10 research outputs found

    Characterization of RNA aptamers that disrupt the RUNX1-CBFbeta/DNA complex.

    Get PDF
    The transcription factor RUNX1 (AML1) is an important regulator of haematopoiesis, and an important fusion partner in leukaemic translocations. High-affinity DNA binding by RUNX1 requires the interaction of the RUNX1 Runt-Homology-Domain (RHD) with the core-binding factor beta protein (CBFbeta). To generate novel reagents for in vitro and in vivo studies of RUNX1 function, we have selected high-affinity RNA aptamers against a recombinant RHD-CBFbeta complex. Selection yielded two sequence families, each dominated by a single consensus sequence. Aptamers from each family disrupt DNA binding by the RUNX1 protein in vitro and compete with sequence-specific dsDNA binding. Minimal, high-affinity ( approximately 100-160 nM) active aptamer fragments 28 and 30 nts in length, consisting of simple short stem-loop structures, were then identified. These bind to the RHD subunit and disrupt its interaction with CBFbeta, which is consistent with reduced DNA affinity in the presence of aptamer. These aptamers represent new reagents that target a novel surface on the RHD required to stabilize the recombinant RHD-CBFbeta complex and thus will further aid exploring the functions of this key transcription factor

    Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The content and composition of cerebrospinal fluid (CSF) is determined in large part by the choroid plexus (CP) and specifically, a specialized epithelial cell (CPe) layer that responds to, synthesizes, and transports peptide hormones into and out of CSF. Together with ventricular ependymal cells, these CPe relay homeostatic signals throughout the central nervous system (CNS) and regulate CSF hydrodynamics. One new candidate signal is augurin, a newly recognized 14 kDa protein that is encoded by <it>esophageal cancer related gene-4 </it>(<it>Ecrg4</it>), a putative tumor suppressor gene whose presence and function in normal tissues remains unexplored and enigmatic. The aim of this study was to explore whether <it>Ecrg4 </it>and its product augurin, can be implicated in CNS development and the response to CNS injury.</p> <p>Methods</p> <p><it>Ecrg4 </it>gene expression in CNS and peripheral tissues was studied by <it>in situ </it>hybridization and quantitative RT-PCR. Augurin, the protein encoded by <it>Ecrg4</it>, was detected by immunoblotting, immunohistochemistry and ELISA. The biological consequence of augurin over-expression was studied in a cortical stab model of rat CNS injury by intra-cerebro-ventricular injection of an adenovirus vector containing the <it>Ecrg4 </it>cDNA. The biological consequences of reduced augurin expression were evaluated by characterizing the CNS phenotype caused by <it>Ecrg4 </it>gene knockdown in developing zebrafish embryos.</p> <p>Results</p> <p>Gene expression and immunohistochemical analyses revealed that, the CP is a major source of <it>Ecrg4 </it>in the CNS and that <it>Ecrg4 </it>mRNA is predominantly localized to choroid plexus epithelial (CPe), ventricular and central canal cells of the spinal cord. After a stab injury into the brain however, both augurin staining and <it>Ecrg4 </it>gene expression decreased precipitously. If the loss of augurin was circumvented by over-expressing <it>Ecrg4 in vivo</it>, BrdU incorporation by cells in the subependymal zone decreased. Inversely, gene knockdown of <it>Ecrg4 </it>in developing zebrafish embryos caused increased proliferation of GFAP-positive cells and induced a dose-dependent hydrocephalus-like phenotype that could be rescued by co-injection of antisense morpholinos with <it>Ecrg4 </it>mRNA.</p> <p>Conclusion</p> <p>An unusually elevated expression of the <it>Ecrg4 </it>gene in the CP implies that its product, augurin, plays a role in CP-CSF-CNS function. The results are all consistent with a model whereby an injury-induced decrease in augurin dysinhibits target cells at the ependymal-subependymal interface. We speculate that the ability of CP and ependymal epithelium to alter the progenitor cell response to CNS injury may be mediated, in part by <it>Ecrg4</it>. If so, the canonic control of its promoter by DNA methylation may implicate epigenetic mechanisms in neuroprogenitor fate and function in the CNS.</p

    An Algorithm for Generating Small RNAs Capable of Epigenetically Modulating Transcriptional Gene Silencing and Activation in Human Cells

    Get PDF
    Small noncoding antisense RNAs (sasRNAs) guide epigenetic silencing complexes to target loci in human cells and modulate gene transcription. When these targeted loci are situated within a promoter, long-term, stable epigenetic silencing of transcription can occur. Recent studies suggest that there exists an endogenous form of such epigenetic regulation in human cells involving long noncoding RNAs. In this article, we present and validate an algorithm for the generation of highly effective sasRNAs that can mimic the endogenous noncoding RNAs involved in the epigenetic regulation of gene expression. We validate this algorithm by targeting several oncogenes including AKT-1, c-MYC, K-RAS, and H-RAS. We also target a long antisense RNA that mediates the epigenetic repression of the tumor suppressor gene DUSP6, silenced in pancreatic cancer. An algorithm that can efficiently design small noncoding RNAs for the epigenetic transcriptional silencing or activation of specific genes has potential therapeutic and experimental applications

    Amino acid insertion reveals a necessary three-helical intermediate in the folding pathway of the colicin E7 immunity protein Im7

    Get PDF
    The small (87-residue) alpha-helical protein Im7 (an inhibitor protein for colicin E7 that provides immunity to cells producing colicin E7) folds via a three-state mechanism involving an on-pathway intermediate. This kinetic intermediate contains three of four native helices that are oriented in a non-native manner so as to minimise exposed hydrophobic surface area at this point in folding. The short (6-residue) helix III has been shown to be unstructured in the intermediate ensemble and does not dock onto the developing hydrophobic core until after the rate-limiting transition state has been traversed. After helix III has docked, it adopts an alpha-helical secondary structure, and the side chains of residues within this region provide contacts that are crucial to native-state stability. In order to probe further the role of helix III in the folding mechanism of Im7, we created a variant that contains an eight-amino-acid polyalanine-like helix stabilised by a Glu-Arg salt bridge and an Asn-Pro-Gly capping motif, juxtaposed C-terminal to the natural 6-residue helix III. The effect of this insertion on the structure of the native protein and its folding mechanism were studied using NMR and varphi-value analysis, respectively. The results reveal a robust native structure that is not perturbed by the presence of the extended helix III. Mutational analysis performed to probe the folding mechanism of the redesigned protein revealed a conserved mechanism involving the canonical three-helical intermediate. The results suggest that folding via a three-helical species stabilised by both native and non-native interactions is an essential feature of Im7 folding, independent of the helical propensity of helix III

    Tumours

    No full text
    corecore