2,614 research outputs found

    Infection rates of the LifeSite hemodialysis access system

    Get PDF

    Analysis of Radioactive Releases During Proposed Demolition Activities for the 224-U and 224-UA Buildings - Addendum

    Get PDF
    A post-demolition modeling analysis is conducted that compares during-demolition atmospheric concentration monitoring results with modeling results based on the actual meteorological conditions during the demolition activities. The 224-U and 224-UA Buildings that were located in the U-Plant UO3 complex in the 200 West Area of the Hanford Site were demolished during the summer of 2010. These facilities converted uranyl nitrate hexahydrate (UNH), a product of Hanford’s Plutonium-Uranium Extraction (PUREX) Plant, into uranium trioxide (UO3). This report is an addendum to a pre-demolition emission analysis and air dispersion modeling effort that was conducted for proposed demolition activities for these structures

    Debris Disks of Members of the Blanco 1 Open Cluster

    Get PDF
    We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 um photometry for 37 members of the ~100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3sigma uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs and two G dwarfs. The most significant linkage between 24 um excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 um excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1 -- NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 um excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between V-Ks color and Ks-[24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.Comment: Accepted to Ap

    Looking ahead: forecasting and planning for the longer-range future, April 1, 2, and 3, 2005

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's spring Conference that took place during April 1, 2, and 3, 2005.The conference allowed for many highly esteemed scholars and professionals from a broad range of fields to come together to discuss strategies designed for the 21st century and beyond. The speakers and discussants covered a broad range of subjects including: long-term policy analysis, forecasting for business and investment, the National Intelligence Council Global Trends 2020 report, Europe’s transition from the Marshal plan to the EU, forecasting global transitions, foreign policy planning, and forecasting for defense

    Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like stars

    Full text link
    We present the discovery of debris systems around three solar mass stars based upon observations performed with the Spitzer Space Telescope as part of a Legacy Science Program, ``the Formation and Evolution of Planetary Systems'' (FEPS). We also confirm the presence of debris around two other stars. All the stars exhibit infrared emission in excess of the expected photospheres in the 70 micron band, but are consistent with photospheric emission at <= 33 micron. This restricts the maximum temperature of debris in equilibrium with the stellar radiation to T < 70 K. We find that these sources are relatively old in the FEPS sample, in the age range 0.7 - 3 Gyr. Based on models of the spectral energy distributions, we suggest that these debris systems represent materials generated by collisions of planetesimal belts. We speculate on the nature of these systems through comparisons to our own Kuiper Belt, and on the likely planet(s) responsible for stirring the system and ultimately releasing dust through collisions. We further report observations of a nearby star HD 13974 (d =11 pc) that is indistinguishable from a bare photosphere at both 24 micron and 70 micron. The observations place strong upper limits on the presence of any cold dust in this nearby system (L_IR/L_* < 10^{-5.2}).Comment: 31 pages, 9 figures, accepted for publication in Ap

    Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays

    Get PDF
    Bose-Einstein Correlations (BEC) of three identical charged pions were studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations, corrected for the Coulomb effect, were separated from the known two-pion correlations by a new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold was observed having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029 (syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041 (syst.). The Coulomb correction was found to increase the \lambda_3 value by \~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of 0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the three-pion sample purity. A relation between the two-pion and the three-pion source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.

    Cohesin Is Limiting for the Suppression of DNA Damage–Induced Recombination between Homologous Chromosomes

    Get PDF
    Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage–induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage–induced recombinants in G2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer

    Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-

    Get PDF
    We report the first observation of the baryonic flavor-changing neutral current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}. We also report the first measurement of the differential branching ratio of B_s -> phi mu+ mu- using 49 signal events. In addition, we report branching ratios for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
    corecore