851 research outputs found
A First Comparison of SLOPE and Other LIGO Burst Event Trigger Generators
A number of different methods have been proposed to identify unanticipated
burst sources of gravitational waves in data arising from LIGO and other
gravitational wave detectors. When confronted with such a wide variety of
methods one is moved to ask if they are all necessary, i.e. given detector data
that is assumed to have no gravitational wave signals present, do they
generally identify the same events with the same efficiency, or do they each
'see' different things in the detector? Here we consider three different
methods, which have been used within the LIGO Scientific Collaboration as part
of its search for unanticipated gravitational wave bursts. We find that each of
these three different methods developed for identifying candidate gravitational
wave burst sources are, in fact, attuned to significantly different features in
detector data, suggesting that they may provide largely independent lists of
candidate gravitational wave burst events.Comment: 10 Pages, 5 Figures, Presented at the 10th Gravitational Wave Data
Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas,
Brownsvill
GravEn: Software for the simulation of gravitational wave detector network response
Physically motivated gravitational wave signals are needed in order to study
the behaviour and efficacy of different data analysis methods seeking their
detection. GravEn, short for Gravitational-wave Engine, is a MATLAB software
package that simulates the sampled response of a gravitational wave detector to
incident gravitational waves. Incident waves can be specified in a data file or
chosen from among a group of pre-programmed types commonly used for
establishing the detection efficiency of analysis methods used for LIGO data
analysis. Every aspect of a desired signal can be specified, such as start time
of the simulation (including inter-sample start times), wave amplitude, source
orientation to line of sight, location of the source in the sky, etc. Supported
interferometric detectors include LIGO, GEO, Virgo and TAMA.Comment: 10 Pages, 3 Figures, Presented at the 10th Gravitational Wave Data
Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas,
Brownsvill
A case-control study of lactation and cancer of the breast.
We have examined the relation of lactation, by total duration, with breast cancer risk among pre- and post-menopausal women. In a hospital-based case-control study conducted in Athens (1989-91), involving 820 patients with confirmed breast cancer and 795 orthopaedic patient controls and 753 hospital visitor controls, logistic regression was used to analyse the data controlling for demographic, nutritional and reproductive factors, including parity and age at any birth. Among post-menopausal women, there was no association between breastfeeding and breast cancer risk, but among premenopausal women those who has breastfed for > or = 24 months had an odds ratio of 0.50 (95% confidence interval 0.23-1.41). A reduction of the odds ration was also evident among premenopausal women who had breastfed between 12 and 23 months (odds ratio 0.70; 95% confidence interval 0.34-1.60). In conjunction with several other recent reports these results support the hypothesis that breastfeeding of prolonged duration may reduce the risk of breast cancer among premenopausal women but not among post-menopausal women. The biology underlying this different effect remains unknown, and the practical implication of the finding is a marginal importance
Overview of the BlockNormal Event Trigger Generator
In the search for unmodeled gravitational wave bursts, there are a variety of
methods that have been proposed to generate candidate events from time series
data. Block Normal is a method of identifying candidate events by searching for
places in the data stream where the characteristic statistics of the data
change. These change-points divide the data into blocks in which the
characteristics of the block are stationary. Blocks in which these
characteristics are inconsistent with the long term characteristic statistics
are marked as Event-Triggers which can then be investigated by a more
computationally demanding multi-detector analysis.Comment: GWDAW-8 proceedings, 6 pages, 2 figure
Accurate calibration of test mass displacement in the LIGO interferometers
We describe three fundamentally different methods we have applied to
calibrate the test mass displacement actuators to search for systematic errors
in the calibration of the LIGO gravitational-wave detectors. The actuation
frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range
from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the
weighted mean coefficient over all frequencies for each technique deviates from
the average actuation coefficient for all three techniques by less than 4%.
This result indicates that systematic errors in the calibration of the
responses of the LIGO detectors to differential length variations are within
the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and
Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on
Gravitational Wave
Birth weight as a predictor of breast cancer: a case–control study in Norway
The hypothesis that birth weight is positively associated with adult risk of breast cancer implies that factors related to intrauterine growth may be important for the development of this malignancy. Using stored birth records from the two main hospitals in Trondheim and Bergen, Norway, we collected information on birth weight, birth length and placenta weight among 373 women who developed breast cancer. From the same archives, we selected as controls 1150 women of identical age as the cases without a history of breast cancer. Information on age at first birth and parity were collected from the Central Person Registry in Norway. Based on conditional logistic regression analysis, breast cancer risk was positively associated with birth weight and with birth length (P for trend=0.02). Birth weights in the highest quartile (3730 g or more) were associated with 40% higher risk (odds ratio, 1.4, 95% confidence interval, 1.1–1.9) of breast cancer compared to birth weights in the lowest quartile (less than 3090 g). For birth length, the odds ratio for women who were 51.5 cm or more (highest quartile) was 1.3 (95% confidence interval, 1.0–1.8) compared to being less than 50 cm (lowest quartile) at birth. Adjustment for age at first birth and parity did not change these estimates. Placenta weight was not associated with breast cancer risk. This study provides strong evidence that intrauterine factors may influence future risk of breast cancer. A common feature of such factors would be their ability to stimulate foetal growth and, simultaneously, to influence intrauterine development of the mammary gland
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
- …