238 research outputs found

    Reef fishes at all trophic levels respond positively to effective marine protected areas

    Get PDF
    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing

    Citizen science can improve conservation science, natural resource management, and environmental protection

    Get PDF
    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths bywhich citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that: 1. Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement. 2. Many types of projects can benefit fromcitizen science, but one must be careful tomatch the needs for science and public involvement with the right type of citizen science project and the right method of public participation. 3. Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers.When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems

    Ecological landscape elements: long-term monitoring in Great Britain, the Countryside Survey 1978-2007 and beyond

    Get PDF
    The Countryside Survey (CS) of Great Britain (GB) provides a unique and statistically robust series of datasets, consisting of an extensive set of repeated ecological measurements at a national scale, covering a time span of 29 years. CS was first undertaken in 1978 to provide a baseline for ecological and land use change monitoring in the rural environment of GB, following a stratified random design, based on 1 km squares. Originally, eight random 1 km squares were drawn from each of 32 environmental classes, thus comprising 256 sample squares in the 1978 survey. The number of these sites increased to 382 in 1984, 506 in 1990, 569 in 1998 and 591 in 2007. Detailed information regarding vegetation types and land use was mapped in all five surveys, allowing reporting by defined standard habitat classifications. Additionally, point and linear landscape features (such as trees and hedgerows) are available from all surveys after 1978. From these stratified, randomly located sample squares, information can be converted into national estimates, with associated error terms. Other data, relating to soils, freshwater and vegetation, were also sampled on analogous dates. However, the present paper describes only the surveys of landscape features and habitats. The resulting datasets provide a unique, comprehensive, quantitative ecological coverage of extent and change in these features in GB. Basic results are presented and their implications discussed. However, much opportunity for further analyses remains. Data from each of the survey years are available via the following DOIs: Landscape area data 1978: https://doi.org/10.5285/86c017ba-dc62-46f0-ad13-c862bf31740e, 1984: https://doi.org/10.5285/b656bb43-448d-4b2c-aade-7993aa243ea3, 1990: https://doi.org/10.5285/94f664e5-10f2-4655-bfe6-44d745f5dca7, 1998: https://doi.org/10.5285/1e050028-5c55-42f4-a0ea-c895d827b824, and 2007: https://doi.org/10.5285/bf189c57-61eb-4339-a7b3-d2e81fdde28d; Landscape linear feature data 1984: https://doi.org/10.5285/a3f5665c-94b2-4c46-909e-a98be97857e5, 1990: https://doi.org/10.5285/311daad4-bc8c-485a-bc8a-e0d054889219, 1998: https://doi.org/10.5285/8aaf6f8c-c245-46bb-8a2a-f0db012b2643 and 2007: https://doi.org/10.5285/e1d31245-4c0a-4dee-b36c-b23f1a697f88, Landscape point feature data 1984: https://doi.org/10.5285/124b872e-036e-4dd3-8316-476b5f42c16e, 1990: https://doi.org/10.5285/1481bc63-80d7-4d18-bcba-8804aa0a9e1b, 1998: https://doi.org/10.5285/ed10944f-40c8-4913-b3f5-13c8e844e153 and 2007: https://doi.org/10.5285/55dc5fd7-d3f7-4440-b8a7-7187f8b0550b

    Resource utilization and costs during the initial years of lung cancer screening with computed tomography in Canada

    Get PDF
    Background It is estimated that millions of North Americans would qualify for lung cancer screening and that billions of dollars of national health expenditures would be required to support population-based computed tomography lung cancer screening programs. The decision to implement such programs should be informed by data on resource utilization and costs. Methods Resource utilization data were collected prospectively from 2059 participants in the Pan-Canadian Early Detection of Lung Cancer Study using low-dose computed tomography (LDCT). Participants who had 2% or greater lung cancer risk over 3 years using a risk prediction tool were recruited from seven major cities across Canada. A cost analysis was conducted from the Canadian public payer's perspective for resources that were used for the screening and treatment of lung cancer in the initial years of the study. Results The average per-person cost for screening individuals with LDCT was USD453 (95% confidence interval [CI], USD400–USD505) for the initial 18-months of screening following a baseline scan. The screening costs were highly dependent on the detected lung nodule size, presence of cancer, screening intervention, and the screening center. The mean per-person cost of treating lung cancer with curative surgery was USD33,344 (95% CI, USD31,553–USD34,935) over 2 years. This was lower than the cost of treating advanced-stage lung cancer with chemotherapy, radiotherapy, or supportive care alone, (USD47,792; 95% CI, USD43,254–USD52,200; p = 0.061). Conclusion In the Pan-Canadian study, the average cost to screen individuals with a high risk for developing lung cancer using LDCT and the average initial cost of curative intent treatment were lower than the average per-person cost of treating advanced stage lung cancer which infrequently results in a cure

    The dissociation catastrophe in fluctuating-charge models and its implications for the concept of atomic electronegativity

    Full text link
    We have recently developed the QTPIE (charge transfer with polarization current equilibration) fluctuating-charge model, a new model with correct dissociation behavior for nonequilibrium geometries. The correct asymptotics originally came at the price of representing the solution in terms of charge-transfer variables instead of atomic charges. However, we have found an exact reformulation of fluctuating-charge models in terms of atomic charges again, which is made possible by the symmetries of classical electrostatics. We show how this leads to the distinguishing between two types of atomic electronegativities in our model. While one is a intrinsic property of individual atoms, the other takes into account the local electrical surroundings. This suggests that this distinction could resolve some confusion surrounding the concept of electronegativity as to whether it is an intrinsic property of elements, or otherwise.Comment: 17 pages, prepared for "Proceedings of QSCP-XIII" in Prog. Theor. Chem. Phy

    Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes

    Get PDF
    Copyright: © 2011 Mora et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    New Approaches to Marine Conservation Through the Scaling Up of Ecological Data.

    Get PDF
    In an era of rapid global change, conservation managers urgently need improved tools to track and counter declining ecosystem conditions. This need is particularly acute in the marine realm, where threats are out of sight, inadequately mapped, cumulative, and often poorly understood, thereby generating impacts that are inefficiently managed. Recent advances in macroecology, statistical analysis, and the compilation of global data will play a central role in improving conservation outcomes, provided that global, regional, and local data streams can be integrated to produce locally relevant and interpretable outputs. Progress will be assisted by (a) expanded rollout of systematic surveys that quantify species patterns, including some carried out with help from citizen scientists; (b) coordinated experimental research networks that utilize large-scale manipulations to identify mechanisms underlying these patterns

    Subsequent Surgery After Revision Anterior Cruciate Ligament Reconstruction: Rates and Risk Factors From a Multicenter Cohort

    Get PDF
    BACKGROUND: While revision anterior cruciate ligament reconstruction (ACLR) can be performed to restore knee stability and improve patient activity levels, outcomes after this surgery are reported to be inferior to those after primary ACLR. Further reoperations after revision ACLR can have an even more profound effect on patient satisfaction and outcomes. However, there is a current lack of information regarding the rate and risk factors for subsequent surgery after revision ACLR. PURPOSE: To report the rate of reoperations, procedures performed, and risk factors for a reoperation 2 years after revision ACLR. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: A total of 1205 patients who underwent revision ACLR were enrolled in the Multicenter ACL Revision Study (MARS) between 2006 and 2011, composing the prospective cohort. Two-year questionnaire follow-up was obtained for 989 patients (82%), while telephone follow-up was obtained for 1112 patients (92%). If a patient reported having undergone subsequent surgery, operative reports detailing the subsequent procedure(s) were obtained and categorized. Multivariate regression analysis was performed to determine independent risk factors for a reoperation. RESULTS: Of the 1112 patients included in the analysis, 122 patients (11%) underwent a total of 172 subsequent procedures on the ipsilateral knee at 2-year follow-up. Of the reoperations, 27% were meniscal procedures (69% meniscectomy, 26% repair), 19% were subsequent revision ACLR, 17% were cartilage procedures (61% chondroplasty, 17% microfracture, 13% mosaicplasty), 11% were hardware removal, and 9% were procedures for arthrofibrosis. Multivariate analysis revealed that patients aged <20 years had twice the odds of patients aged 20 to 29 years to undergo a reoperation. The use of an allograft at the time of revision ACLR (odds ratio [OR], 1.79; P = .007) was a significant predictor for reoperations at 2 years, while staged revision (bone grafting of tunnels before revision ACLR) (OR, 1.93; P = .052) did not reach significance. Patients with grade 4 cartilage damage seen during revision ACLR were 78% less likely to undergo subsequent operations within 2 years. Sex, body mass index, smoking history, Marx activity score, technique for femoral tunnel placement, and meniscal tearing or meniscal treatment at the time of revision ACLR showed no significant effect on the reoperation rate. CONCLUSION: There was a significant reoperation rate after revision ACLR at 2 years (11%), with meniscal procedures most commonly involved. Independent risk factors for subsequent surgery on the ipsilateral knee included age <20 years and the use of allograft tissue at the time of revision ACLR

    Inclusive fitness theory and eusociality

    Get PDF
    • …
    corecore