full text

    A Global Ocean Oxygen Database and Atlas for assessing and predicting deoxygenation and ocean health in the open and coastal ocean

    Get PDF
    International audienceIn this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2_2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2_2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2_2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2_2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2_2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2_2 will improve our understanding of the ocean O2_2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2_2DAT will allow scientists to fully harness the increasing volumes of O2_2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2_2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2_2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources)

    A Global Ocean Oxygen Database and Atlas for Assessing and Predicting Deoxygenation and Ocean Health in the Open and Coastal Ocean

    No full text
    In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources)
    corecore