48 research outputs found

    Probing elastic and inelastic breakup contributions to intermediate-energy two-proton removal reactions

    Get PDF
    The two-proton removal reaction from 28Mg projectiles has been studied at 93 MeV/u at the NSCL. First coincidence measurements of the heavy 26Ne projectile residues, the removed protons and other light charged particles enabled the relative cross sections from each of the three possible elastic and inelastic proton removal mechanisms to be determined. These more final-state-exclusive measurements are key for further interrogation of these reaction mechanisms and use of the reaction channel for quantitative spectroscopy of very neutron-rich nuclei. The relative and absolute yields of the three contributing mechanisms are compared to reaction model expectations - based on the use of eikonal dynamics and sd-shell-model structure amplitudes.Comment: Accepted for publication in Physical Review C (Rapid Communication

    Elastic breakup cross sections of well-bound nucleons

    Get PDF
    The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.Comment: Phys. Rev. C 2014 (accepted

    Isospin symmetry in B(E2) values: Coulomb excitation study of Mg-21

    Get PDF
    The TzT_z~=~32-\frac{3}{2} nucleus 21{}^{21}Mg has been studied by Coulomb excitation on 196{}^{196}Pt and 110{}^{110}Pd targets. A 205.6(1)-keV γ\gamma-ray transition resulting from the Coulomb excitation of the 52+\frac{5}{2}^+ ground state to the first excited 12+\frac{1}{2}^+ state in 21{}^{21}Mg was observed for the first time. Coulomb excitation cross-section measurements with both targets and a measurement of the half-life of the 12+\frac{1}{2}^+ state yield an adopted value of B(E2;52+12+)B(E2;\frac{5}{2}^+\rightarrow\frac{1}{2}^+)~=~13.3(4)~W.u. A new excited state at 1672(1)~keV with tentative 92+\frac{9}{2}^+ assignment was also identified in 21{}^{21}Mg. This work demonstrates large difference of the B(E2;52+12+)B(E2;\frac{5}{2}^+\rightarrow\frac{1}{2}^+) values between TT~=~32\frac{3}{2}, AA~=~21 mirror nuclei. The difference is investigated in the shell-model framework employing both isospin conserving and breaking USD interactions and using modern \textsl{ab initio} nuclear structure calculations, which have recently become applicable in the sdsd shell.Comment: 8 pages, 6 figures, submitted to Phys. Rev. C, Rapid Communicatio

    Isospin symmetry at high spin studied via nucleon knockout from isomeric states

    Get PDF
    One-neutron knockout reactions have been performed on a beam of radioactive 53Co in a high-spin isomeric state. The analysis is shown to yield highly-selective population of high-spin states in an exotic nucleus with a significant cross section, and hence represents a technique that is applicable to the planned new generation of fragmentation-based radioactive beam facilities. Additionally, the relative cross sections among the excited states can be predicted to a high level of accuracy when reliable shell-model input is available. The work has resulted in a new level scheme, up to the 11+ band-termination state, of the proton-rich nucleus 52Co (Z = 27, N = 25). This has in turn enabled a study of mirror energy differences in the A = 52 odd-odd mirror nuclei, interpreted in terms of isospin-non-conserving (INC) forces in nuclei. The analysis demonstrates the importance of using a full set of J-dependent INC terms to explain the experimental observations

    Effective proton-neutron interaction near the drip line from unbound states in 25,26 F

    Get PDF
    Background: Odd-odd nuclei, around doubly closed shells, have been extensively used to study proton-neutron interactions. However, the evolution of these interactions as a function of the binding energy, ultimately when nuclei become unbound, is poorly known. The F26 nucleus, composed of a deeply bound π0d5/2 proton and an unbound ν0d3/2 neutron on top of an O24 core, is particularly adapted for this purpose. The coupling of this proton and neutron results in a Jπ=11+-41+ multiplet, whose energies must be determined to study the influence of the proximity of the continuum on the corresponding proton-neutron interaction. The Jπ=11+,21+,41+ bound states have been determined, and only a clear identification of the Jπ=31+ is missing. Purpose: We wish to complete the study of the Jπ=11+-41+ multiplet in F26, by studying the energy and width of the Jπ=31+ unbound state. The method was first validated by the study of unbound states in F25, for which resonances were already observed in a previous experiment. Method: Radioactive beams of Ne26 and Ne27, produced at about 440AMeV by the fragment separator at the GSI facility were used to populate unbound states in F25 and F26 via one-proton knockout reactions on a CH2 target, located at the object focal point of the R3B/LAND setup. The detection of emitted γ rays and neutrons, added to the reconstruction of the momentum vector of the A-1 nuclei, allowed the determination of the energy of three unbound states in F25 and two in F26. Results: Based on its width and decay properties, the first unbound state in F25, at the relative energy of 49(9) keV, is proposed to be a Jπ=1/2- arising from a p1/2 proton-hole state. In F26, the first resonance at 323(33) keV is proposed to be the Jπ=31+ member of the Jπ=11+-41+ multiplet. Energies of observed states in F25,26 have been compared to calculations using the independent-particle shell model, a phenomenological shell model, and the ab initio valence-space in-medium similarity renormalization group method. Conclusions: The deduced effective proton-neutron interaction is weakened by about 30-40% in comparison to the models, pointing to the need for implementing the role of the continuum in theoretical descriptions or to a wrong determination of the atomic mass of F26

    One-neutron pickup into Ca 49: Bound neutron g9/2 spectroscopic strength at N=29

    Get PDF
    none14sinoneGade, A.; Tostevin, J.A.; Bader, V.; Baugher, T.; Bazin, D.; Berryman, J.S.; Brown, B.A.; Hartley, D.J.; Lunderberg, E.; Recchia, F.; Stroberg, S.R.; Utsuno, Y.; Weisshaar, D.; Wimmer, K.Gade, A.; Tostevin, J. A.; Bader, V.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Hartley, D. J.; Lunderberg, E.; Recchia, Francesco; Stroberg, S. R.; Utsuno, Y.; Weisshaar, D.; Wimmer, K

    One-neutron pickup into Ca49: Bound neutron g9/2 spectroscopic strength at N=29

    Get PDF
    The highly selective, intermediate-energy heavy-ion-induced neutron-pickup reaction, in combination with γ-ray spectroscopy using the γ-ray energy-tracking in-beam nuclear array (GRETINA), is shown to provide reliable relative spectroscopic strengths for high-ℓ orbitals in nuclei more neutron rich than the projectile. The reaction mechanism gives a significant final-state-spin alignment that is validated through γ-ray angular-distribution measurements enabled by the position sensitivity of GRETINA. This is the first time that γ-ray angular distributions could be extracted from a high-luminosity, fast-beam reaction other than inelastic scattering. This holds great promise for the restriction and assignment of Jπ quantum numbers in exotic nuclei. We advance this approach to study the crucial N=28 shell closure and extract the ratio g9/2:f5/2 of bound neutron single-particle strengths in Ca49, a benchmark for emerging multi-shell ab initio and configuration-interaction theories that are applicable along the Ca isotopic chain

    Neutron single-particle strength in silicon isotopes: Constraining the driving forces of shell evolution

    Get PDF
    Shell evolution is studied in the neutron-rich silicon isotopes Si36,38,40 using neutron single-particle strengths deduced from one-neutron knockout reactions. Configurations involving neutron excitations across the N=20 and N=28 shell gaps are quantified experimentally in these rare isotopes. Comparisons with shell model calculations show that the tensor force, understood to drive the collective behavior in Si42 with N=28, is already important in determining the structure of Si40 with N=26. New data relating to cross-shell excitations provide the first quantitative support for repulsive contributions to the cross-shell T=1 interaction arising from three-nucleon forces
    corecore