4 research outputs found

    Resveratrol has antiinflammatory and antifibrotic effects in the peptidoglycan‐polysaccharide rat model of Crohn's disease

    Full text link
    Background: Resveratrol has antiinflammatory and antifibrotic effects. Resveratrol decreases proliferation and collagen synthesis by intestinal smooth muscle cells. We hypothesized that resveratrol would decrease inflammation and fibrosis in an animal model of Crohn's disease. Methods: Peptidoglycan‐polysaccharide (PG‐PS) or human serum albumin (HSA) was injected into the bowel wall of Lewis rats at laparotomy. Resveratrol or vehicle was administered daily by gavage 1–27 days postinjection. On day 28, gross abdominal and histologic findings were scored. Cecal collagen content was measured by colorimetric analysis of digital images of trichrome‐stained sections. Cecal levels of procollagen, cytokine, and growth factor mRNAs were determined. Results: PG‐PS‐injected rats (vehicle‐treated) developed more fibrosis than HSA‐injected rats by all measurements: gross abdominal score ( P < 0.001), cecal collagen content ( P = 0.04), and procollagen I and III mRNAs ( P ≀ 0.0007). PG‐PS‐injected rats treated with 40 mg/kg resveratrol showed a trend toward decreased gross abdominal score, inflammatory cytokine mRNAs, and procollagen mRNAs. PG‐PS‐injected rats treated with 100 mg/kg resveratrol had lower inflammatory cytokine mRNAs (IL‐1ÎČ [3.50 ± 1.08 vs. 10.79 ± 1.88, P = 0.005], IL‐6 [17.11 ± 9.22 vs. 45.64 ± 8.83, P = 0.03], tumor necrosis factor alpha (TNF‐α) [0.80 ± 0.14 vs. 1.89 ± 0.22, P = 0.002]), transforming growth factor beta 1 (TGF‐ÎČ1) mRNA (2.24 ± 0.37 vs. 4.06 ± 0.58, P = 0.01), and histologic fibrosis score (6.4 ± 1.1 vs. 9.8 ± 1.0; P = 0.035) than those treated with vehicle. There were trends toward decreased gross abdominal score and decreased cecal collagen content. Procollagen I, procollagen III, and IGF‐I mRNAs also trended downward. Conclusions: Resveratrol decreases inflammatory cytokines and TGF‐ÎČ1 in the PG‐PS model of Crohn's disease and demonstrates a promising trend in decreasing tissue fibrosis. These findings may have therapeutic applications in inflammatory bowel disease. (Inflamm Bowel Dis 2011;)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90530/1/21843_ftp.pd

    Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: Guidance using optical window intravital FRET imaging

    No full text
    Assessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Forster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging. We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demonstrate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to improve overall survival. </p
    corecore