2,585 research outputs found

    Denitrification by sulfur-oxidizing bacteria in a eutrophic lake

    Get PDF
    Understanding the mechanistic controls of microbial denitrification is of central importance to both environmental microbiology and ecosystem ecology. Loss of nitrate (NO3 −) is often attributed to carbon-driven (heterotrophic) denitrification. However, denitrification can also be coupled to sulfur (S) oxidation by chemolithoautotrophic bacteria. In the present study, we used an in situ stable isotope (15NO3 −) tracer addition in combination with molecular approaches to understand the contribution of sulfur-oxidizing bacteria to the reduction of NO3 − in a eutrophic lake. Samples were incubated across a total dissolved sulfide (H2S) gradient (2 to 95 μM) between the lower epilimnion and the upper hypolimnion. Denitrification rates were low at the top of the chemocline (4.5 m) but increased in the deeper waters (5.0 and 5.5 m), where H2S was abundant. Concomitant with increased denitrification at depths with high sulfide was the production of sulfate (SO4 2−), suggesting that the added NO3 − was used to oxidize H2S to SO4 2−. Alternative nitrate removal pathways, including dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox), did not systematically change with depth and accounted for 1 to 15% of the overall nitrate loss. Quantitative PCR revealed that bacteria of the Sulfurimonas genus that are known denitrifiers increased in abundance in response to NO3 − addition in the treatments with higher H2S. Stoichiometric estimates suggest that H2S oxidation accounted for more than half of the denitrification at the depth with the highest sulfide concentration. The present study provides evidence that microbial coupling of S and nitrogen (N) cycling is likely to be important in eutrophic freshwater ecosystems

    Arctic system on trajectory to new state

    Get PDF
    The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this “super interglacial” state

    Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde

    Get PDF
    The catalytic properties of (MoO2)2P2O7 promoted with vanadium have been investigated for the partial oxidation of methanol, and structure-activity relationships probed using a range of characterization techniques. All unpromoted and promoted molybdenum phosphate catalysts were active, with higher vanadium content achieving both high activity and high formaldehyde selectivity at reaction temperatures around 400 °C. The association between increasing vanadium content and the enhanced activity towards methanol oxidation was attributed to the formation of mixed phase catalysts, in particular VOHPO4·0.5H2O/VOPO4·2H2O with (MoO2)2P2O7. The dispersion of vanadium phosphate phases on the surface of (MoO2)2P2O7 was found to substantially enhance the catalytic properties of the molybdenum phosphate catalyst. The data from this study indicate that molybdenum phosphate based catalysts are promising candidates for selective oxidation, and hence worthy of further investigation

    A human embryonic kidney 293T cell line mutated at the Golgi -mannosidase II locus

    Get PDF
    Disruption of Golgi -mannosidase II activity can result in type II congenital dyserythropoietic anemia and can induce lupus-like autoimmunity in mice. Here, we isolate a mutant human embryonic kidney (HEK) 293T cell line, called Lec36, that displays sensitivity to ricin that lies between the parental HEK 293T cells, whose secreted and membrane-expressed proteins are dominated by complex-type glycosylation, and 293S Lec1 cells, which only produce oligomannose-type N-linked glycans. The stem cell marker, 19A, was transiently expressed in the HEK 293T Lec36 cells, and in parental HEK 293T cells with and without the potent Golgi -mannosidase II inhibitor, swainsonine. Negative-ion nano-electrospray ionization mass spectra of the 19A N-linked glycans from HEK 293T Lec36 and swainsonine-treated HEK 293T cells were qualitatively indistinguishable and, as shown by collision-induced dissociation spectra, dominated by hybrid-type glycosylation. Nucleotide sequencing revealed mutations in each allele of MAN2A1, the gene encoding Golgi -mannosidase II: a point mutation in one allele mapping to the active site and an in-frame deletion of twelve-nucleotides in the other. Expression of wild-type but not the mutant MAN2A1 alleles in Lec36 cells restored processing of the 19A reporter glycoprotein to complex-type glycosylation. The Lec36 cell line will be useful for expressing therapeutic glycoproteins with hybrid-type glycans and provides a sensitive host for detecting mutations in human MAN2A1 causing type II congenital dyserythropoietic anemia

    Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity

    Get PDF
    Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development

    Cytomegalovirus pUL50 is the multi-interacting determinant of the core nuclear egress complex (NEC) that recruits cellular accessory NEC components

    Get PDF
    Nuclear egress of herpesvirus capsids through the nuclear envelope is mediated by the multimeric nuclear egress complex (NEC). The human cytomegalovirus (HCMV) core NEC is defined by an interaction between the membrane- anchored pUL50 and its nuclear co-factor pUL53, tightly associated through heterodimeric corecruitment to the nuclear envelope. Cellular proteins, such as p32/gC1qR, emerin and protein kinase C (PKC), are recruited by direct interaction with pUL50 for the multimeric extension of the NEC. As a functionally important event, the recruitment of both viral and cellular protein kinases leads to site- specific lamin phosphorylation and nuclear lamina disassembly. In this study, interaction domains within pUL50 for its binding partners were defined by co-immunoprecipitation. The interaction domain for pUL53 is located within the pUL50 N-terminus (residues 10-169), interaction domains for p32/gC1qR (100-358) and PKC (100-280) overlap in the central part of pUL50, and the interaction domain for emerin is located in the C-terminus (265-397). Moreover, expression and formation of core NEC proteins at the nuclear rim were consistently detected in cells permissive for productive HCMV replication, including two trophoblast-cell lines. Importantly, regular nuclear-rim formation of the core NEC was blocked by inhibition of cyclin-dependent kinase (CDK) activity. In relation to the recently published crystal structure of the HCMV core NEC, our findings result in a refined view of NEC assembly. In particular, we suggest that CDKs may play an important regulatory role in NEC formation during HCMV replica

    Search for short baseline nu(e) disappearance with the T2K near detector

    Get PDF
    8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA

    Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab

    Full text link
    We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass distribution is obtained that is consistent with W decay and inconsistent with the background prediction by 3.3 standard deviations. From this peak we measure the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet channel.Comment: 20 pages, 4 figures, submitted to PR

    Measurement of the lepton charge asymmetry in W-boson decays produced in p-pbar collisions

    Full text link
    We describe a measurement of the charge asymmetry of leptons from W boson decays in the rapidity range 0 enu, munu events from 110+/-7 pb^{-1}of data collected by the CDF detector during 1992-95. The asymmetry data constrain the ratio of d and u quark momentum distributions in the proton over the x range of 0.006 to 0.34 at Q2 \approx M_W^2. The asymmetry predictions that use parton distribution functions obtained from previously published CDF data in the central rapidity region (0.0<|y_l|<1.1) do not agree with the new data in the large rapidity region (|y_l|>1.1).Comment: 13 pages, 3 tables, 1 figur
    corecore