10 research outputs found

    A multifunctional mutagenesis system for analysis of gene function in zebrafish

    Get PDF
    Since the sequencing of the human reference genome, many human disease-related genes have been discovered. However, understanding the functions of all the genes in the genome remains a challenge. The biological activities of these genes are usually investigated in model organisms such as mice and zebrafish. Large-scale mutagenesis screens to generate disruptive mutations are useful for identifying and understanding the activities of genes. Here, we report a multifunctional mutagenesis system in zebrafish using the maize Ds transposon. Integration of the Ds transposable element containing an mCherry reporter for protein trap events and an EGFP reporter for enhancer trap events produced a collection of transgenic lines marking distinct cell and tissue types, and mutagenized genes in the zebrafish genome by trapping and prematurely terminating endogenous protein coding sequences. We obtained 642 zebrafish lines with dynamic reporter gene expression. The characterized fish lines with specific expression patterns will be made available through the European Zebrafish Resource Center (EZRC), and a database of reporter expression is available online (http://fishtrap.warwick.ac.uk/). Our approach complements other efforts using zebrafish to facilitate functional genomic studies in this model of human development and disease

    PCR-based identification of Adriatic specimen of three scorpionfish species (Scorpaenidae, Teleostei)

    No full text
    The identification of three scorpionfish species, the black scorpionfish (Scorpaena porcus Linnaeus, 1758), the large-scaled scorpionfish (S. scrofa Linnaeus, 1758) and the small red scorpionfish (S. notata Rafinesque, 1810) is possible in adults by morphometry, but often problematic in juveniles due to their similar phenotypes. To develop a molecular species identification tool, first, we have analyzed the genetic similarity of the three species by a PCR-based ‘blind method’ that amplified bands from various locations of the genome. We found high levels of nucleotide similarity between S. porcus and S. scrofa, whereas S. notata showed a higher level of divergence from the other two species. Then, we have searched these patterns for differences between the genomes of Adriatic specimen of these three species and identified several species-specific products in two of them. For the third one a species-specific primer pair amplifying from the 16S ribosomal DNA was designed. One marker for each species was cloned, sequenced and converted into Sequence Characterized Amplified Region (SCAR) markers amplified by specific primer pairs. The SCAR markers amplified robust bands of limited variability from the target species, while no or only occasional weak products were obtained from the other two, proving that they can be used for molecular identification of these three species. These markers can help the conservation and future analysis of these three species as well as their possible selection programs for aquaculture purposes

    Comprehensive Identification of Fim-Mediated Inversions in Uropathogenic Escherichia coli with Structural Variation Detection Using Relative Entropy

    No full text
    UTI is a common ailment that affects more than half of all women during their lifetime. The leading cause of UTIs is UPEC, which relies on type 1 pili to colonize and persist within the bladder during infection. The regulation of type 1 pili is remarkable for an epigenetic mechanism in which a section of DNA containing a promoter is inverted. The inversion mechanism relies on what are thought to be dedicated recombinase genes; however, the full repertoire for these recombinases is not known. We show here that there are no additional targets beyond those already identified for the recombinases in the entire genome of two UPEC strains, arguing that type 1 pilus expression itself is the driving evolutionary force for the presence of these recombinase genes. This further suggests that targeting the type 1 pilus is a rational alternative nonantibiotic strategy for the treatment of UTI.Most urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC), which depends on an extracellular organelle (type 1 pili) for adherence to bladder cells during infection. Type 1 pilus expression is partially regulated by inversion of a piece of DNA referred to as fimS, which contains the promoter for the fim operon encoding type 1 pili. fimS inversion is regulated by up to five recombinases collectively known as Fim recombinases. These Fim recombinases are currently known to regulate two other switches: the ipuS and hyxS switches. A long-standing question has been whether the Fim recombinases regulate the inversion of other switches, perhaps to coordinate expression for adhesion or virulence. We answered this question using whole-genome sequencing with a newly developed algorithm (structural variation detection using relative entropy [SVRE]) for calling structural variations using paired-end short-read sequencing. SVRE identified all of the previously known switches, refining the specificity of which recombinases act at which switches. Strikingly, we found no new inversions that were mediated by the Fim recombinases. We conclude that the Fim recombinases are each highly specific for a small number of switches. We hypothesize that the unlinked Fim recombinases have been recruited to regulate fimS, and fimS only, as a secondary locus; this further implies that regulation of type 1 pilus expression (and its role in gastrointestinal and/or genitourinary colonization) is important enough, on its own, to influence the evolution and maintenance of multiple additional genes within the accessory genome of E. coli

    Analysis of viral diversity for vaccine target discovery

    Get PDF
    Abstract Background Viral vaccine target discovery requires understanding the diversity of both the virus and the human immune system. The readily available and rapidly growing pool of viral sequence data in the public domain enable the identification and characterization of immune targets relevant to adaptive immunity. A systematic bioinformatics approach is necessary to facilitate the analysis of such large datasets for selection of potential candidate vaccine targets. Results This work describes a computational methodology to achieve this analysis, with data of dengue, West Nile, hepatitis A, HIV-1, and influenza A viruses as examples. Our methodology has been implemented as an analytical pipeline that brings significant advancement to the field of reverse vaccinology, enabling systematic screening of known sequence data in nature for identification of vaccine targets. This includes key steps (i) comprehensive and extensive collection of sequence data of viral proteomes (the virome), (ii) data cleaning, (iii) large-scale sequence alignments, (iv) peptide entropy analysis, (v) intra- and inter-species variation analysis of conserved sequences, including human homology analysis, and (vi) functional and immunological relevance analysis. Conclusion These steps are combined into the pipeline ensuring that a more refined process, as compared to a simple evolutionary conservation analysis, will facilitate a better selection of vaccine targets and their prioritization for subsequent experimental validation

    Direct whole-genome deep-sequencing of human respiratory syncytial virus A and B from Vietnamese children identifies distinct patterns of inter- and intra-host evolution.

    No full text
    Human respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children ,2 years of age. Little is known about RSV intra-host genetic diversity over the course of infection or about the immune pressures that drive RSV molecular evolution. We performed whole-genome deep-sequencing on 53 RSV-positive samples (37 RSV subgroup A and 16 RSV subgroup B) collected from the upper airways of hospitalized children in southern Vietnam over two consecutive seasons. RSV A NA1 and RSV B BA9 were the predominant genotypes found in our samples, consistent with other reports on global RSV circulation during the same period. For both RSV A and B, the M gene was the most conserved, confirming its potential as a target for novel therapeutics. The G gene was the most variable and was the only gene under detectable positive selection. Further, positively selected sites inG were found in close proximity to and in some cases overlapped with predicted glycosylation motifs, suggesting that selection on amino acid glycosylation may drive viral genetic diversity. We further identified hotspots and coldspots of intra-host genetic diversity in the RSV genome, some of which may highlight previously unknown regions of functional importance
    corecore