83 research outputs found

    A highly sensitive electrochemical genosensor based on Co-porphyrin-labelled DNA

    Get PDF
    We report the use of Co-porphyrins as electrochemical tags for a highly sensitive and selective genosensor. An avian influenza virus-based DNA sequence characteristic of H5N1 was detected at femtomolar levels from competing non-complementary sequences through hybridisation with the labeled DNA

    Tetranucleotides as a scaffold for diporphyrin arrays

    Get PDF
    The incorporation of porphyrin-substituted nucleosides into tetranucleotides using phosphoramidite chemistry on solid support is reported. Both diphenyl and tetraphenyl porphyrin nucleosides were used as building blocks. This method allows the synthesis of chiral homo- and heteroporphyrinic arrays, where the composition and thus the physical properties of the array can be modulated simply by reprogramming the DNA synthesizer. The porphyrin arrays are initially isolated in the free-base form. Remetallation to give the zinc-porphyrins can be achieved using standard procedures in solution. The UV-vis spectra of the arrays are reproducible by a superposition of the absorbance spectra of the individual porphyrins, indicating an undisturbed electronic ground state of the porphyrins in the arrays. The same is true for the steady-state emission spectra of the homoporphyrinic arrays, which are not influenced by the presence of the nucleotide strand. In the mixed porphyrin arrays, large differences in the excited-state properties compared to an equimolar mixture of the building blocks are observed by means that the emission of the diphenyl porphyrin moiety is quenched to a large extent, and the overall emission is dominated by the tetraphenyl porphyrin. The covalent connection of the porphyrins via the DNA-derived backbone therefore substantially alters the excited-state and energy-transfer properties of mixed porphyrin systems. The circular dichroism (CD) spectra show induced negative cotton effects in the region of the porphyrin B-band absorption, which is due to the attachment of the chromophores to the chiral oligonucleotide backbone. Addition of a complementary tetra-adenosine did not alter any of the spectroscopic properties, neither in chloroform nor in acetonitrile solutions. Therefore, it can be concluded that no duplex is formed, which is corroborated by 1H NMR spectroscop

    Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor

    Get PDF
    Holding tight: An artificial nanopore assembled from DNA oligonucleotides carries porphyrin tags (red), which anchor the nanostructure into the lipid bilayer. The porphyrin moieties also act as fluorescent dyes to aid the microscopic visualization of the DNA nanopore

    Increased duplex stabilization in porphyrin-LNA zipper arrays with structure dependent exciton coupling

    No full text
    Porphyrins were attached to LNA uridine building blocks via rigid 5-acetylene or more flexible propargyl-amide linkers and incorporated into DNA strands. The systems show a greatly increased thermodynamic stability when using as little as three porphyrins in a zipper arrangement. Thermodynamic analysis reveals clustering of the strands into more ordered duplexes with both greater negative ??S and ??H values, and less ordered duplexes with small positive ??S differences, depending on the combination of linkers used. The exciton coupling between the porphyrins is dependent on the flanking DNA sequence in the single stranded form, and on the nature of the linker between the nucleobase and the porphyrin in the double stranded form; it is, however, also strongly influenced by intermolecular interactions. This system is suitable for the formation of stable helical chromophore arrays with sequence and structure dependent exciton coupling

    Retaining individualities: the photodynamics of self-ordering porphyrin assemblies

    No full text
    The retention of photochemical properties of individual chromophores is a key feature of biological light harvesting complexes. This is achieved despite extensive aggregation of the chromophores, which in synthetic chromophore assemblies often yields a change in spectral characteristics. As an alternative approach towards mimicking biological light harvesting complexes, we report the synthesis of porphyrin assemblies which retained the photochemical properties of the individual chromophore units despite their substantial aggregation. These new materials highlight a new bottom-up approach towards the design and understanding of more complex biomimetic and naturally occurring biological systems

    Ion Channels Made from a Single Membrane-Spanning DNA Duplex.

    Get PDF
    Because of their hollow interior, transmembrane channels are capable of opening up pathways for ions across lipid membranes of living cells. Here, we demonstrate ion conduction induced by a single DNA duplex that lacks a hollow central channel. Decorated with six porpyrin-tags, our duplex is designed to span lipid membranes. Combining electrophysiology measurements with all-atom molecular dynamics simulations, we elucidate the microscopic conductance pathway. Ions flow at the DNA-lipid interface as the lipid head groups tilt toward the amphiphilic duplex forming a toroidal pore filled with water and ions. Ionic current traces produced by the DNA-lipid channel show well-defined insertion steps, closures, and gating similar to those observed for traditional protein channels or synthetic pores. Ionic conductances obtained through simulations and experiments are in excellent quantitative agreement. The conductance mechanism realized here with the smallest possible DNA-based ion channel offers a route to design a new class of synthetic ion channels with maximum simplicity.K.G. acknowledges funding from the Winton Programme for the Physics of Sustainability, Gates Cambridge, and the Oppenheimer Ph.D. studentship, U.F.K. from an ERC starting Grant Passmembrane 261101 and Oxford Nanopore Technologies, and M.R. from the Early Postdoc Mobility fellowship of the Swiss National Science Foundation. A.A., J.Y., and C.Y.L. acknowledge support form the National Science Foundation under Grants DMR-1507985, PHY-1430124, and EEC-1227034 and the supercomputer time provided through XSEDE Allocation Grant MCA05S028 and the Blue Waters petascale supercomputer system (UIUC). M.W. and S.P.B. acknowledge support from Marie Skłodowska Curie Actions within the Initial Training Networks Translocation Network, project no. 607694 and I.M. from the Marie Skłodowska Curie Fellowship “Nano-DNA” (FP7-PEOPLE-2012-IEF, No 331952).This is the final version of the article. It first appeared from ACS at http://dx.doi.org/10.1021/acs.nanolett.6b02039

    Precision templated bottom-up multiprotein nanoassembly through defined click chemistry linkage to DNA

    Get PDF
    We demonstrate an approach that allows attachment of single-stranded DNA (ssDNA) to a defined residue in a protein of interest (POI) so as to provide optimal and well-defined multicomponent assemblies. Using an expanded genetic code system, azido-phenylalanine (azF) was incorporated at defined residue positions in each POI; copper-free click chemistry was used to attach exactly one ssDNA at precisely defined residues. By choosing an appropriate residue, ssDNA conjugation had minimal impact on protein function, even when attached close to active sites. The protein-ssDNA conjugates were used to (i) assemble double-stranded DNA systems with optimal communication (energy transfer) between normally separate groups and (ii) generate multicomponent systems on DNA origami tiles, including those with enhanced enzyme activity when bound to the tile. Our approach allows any potential protein to be simply engineered to attach ssDNA or related biomolecules, creating conjugates for designed and highly precise multiprotein nanoscale assembly with tailored functionality

    Retaining individualities : the photodynamics of self-ordering porphyrin assemblies

    Get PDF
    YesThe retention of photochemical properties of individual chromophores is a key feature of biological light harvesting complexes. This is achieved despite extensive aggregation of the chromophores, which in synthetic chromophore assemblies often yields a change in spectral characteristics. As an alternative approach towards mimicking biological light harvesting complexes, we report the synthesis of porphyrin assemblies which retained the photochemical properties of the individual chromophore units despite their substantial aggregation. These new materials highlight a new bottom-up approach towards the design and understanding of more complex biomimetic and naturally occurring biological systems.Seventh Framework Programme (European Commission) (FP7), Engineering and Physical Sciences Research Council (EPSRC), Royal Society (Great Britain

    Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides.

    Get PDF
    Funder: University of CambridgeNatural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of π-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a "toolbox" for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic-hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular π wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin-orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision.ERC Horizon 2020 (grant agreement No 670405 and No 803326) EPSRC Tier-2 capital grant EP/P020259/1. Winton Advanced Research Programme for the Physics of Sustainability. Simons Foundation (Grant 601946). Swedish research council, Vetenskapsrådet 2018-0023
    corecore