691 research outputs found
Grand minima and maxima of solar activity: New observational constraints
Using a reconstruction of sunspot numbers stretching over multiple millennia,
we analyze the statistics of the occurrence of grand minima and maxima and set
new observational constraints on long-term solar and stellar dynamo models.
We present an updated reconstruction of sunspot number over multiple
millennia, from C data by means of a physics-based model, using an
updated model of the evolution of the solar open magnetic flux. A list of grand
minima and maxima of solar activity is presented for the Holocene (since 9500
BC) and the statistics of both the length of individual events as well as the
waiting time between them are analyzed.
The occurrence of grand minima/maxima is driven not by long-term cyclic
variability, but by a stochastic/chaotic process. The waiting time distribution
of the occurrence of grand minima/maxima deviates from an exponential
distribution, implying that these events tend to cluster together with long
event-free periods between the clusters. Two different types of grand minima
are observed: short (30--90 years) minima of Maunder type and long (110
years) minima of Sp\"orer type, implying that a deterministic behaviour of the
dynamo during a grand minimum defines its length. The duration of grand maxima
follows an exponential distribution, suggesting that the duration of a grand
maximum is determined by a random process.
These results set new observational constraints upon the long-term behaviour
of the solar dynamo.Comment: 10 Figure
Evolution of the solar irradiance during the Holocene
Aims. We present a physically consistent reconstruction of the total solar
irradiance for the Holocene. Methods. We extend the SATIRE models to estimate
the evolution of the total (and partly spectral) solar irradiance over the
Holocene. The basic assumption is that the variations of the solar irradiance
are due to the evolution of the dark and bright magnetic features on the solar
surface. The evolution of the decadally averaged magnetic flux is computed from
decadal values of cosmogenic isotope concentrations recorded in natural
archives employing a series of physics-based models connecting the processes
from the modulation of the cosmic ray flux in the heliosphere to their record
in natural archives. We then compute the total solar irradiance (TSI) as a
linear combination of the jth and jth + 1 decadal values of the open magnetic
flux. Results. Reconstructions of the TSI over the Holocene, each valid for a
di_erent paleomagnetic time series, are presented. Our analysis suggests that
major sources of uncertainty in the TSI in this model are the heritage of the
uncertainty of the TSI since 1610 reconstructed from sunspot data and the
uncertainty of the evolution of the Earth's magnetic dipole moment. The
analysis of the distribution functions of the reconstructed irradiance for the
last 3000 years indicates that the estimates based on the virtual axial dipole
moment are significantly lower at earlier times than the reconstructions based
on the virtual dipole moment. Conclusions. We present the first physics-based
reconstruction of the total solar irradiance over the Holocene, which will be
of interest for studies of climate change over the last 11500 years. The
reconstruction indicates that the decadally averaged total solar irradiance
ranges over approximately 1.5 W/m2 from grand maxima to grand minima
Re-identification of c. 15 700 cal yr BP tephra bed at Kaipo Bog, eastern North Island: implications for dispersal of Rotorua and Puketarata tephra beds.
A 10 mm thick, c. 15 700 calendar yr BP (c. 13 100 14C yr BP) rhyolitic tephra bed in the well-studied montane Kaipo Bog sequence of eastern North Island was previously correlated with Maroa-derived Puketarata Tephra. We revise this correlation to Okataina-derived Rotorua Tephra based on new compositional data from biotite phenocrysts and glass. The new correlation limits the known dispersal of Puketarata Tephra (sensu stricto, c. 16 800 cal yr BP) and eliminates requirements to either reassess its age or to invoke dual Puketarata eruptive events. Our data show that Rotorua Tephra comprises two glass-shard types: an early-erupted low-K2O type that was dispersed mostly to the northwest, and a high-K2O type dispersed mostly to the south and southeast, contemporary with late-stage lava extrusion. Late-stage Rotorua eruptives contain biotite that is enriched in FeO compared with biotite from Puketarata pyroclastics. The occurrence of Rotorua Tephra in Kaipo Bog (100 km from the source) substantially extends its known distribution to the southeast. Our analyses demonstrate that unrecognised syn-eruption compositional and dispersal changes can cause errors in fingerprinting tephra deposits. However, the compositional complexity, once recognised, provides additional fingerprinting criteria, and also documents magmatic and dispersal processes
Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?
The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO2), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO2 component (FFCO2) by high-precision radiocarbon (14C) analyses because FFCO2 is free of radiocarbon. Long-term observations of 14CO2 conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO2 component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO2. In this paper, we show that, depending on the remoteness of the site, changes of about 7–26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric 14CO2 measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO2 emissions changes in the framework of the Kyoto protocol and successive climate initiatives
A dynamic explanation for the origin of the western Mediterranean organic-rich layers
The eastern Mediterranean sapropels are among the most intensively investigated phenomena in the paleoceanographic record, but relatively little has been written regarding the origin of the equivalent of the sapropels in the western Mediterranean, the organic-rich layers (ORLs). ORLs are recognized as sediment layers containing enhanced total organic carbon that extend throughout the deep basins of the western Mediterranean and are associated with enhanced total barium concentration and a reduced diversity (dysoxic but not anoxic) benthic foraminiferal assemblage. Consequently, it has been suggested that ORLs represent periods of enhanced productivity coupled with reduced deep ventilation, presumably related to increased continental runoff, in close analogy to the sapropels. We demonstrate that despite their superficial similarity, the timing of the deposition of the most recent ORL in the Alboran Sea is different than that of the approximately coincident sapropel, indicating that there are important differences between their modes of formation. We go on to demonstrate, through physical arguments, that a likely explanation for the origin of the Alboran ORLs lies in the response of the western Mediterranean basin to a strong reduction in surface water density and a shoaling of the interface between intermediate and deep water during the deglacial period. Furthermore, we provide evidence that deep convection had already slowed by the time of Heinrich Event 1 and explore this event as a potential agent for preconditioning deep convection collapse. Important differences between Heinrich-like and deglacial-like influences are highlighted, giving new insights into the response of the western Mediterranean system to external forcing
Methodological approaches to determining the marine radiocarbon reservoir effect
The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP
Compound-specific radiocarbon dating of the varved Holocene sedimentary record of Saanich Inlet, Canada
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2012, doi:10.1029/2003PA000927.The radiocarbon contents of various biomarkers extracted from the varve-counted sediments of Saanich Inlet, Canada, were determined to assess their applicability for dating purposes. Calibrated ages obtained from the marine planktonic archaeal biomarker crenarchaeol compared favorably with varve-count ages. The same conclusion could be drawn for a more general archaeal biomarker (GDGT-0), although this biomarker proved to be less reliable due to its less-specific origin. The results also lend support to earlier indications that marine crenarchaeota use dissolved inorganic carbon (DIC) as their carbon source. The average reservoir age offset ΔR of 430 years, determined using the crenarchaeol radiocarbon ages, varied by ±110 years. This may be caused by natural variations in ocean-atmosphere mixing or upwelling at the NE Pacific coast but variability may also be due to an inconsistency in the marine calibration curve when used at sites with high reservoir ages.This work was supported by the Netherlands Organization
for Scientific Research (NWO) and NSF grants OCE-9907129 and
OCE-0137005 (Eglinton)
- …