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INTRODUCTION

Denitrification is an important microbial process
with beneficial consequences for water quality. More
than 75% of the anthropogenic nitrogen (N) entering
watersheds is lost along landscape flow paths before
reaching the oceans (Alexander et al. 2000). This
‘missing’ N is attributed to heterotrophic denitrifica-

tion, an anaerobic microbial process that couples the
oxidation of organic matter with the reduction of ni-
trate (NO3

−) to gaseous N2. Little is known, however,
about where and how this N removal takes place
(Seitzinger et al. 2006, Burgin & Hamilton 2007). Due
to long water residence times and high biological acti -
vity, lakes and reservoirs may be important, yet over-
looked, sites for N removal (Saunders & Kalff 2001).
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ABSTRACT: Understanding the mechanistic controls of microbial denitrification is of central
importance to both environmental microbiology and ecosystem ecology. Loss of nitrate (NO3

−) is
often attributed to carbon-driven (heterotrophic) denitrification. However, denitrification can also
be coupled to sulfur (S) oxidation by chemolithoautotrophic bacteria. In the present study, we used
an in situ stable isotope (15NO3

−) tracer addition in combination with molecular approaches to
understand the contribution of sulfur-oxidizing bacteria to the reduction of NO3

− in a eutrophic
lake. Samples were incubated across a total dissolved sulfide (H2S) gradient (2 to 95 µM) between
the lower epilimnion and the upper hypolimnion. Denitrification rates were low at the top of the
chemocline (4.5 m) but increased in the deeper waters (5.0 and 5.5 m), where H2S was abundant.
Concomitant with increased denitrification at depths with high sulfide was the production of sul-
fate (SO4

2−), suggesting that the added NO3
− was used to oxidize H2S to SO4

2−. Alternative nitrate
removal pathways, including dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic
ammonium oxidation (anammox), did not systematically change with depth and accounted for 1 to
15% of the overall nitrate loss. Quantitative PCR revealed that bacteria of the Sulfurimonas genus
that are known denitrifiers increased in abundance in response to NO3

− addition in the treatments
with higher H2S. Stoichiometric estimates suggest that H2S oxidation accounted for more than half
of the denitrification at the depth with the highest sulfide concentration. The present study pro-
vides evidence that microbial coupling of S and nitrogen (N) cycling is likely to be important in
eutrophic freshwater ecosystems.
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Anaerobic sediments and biofilms of aquatic eco-
systems are conducive to NO3

− reduction; however,
15N tracer studies often show that less than half of the
total NO3

− disappearance is attributable to direct
denitrification (e.g. Mulholland et al. 2008). Such
findings suggest that other microbial processes may
be important for removing NO3

− in freshwater eco-
systems (Gardner et al. 2006, Burgin & Hamilton
2007, Scott et al. 2008, Gardner & McCarthy 2009).
NO3

− can also be reduced via dissimilatory nitrate
reduction (DNRA) to ammonium (NH4

+) by fermenta-
tive bacteria as well as via denitrification or DNRA
coupled to the chemolithoautotrophic oxidation of
either sulfur (Brunet & Garcia-Gil 1996, Otte et al.
1999) or iron (Weber et al. 2006). The relative impor-
tance of DNRA and denitrification is germane to
understanding the fate of NO3

− because the NH4
+

produced by DNRA is biologically available, while
N2, the predominant end-product of denitrification, is
lost from the available N pool.

Anaerobic oxidation of ammonium (anammox) also
converts NO3

− to N2. This chemolithoautotrophic
pathway reduces nitrite (NO2

−) (the source of which
is presumably incomplete denitrification of NO3

−)
with electrons from NH4

+ to produce N2. Anammox
can account for high fractions (~50%) of N2 produc-
tion in marine oxygen-minimum zones (Dalsgaard et
al. 2005). Few estimates of anammox exist for lakes,
but when measured in Lake Tanganyika, anammox
contributed <13% of the overall N2 production in a
suboxic layer at 100 to 110 m depth (Schubert et al.
2006).

The various dissimilatory N transformations are sub -
ject to different controlling factors (Burgin & Ha milton
2007). Denitrification is known to be influenced by the
availability of labile organic carbon (C), NO3

−, and O2

(Cornwell et al. 1999). In addition, H2S may play an
important role in regulating N cycling processes. H2S
is toxic to sensitive biomolecules, including enzymes
(Wang & Chapman 1999), and is known to inhibit N
transformations, such as nitrification (Joye & Hol-
libaugh 1995) and heterotrophic denitrification (Senga
et al. 2006). However, in habitats where nitrate and re-
duced sulfur compounds occur concomitantly, the lat-
ter can also be used as an energy source by chemo -
lithoautotrophs, with NO3

− as the electron acceptor,
yielding N2 and thus enhancing denitrification rates.
Therefore, H2S may have a non-linear effect on rates
of nitrogen cycling because it can both enhance and
inhibit key N transformation processes.

Denitrification by S-oxidizing bacteria has been
documented in marine ecosystems (Brettar & Rhein-
heimer 1991, Shao et al. 2010) and has been sug-

gested to occur in freshwater wetlands (Burgin &
Hamilton 2008, Payne et al. 2009). Our previous work
identified Sulfurimonas denitrificans as 1 microbe
potentially contributing to this process in wetland
sediments (Burgin & Hamilton 2008). To our knowl-
edge, that study was the first reported isolation of
S. denitrificans from freshwater habitats. The S. de -
nitrificans genome contains all of the genes neces-
sary for the complete reduction of NO3

− to N2 and
uses the Sox pathway to oxidize reduced sulfur (S)
species completely to SO4

2− (Sievert et al. 2008).
Here, we report an experiment that took advan-

tage of a naturally occurring H2S gradient (2 to 95 µM
over 1 m of depth) in a thermally stratified, eutrophic
lake to examine how H2S concentrations influence N
transformations and microbial dynamics. In situ incu-
bations of lake water with isotopically enriched
15NO3

− allowed us to follow the fate of added NO3
−,

simulating natural inputs that could occur via
ground water inflows or surface runoff. We also used
quantitative PCR (qPCR) to track the response of
populations of a denitrifying Sulfurimonas bacterium
to the NO3

− addition at varying H2S concentrations.
Our goals were to (1) determine the fate of NO3

− in a
eutrophic lake, including whether the reduction end-
products are affected by H2S concentrations, and (2)
test if bacteria that actively couple N and S in dissim-
ilatory reactions respond to the H2S gradient in ways
that would explain patterns of denitrification.

MATERIALS AND METHODS

Study site

We conducted our study at Wintergreen Lake,
Michigan, USA, an 18 ha eutrophic, glacial kettle
lake located at the Kellogg Bird Sanctuary (maxi-
mum depth = 6.3 m). The lake has been the subject of
intensive study for decades (Wetzel 2001), including
research on sulfur cycling (King & Klug 1980, 1982)
and phototrophic sulfur bacteria (Vila et al. 1998). A
vertical thermal profile shortly before our field exper-
iment (July 2006) showed that the lake was stratified
with a thermocline at ~5.25 m below the surface
(Fig. 1A). The metalimnetic waters (from 4.5 to 5.5 m)
contained no detectable NO3

− (<1 µM), relatively low
concentrations of SO4

2− compared to the epilimnetic
waters, and high concentrations of NH4

+ (Fig. 1B).
We also observed a strong H2S gradient across the
1 m depth range (4.5 m: 1.8 ± 0.9 µM, 5.0 m: 24.5 ±
5.1 µM, 5.5 m: 93.9 ± 6.0 µM). Analytical methods are
de tailed in the following section.
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The lake’s natural chemical gradient allowed us to
test the influence of H2S on N cycling by planktonic
bacterial populations under field conditions. In late
summer, NO3

− was uniformly low throughout the
water column, while NH4

+ increased to nearly 400 µM
in the bottom waters (Fig. 1B). The pH ranged from
9.05 in surface waters to 6.8 near the bottom, and was
7.2 to 7.9 at the depths under study here (4.5 to
5.5 m). The photosynthetic compensation point (1%
of surface irradiance) occurred at 4.2 m. The specific
conductance (corrected to 25°C) of the lake water
ranged from 304 µS cm−1 at the surface to 683 µS
cm−1 near the bottom; precipitation, sedimentation,
and redissolution of calcium carbonate over the
period of summer stratification produces much of this
vertical differentiation in conductance (Hamilton et
al. 2009).

Field experiment

We designed a field experiment to examine the
responses of the bacterial processes across the meta -
limnetic H2S gradient to added NO3

−. The experi-

ment was set up on 21 August 2006, a time when the
summer stratification of the water column was close
to its maximum vertical differentiation. We used a
peristaltic pump (GeoPump) to collect water from
depths of 4.5, 5.0, and 5.5 m, transferring the samples
to 1 l Nalgene LPE bottles by pumping water into the
bottles from the bottom and allowing them to over-
flow to minimize the entrainment of atmospheric O2.
Measurements of H2S in both the treatment and con-
trol bottles on the following day confirmed that the
sample transfer did not alter the H2S gradient. To test
the effects of H2S concentration and the in situ NO3

−

reduction processes, bottles were randomly assigned
to 3 treatments: (1) live controls (labeled ‘live’) com-
posed of ambient lake water), (2) killed controls
(‘killed’) containing added NaCl at a final concentra-
tion of 300 g l−1 to arrest biological activity as well as
added 15NO3

− (final concentration of 267 µM), and (3)
added 15NO3

− (‘15N,’ final concentration of 267 µM).
We used NaCl for the killed control because H2S can
react with many other poisons (Brock 1978). Three
replicate 15N-treated bottles were positioned at each
of the 3 depths; these were grouped with 1 live and 1
killed control per depth for a total of 5 bottles per
depth and 15 bottles total per line (a line refers to a
string of bottles with an anchor and a float). Four
replicate lines were positioned together so that 1 line
(15 bottles) could be destructively harvested each
day of the experiment (22 to 25 August 2006). The
NO3

− addition resulted in higher concentrations than
those present in the lake during the study; however,
this concentration was well within the range of NO3

−

concentrations found in southern Michigan ground-
waters that discharge into groundwater-fed lakes,
such as Wintergreen Lake.

Hydrochemical and isotopic measurements

Upon opening the bottles, water was immediately
and carefully removed for analysis of 15N gases and
H2S, taking care to minimize atmospheric gas ex -
change. Dissolved gases were extracted using a
static headspace equilibrium method (Hamilton &
Ostrom 2007), followed by transfer of the headspace
gas samples to evacuated Exetainers (Labco) that
were sent to the Stable Isotope Facility at the Uni-
versity of California at Davis for analysis of δ15N in
N2O and N2 (including 15N:14N (29N2) and 15N:15N
(30N2) forms). A subsample of the water was imme-
diately re moved and fixed (i.e. colorimetric reagents
added) in the field for analysis of dissolved H2S by
the methy lene blue spectrophotometric method
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Fig. 1. Depth profiles of (A) dissolved O2 (DO) and tempera-
ture and (B) water chemistry (NO3

−, NH4
+, SO4

2−, and H2S)
from Wintergreen Lake, Michigan, USA, at the initiation of 

the experiment in August 2006
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(Golterman & Clymo 1969). The gas-extracted water
was then filtered through 0.45 µm polyethersulfone
membrane filters. Samples for 15NH4

+ were collected
by a modified diffusion method (Holmes et al. 1998),
trapping the NH4

+ on filters, which were analyzed
on a stable isotope ratio mass spectrometer at
Michigan State University’s Isotope Biogeochemistry
Laboratory. Sub-samples were also taken to deter-
mine the NH4

+ concentration using the phenyl-
hypochlorite method (Aminot et al. 1997) and for
NO3

− and SO4
2− on a Dionex membrane-suppression

ion chromatograph.
Stable N isotope ratios were converted to mole

fractions and multiplied by N pool sizes to yield
masses of 15N tracer in each pool (N2, N2O, and
NH4

+), thereby facilitating comparison of the flux
rates. In the case of dissolved N2, we used the atmos-
pheric equilibrium concentration at the temperature
of the sampling depth.

Molecular methods

From previous work, we determined that a close
relative of Sulfurimonas denitrificans was possibly
responsible for coupled N–S cycling documented in
a freshwater ecosystem near Wintergreen Lake (Bur-
gin & Hamilton 2008). Therefore, we used primers to
target bacteria related to S. denitrificans (Labrenz et
al. 2004, Höfle et al. 2005, Brettar et al. 2006). Our
goal in employing these primers was to link the
measured biogeochemical processes (e.g. denitrifica-
tion) with the population dynamics of bacteria known
to couple sulfur oxidation with NO3

− reduction to N2.
Specifically, we used OST 1F (5’-TCA GAT GTG
AAA TCC AAT GGC TCA-3’) and OST 1R (5’-CTT
AGC GTC AGT TAT GTT CCA GG-3’). These
primers were designed to target the genus Sulfuri-
monas in the Baltic Sea; analysis of the PCR products
showed that the amplified partial 16S rRNA gene
sequences from Wintergreen Lake were closely
related to S. autotrophica (A. Burgin unpubl. data).
Of our 8 sequences, 7 were identical to each other,
and the eighth had 96% similarity to the other 7
sequences. Because organisms sharing >95% 16S
rRNA gene sequence identity are commonly consi -
dered to be of the same genus, throughout the
remainder of the paper we refer to the amplified
organisms as denitrifying Sulfurimonas.

The aforementioned primers were used to amplify
DNA that had been extracted from filters using a
MoBio UltraClean Water DNA isolation kit following
the manufacturer’s instructions. For PCR amplifica-

tion, 50 µl reactions were carried out with HotStart
Buffer and Taq polymerase at the recommended final
concentrations (Promega). A gradient PCR was used
to optimize PCR thermal conditions, and an optimal
annealing temperature was found to be between 57
and 59°C. The reaction ran an initial denaturing step
at 95°C for 15 min, followed by 40 cycles of 94°C for
30 s, and the optimized annealing temperatures of
58°C for 40 s and 72°C for 2 min. The OST-amplified
DNA was gel-purified using a Novagen SpinPrep
Gel DNA kit following the manufacturer’s instruc-
tions. The target DNA was then cloned into Esche -
richia coli using an Invitrogen TOPO-TA kit per the
manufacturer’s instructions. Eight colonies were
selected and PCR-amplified using M13 primers and
manufacturer-suggested PCR conditions. M13 PCR
product was purified with a QIAquick PCR purifica-
tion kit (Qiagen). Sequencing confirmed the taxo-
nomic identity of our PCR amplicons as members of
the genus Sulfurimonas. Sequencing was conducted
at the Research Technology Support Facility at
Michigan State University. All sequences obtained in
the present study were deposited in GenBank (acces-
sion numbers GU937440 to GU937447). The se quen -
ces, along with reference sequences obtained from
GenBank, were aligned and trimmed using ClustalX.
The 150 bp alignment was then used as the basis for
a phylogenetic tree constructed using MrBayes, run
on the CIPRES Web Portal (www.phylo.org).

Quantification of denitrifying Sulfurimonas popu-
lations was performed using BioRad iQ SYBR Green
Mastermix and an Eppendorf Mastercycler ep real -
plex2 qPCR thermocycler. The qPCR mixtures (15 µl)
contained master mix, 900 nM OST 1F, and 300 nM
OST 1R. The assay included an initial denaturing
step at 95°C for 15 min, followed by 40 cycles of 94°C
for 30 s, 58°C for 40 s, and 72°C for 50 s. Our cloned
and purified PCR product was also used as a stan-
dard for our qPCR assay after being quantified with a
Nanodrop spectrophotometer. We also used qPCR
primers that targeted the bacterial 16S rRNA gene as
a way to estimate the relative contribution of denitri-
fying Sulfurimonas populations to the total bacterial
community in the bottle incubations. The bacterial
16S rRNA qPCR reactions (15 µl) contained master
mix and 667 nM each of the 340f/533r primers. The
total bacterial assay included an initial denaturing
step at 95°C for 15 min, followed by 40 cycles of 94°C
for 30 s, 68°C for 40 s, 72°C for 50 s, and data collec-
tion at 83.5°C (Jones & Lennon 2009). The qPCR
amplification efficiencies were always between 0.9
and 1.1, and there was no evidence for primer dimers
based on the melting curves.
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Statistical analysis

We used 1-way analysis of variance (ANOVA) to
compare rates of denitrification and DNRA across
depths (SYSTAT 11 software). To compare changes
in the abundance of denitrifying Sulfurimonas popu-
lations over time and depth, we conducted repeated
measures (RM) ANOVA (SAS PROC MIXED) with
covariance structure selected using the Bayesian
Information Criterion (Wolfinger & Chang 1999).

RESULTS

Microorganisms processed the added NO3
− differ-

ently at the 3 depths in Wintergreen Lake. At the
most oxic and shallow depth (4.5 m), nearly all of
the added NO3

− (~267 µM) was removed by Day 3
(Fig. 2). During this time, we observed a large in -
crease in NH4

+, but isotopic evidence indicates that
this was not a product of DNRA. The water at 4.5 m
depth had very low concentrations of H2S (2.2 ±
0.2 µM), which changed little over the course of the
experiment. The SO4

2− concentrations decreased
slightly from 120 to 108 µM. At the intermediate
depth (5.0 m), more than half (185 µM) of the added
NO3

− remained on the last day (Fig. 2). The 25 µM
H2S present in the beginning was quickly removed
(to below our detection limit of 1.0 µM) and remained
low. This drop in H2S was accompanied by an in -
crease of ~10 µM in SO4

2−. At the most H2S-rich
(95 µM) and deepest depth (5.5 m), the NO3

− was
completely removed, with a concomitant increase of
85 µM in SO4

2− (Fig. 2). At 5.5 m, the microbial popu-
lations converted H2S to SO4

2− in a nearly 1:1 stoi-
chiometric ratio; discrepancy from this expected 1:1
ratio at 5.0 m could be accounted for via intracellular
storage (as elemental S) or incomplete conversion via
unmeasured intermediates (elemental S or thio -
sulfate).

The NO3
− added to the bottles was reduced mainly

to N2 via denitrification (Fig. 3A) and to a lesser
extent to NH4

+ via DNRA (Fig. 3B). Rates of NO3
−

reduction, denitrification, and DNRA were calcu-
lated over Days 0 to 3 of the experiment because all
of the reactants and products of the focal processes
were measurable during this time period, and
changes in concentrations, where they occurred,
were approximately linear. Denitrification rates in -
creased significantly with depth (and with increasing
H2S concentrations), ranging from 1 µM 15N d−1 at
4.5 m to 17 µM 15N d−1 at 5.5 m (Fig. 3A; F2,6 = 252.5,
p < 0.001). A larger fraction of overall NO3

− reduction

(Fig. 3C) could be attributed to denitrification at the
5.0 and 5.5 m depths, whereas a much smaller frac-
tion (~1%) was denitrified at 4.5 m. DNRA accounted
for 1 to 15% of the NO3

− reduction (Fig. 3B,C). DNRA
rates were not affected by increasing depth or H2S
concentration, though there were significant differ-
ences in rates among depths (Fig. 3B) (F2,6 = 10.4, p =
0.01). Anammox was not a significant source of the
tracer 15N in N2 because 96 to 100% of the tracer 15N
appeared in the 15N:15N form, whereas anammox
would have produced 15N:14N through the partial
denitrification of the added 15NO3

− to 15NO2
− fol-

lowed by its reaction with 14NH4
+ (data not shown).

Dissolved N2O accounted for a very minor proportion
of the overall NO3

− reduction (<0.1%) and did not
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Fig. 2. Changes in dissolved N and S species over time at
(A) 4.5 m, (B) 5.0 m, and (C) 5.5 m after addition of NO3

−

in the field experiment (means of the 3 treatment bottles ±
1 standard error of the mean). The controls (data not
shown) showed little change compared to the NO3

− addition 
treatment
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show any clear patterns over time or among depths
(data not shown).

The molecular data corroborate the isotope data
and suggest that denitrification was coupled to the
activity of S-oxidizing bacteria. The abundance of
denitrifying Sulfurimonas bacteria changed through

time as a function of depth (RM-ANOVA, Time ×
Depth, F6,10 = 10.1, p = 0.001; Fig. 4). The denitrifying
Sulfurimonas was present at low levels in the live
controls, ranging from 8 to 22 cells l−1. In contrast, the
highest abundance measured in the 5.5 m depth 15N-
treated bottles was nearly 60 000 cells l−1, indicating a
rapid increase of the population. When expressed as
a fraction of the 16S rRNA gene copy number (Fig. 4),
the relative abundance of denitrifying Sulfurimonas
increased from 3 to 65% in the 5.5 m treatment,
whereas the relative abundance of denitrifying Sulfu-
rimonas in the 4.5 and 5.0 m treatments was generally
much lower (3 to 5%), particularly after the first day.

DISCUSSION

The addition of nitrate to anoxic, sulfidic lake water
stimulated rapid, microbially mediated biogeochem-
ical reactions in which sulfur oxidation was linked to
nitrate reduction to N2. This conclusion is supported
by stoichiometric comparisons of NO3

− and H2S con-
centration changes, stable isotope tracing, and mole -
cular evidence for an increase in populations of sul-
fur-oxidizing bacteria capable of denitrification. We
elaborate on these lines of evidence below.

288

Fig. 3. (A) Denitrification, (B) dissimilatory nitrate reduction
to ammonium (DNRA), and (C) nitrate reduction rates in
treatment and control bottles from the field experiment
(means over the incubation from 3 treatment bottles per
depth ± 1 standard error of the mean). The live and killed
controls had only 1 bottle per treatment, and thus, no stan-
dard error is presented. Only live controls are plotted for
comparison with DNRA rates, and neither the live nor killed
controls are plotted on the NO3 reduction rates due to detec-

tion limits. Note the changes in scale among panels

Fig. 4. Sulfurimonas. Population dynamics in the NO3
−

amended treatment bottles over time and depth based on
qPCR (means from the 3 treatment bottles per depth and day
± 1 standard error of the mean). The relative abundance of
denitrifying Sulfurimonas is expressed as a fraction of the 

16S rRNA gene copy number
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Evidence for sulfur-driven denitrification 
in freshwater ecosystems

Stoichiometric calculations provide an estimate of
the fraction of NO3

− removal due to S oxidation as
indicated by SO4

2− production. In the S oxidation
reaction, wherein NO3

− is reduced to N2, 8 moles of
NO3

− are removed for every 5 moles of SO4
2− pro-

duced (Fossing et al. 1995, Burgin & Hamilton 2008):

5 HS− + 8 NO3
− + 3 H+→ 5 SO4

2− + 4 N2 + 4 H2O (1)

Given this stoichiometry and the amount of SO4
2−

produced, we estimated that SO4
2− production did

not account for NO3
− removal at 4.5 m but accounted

for 6% of the total NO3
− removal at 5.0 m and 51% of

the total NO3
− removal at 5.5 m (Fig. 2). We combined

the fraction of NO3
− removal to denitrification

(Fig. 3A) with the fraction of NO3
− removal attributa-

ble to SO4
2− production to estimate the fraction of

denitrification linked to SO4
2− production. Therefore,

at 5.5 m, the majority of the denitrification could be
coupled to chemolithoautotrophic S oxidation rather
than anaerobic respiration of organic matter. These
contributions were much lower at the 5 and 4.5 m
depths because rates of denitrification (Fig. 3A) and
SO4

2− production (Fig. 2) were substantially lower or
undetectable. However, estimates based on SO4

2−

production alone are conservative because partial
oxidation of H2S to elemental S or significant intra-
cellular accumulation of either NO3

− or elemental S
could account for additional coupling not measured
by our methods (e.g. Kamp et al. 2006).

Coupled N–S cycling has been known for more
than a decade to occur in certain marine ecosystems
(Brettar & Rheinheimer 1991, Fossing et al. 1995) and
has been incorporated into bioreactor engineering
(Cardoso et al. 2006), and our study suggests that
reduced S can be a major driver of denitrification in
natural freshwater ecosystems. Evidence for sulfur-
driven denitrification has been reported in marine
ecosystems, including oceanic redoxclines (Brettar et
al. 2006, Grote et al. 2008), near-coastal upwelling
zones (Fossing et al. 1995, Schulz et al. 1999), and
engineered mariculture systems (Cytryn et al. 2005a,
Sher et al. 2008). The patterns of biogeochemical
activity that we observed over depth are very similar
to those documented in the Baltic Sea (Brettar &
Rheinheimer 1991, Brettar et al. 2006), albeit over a
much smaller spatial scale (1 m vs. 10s of meters).
Concentrations of H2S in Wintergreen Lake were
comparable to those measured in the Baltic Sea,
ranging from 0 to 100 µM in the water column,
whereas the highest reported H2S concentration in

the Gotland Deep area of the Baltic was ~150 µM
(Brettar & Rheinheimer 1991). In laboratory experi-
ments, H2S additions increased denitrification (Bret-
tar & Rheinheimer 1991) by as much as we saw
across the ambient H2S gradient in Wintergreen
Lake (Fig. 3A). The occurrence, importance, and dis-
tribution of these N–S coupling processes in fresh-
water ecosystems, however, remain almost completely
unexplored.

Few studies have examined the effects of H2S con-
centrations on the multiple processes that contribute
to NO3

− removal, including denitrification, DNRA,
and anammox. Our results suggest that in the hypo -
limnetic lake water where H2S was available, denitri-
fication was the most important measured removal
process; however, despite the use of 15N tracers, we
were not able to account for the full mass of added
nitrate. This is likely because we were not able to
measure assimilation, a potentially important pro-
cess. There was, however, substantial variation in the
fate of NO3

− over the 1 m depth range we investi-
gated. Furthermore, NO3

− removal rates varied over
the depth range, with the majority of NO3

− removed
quickly at 4.5 and 5.5 m, but much less NO3

− removal
at 5.0 m (Figs. 2 & 3C). These differences in biogeo-
chemical processes (Figs. 2 & 3) and microbial popu-
lation dynamics (Fig. 4) highlight the high degree of
spatial variation that can develop over relatively
small distances (1 m) in a seasonally stratified water
column.

Bacterial population response to NO3
− addition

The bacteria implicated in linking the N and S
cycles in Wintergreen Lake appear to be closely
related to bacteria that have been shown to perform
similar functions in the Baltic Sea (Brettar et al. 2006).
All 8 of our sequences shared >95% sequence iden-
tity with a sequence obtained from similar incubation
experiments conducted in the Baltic Sea (AJ810529)
(Brettar et al. 2006, A. Burgin unpubl. data) and were
identical to other environmental sequences recov-
ered from freshwater, anoxic, and sulfidic environ-
ments (Briée et al. 2007, Amaral-Zettler et al. 2008,
Porter et al. 2009) (Fig. 5). Our results are consistent
with the interpretation that the primers we used tar-
get populations of denitrifying Sulfurimonas bacteria
that couple the N and S cycles by reducing NO3

− to
oxidize H2S, creating N2 and SO4

2− (Figs. 2 & 3). The
ambient populations of the bacteria, as inferred from
the gene copies on Day 1 of the experiment (Fig. 4),
showed higher abundance with increased H2S. The
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populations targeted by the Brettar et al. (2006)
primers clearly responded to the NO3

− addition, with
the most growth in the presence of the highest H2S
and NO3

−, as in the bottles incubated at 5.5 m depth
(Fig. 4).

Based on whole-genome sequencing of Sulfuri-
monas denitrificans, we know that this bacterium has
the genetic capacity to link the N and S cycles
through chemolithoautotrophic denitrification (Siev-
ert et al. 2008). We do not know, however, if other
microorganisms in the Wintergreen Lake samples
also carried out this metabolism. For example, the
coupling of N–S cycling is performed by other bacte-
ria besides S. denitrificans, including Thiothrix
(Nielsen et al. 2000, Cytryn et al. 2005b), Thioploca
(Fossing et al. 1995, Jorgensen & Gallardo 1999),
Beggiatoa (Kamp et al. 2006), and Thiomargarita
(Schulz et al. 1999). Many of these are either
Gamma proteobacteria or Epsilonproteobacteria, and
most have been isolated from marine ecosystems.
However, one study suggested that Beggiatoa spe-
cies (also Gammaproteobacteria) from freshwater
ecosystems can perform a similar reaction (Kamp et
al. 2006). While we found evidence for the impor-
tance of denitrifying Sulfurimonas in Wintergreen
Lake, the diversity of taxa with the potential for this
metabolism suggests there may be other microorgan-
isms that can couple the N and S cycles in other
freshwaters. Given that the denitrifying Sulfurimo -

nas was the numerically dominant member of the
bacterial community (Fig. 4) at depths where a high
degree of coupled N–S cycling occurred (Fig. 2), our
study has identified one important group of organ-
isms responsible for the coupling of N–S in eutrophic
freshwaters. Future research, however, should focus
on identifying other freshwater microorganisms that
may further contribute to coupled N–S cycling.

Freshwater sulfide as a control of denitrification

We argue that the role of NO3
− reduction coupled

to S oxidation should be considered in building a
mechanistic understanding of how S cycling affects
N availability in freshwater aquatic ecosystems. Our
finding of S-driven denitrification in a freshwater
lake represents a departure from our current under-
standing of freshwater biogeochemistry. The general
belief, particularly from an ecosystem perspective, is
that all freshwater denitrification is organic carbon-
driven (Burgin & Hamilton 2007). Our study provides
strong evidence that H2S controls denitrification in a
type of ecosystem where it has heretofore not been
regarded as important to the overall nitrogen cycle.

Sulfate concentrations in lakes can range from
<10 µM to >800 µM in the region where our study
was conducted (S. Hamilton unpubl. data), while H2S
concentrations in near-surface sediment porewaters
can range from 0 to >200 µM (Whitmire 2003). A
number of studies in the 1970s and 1980s elucidated
the mechanisms and controls of SO4

2− reduction;
however, we know relatively little about the oxida-
tive side of S cycling and its role in freshwater eco-
systems (Holmer & Storkholm 2001). Tightly coupled
N–S cycling may occur in many hypolimnetic zones
of lakes or otherwise seasonally or ephemerally
anoxic waters, which often originate as groundwater,
precipitation, or runoff that is relatively high in both
NO3

− and SO4
2−. As illustrated in Fig. 6, potential

zones of coupled N–S cycling (denoted by the white-
dashed boxes) may first develop at the sediment-
water interface of a lake during spring overturn but
eventually shift up into the water column as stratifi-
cation sets in and an anoxic hypolimnion develops.
Furthermore, NO3

− reduction coupled to S oxidation
may be particularly important in areas with high
groundwater NO3

− and SO4
2− concentrations and

abundant groundwater-fed ecosystems (e.g. the gla-
cial terrain in which Wintergreen Lake is situated).
The potential importance of coupled N–S cycling in
freshwaters may not have been recognized in many
studies of denitrification because assays are typically
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Fig. 5. Phylogenetic tree of a portion of the denitrifying Sul-
furimonas 16S rRNA gene, including sequences isolated
from Wintergreen Lake (OST_C4 and D5). Sequences
obtained from our experiment fall within the Sulfurimonas
genus and are closely related to a sequence obtained during
similar work in the Baltic Sea. GenBank accession numbers
are given where available. The scale bar indicates 6% 

sequence divergence
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performed in lab slurries that alter conditions, includ-
ing sparging, which greatly reduces the availability
of H2S.

Our results suggest that the controls of NO3
−

removal are spatially variable. H2S becomes more
important as an electron donor with increasing con-
centration (i.e. with depth in the present study),
whereas labile organic C is presumably a more
important control at shallower depths (Fig. 3). The
corollary to this result is that there may also be tem-
poral variability in how labile C and reduced S com-
petitively control NO3

− removal and denitrification.
We hypothesize that labile C availability may control
denitrification more during spring and fall when the

lake is completely mixed, whereas S may become an
increasingly important control through the develop-
ment of summer stratification (Fig. 6). Both labile C
and H2S are important electron donors for denitrifica-
tion in the Baltic Sea (Brettar & Rheinheimer 1991).
However, in freshwaters, C and available NO3

− are
considered to be proximal controls of denitrification
in groundwaters (Rivett et al. 2008), streams (Arango
et al. 2007), and wetlands (Hill & Cardaci 2004). Para -
doxically, some studies have also demonstrated a
counterintuitive lack of stimulation of denitrification
with the addition of labile C (Merrill & Zak 1992,
Davidsson & Stahl 2000). Therefore, it seems plausi-
ble that some of these conflicting results could be
explained by variable and interacting influences of C
and S on denitrification.

Results from our in situ experiment in eutrophic
Wintergreen Lake demonstrate how distinct micro-
bial populations (Fig. 4) are coupled to biogeochemi-
cal functioning across a naturally existing H2S gradi-
ent (Figs. 2 & 3). We confirmed that S oxidation can
be an important driver of denitrification, contributing
over half of the NO3

− removal at the higher H2S con-
centrations. Denitrification rates increased with
increasing H2S concentrations (Fig. 3), and this was
accompanied by increased abundance of denitrifying
Sulfurimonas (Fig. 4). Therefore, the role of NO3

−

reduction coupled to S oxidation should be consid-
ered in building a mechanistic understanding of how
S cycling affects N availability in freshwater aquatic
ecosystems. Future work should focus on the spatial
and temporal variation in organic carbon vs. sulfide
as controls of denitrification in freshwater aquatic
ecosystems.
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