20 research outputs found

    Reviewing the effects of food provisioning on wildlife immunity

    Get PDF
    While urban expansion increasingly encroaches on natural habitats, many wildlife species capitalize on anthropogenic food resources, which have the potential to both positively and negatively influence their responses to infection. Here we examine how food availability and key nutrients have been reported to shape innate and adaptive immunity in wildlife by drawing from field-based studies, as well as captive and food restriction studies with wildlife species. Examples of food provisioning and key nutrients enhancing immune function were seen across the three study type distinctions, as were cases of trace metals and pharmaceuticals impairing the immunity of wildlife species. More generally, food provisioning in field studies tended to increase innate and adaptive responses to certain immune challenges, whereas patterns were less clear in captive studies. Mild food restriction often enhanced, whereas severe food restriction frequently impaired immunity. However, to enable stronger conclusions we stress a need for further research, especially field studies, and highlight the importance of integrating nutritional manipulation, immune challenge, and functional outcomes. Despite current gaps in research on this topic, modern high throughput molecular approaches are increasingly feasible for wildlife studies and offer great opportunities to better understand human influences on wildlife health.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'

    Orthohantavirus Isolated in Reservoir Host Cells Displays Minimal Genetic Changes and Retains Wild-Type Infection Properties

    Get PDF
    Orthohantaviruses are globally emerging zoonotic pathogens. While the reservoir host role of several rodent species is well-established, detailed research on the mechanisms of host-othohantavirus interactions has been constrained by the lack of an experimental system that is able to effectively replicate natural infections in controlled settings. Here we report the isolation, and genetic and phenotypic characterization of a novel Puumala orthohantavirus (PUUV) in cells derived from its reservoir host, the bank vole. The isolation process resulted in cell culture infection that evaded antiviral responses, persisted cell passaging, and had minor viral genome alterations. Critically, experimental infections of bank voles with the new isolate resembled natural infections in terms of viral load and host cell distribution. When compared to an attenuated Vero E6 cell-adapted PUUV Kazan strain, the novel isolate demonstrated delayed virus-specific humoral responses. A lack of virus-specific antibodies was also observed during experimental infections with wild-type PUUV, suggesting that delayed seroconversion could be a general phenomenon during orthohantavirus infection in reservoir hosts. Our results demonstrate that orthohantavirus isolation on cells derived from a vole reservoir host retains wild-type infection properties and should be considered the method of choice for experimental infection models to replicate natural processes.Peer reviewe

    Neutralizing Antibody Titers in Hospitalized Patients with Acute Puumala Orthohantavirus Infection Do Not Associate with Disease Severity

    Get PDF
    Nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome (HFRS), is an acute febrile illness caused by Puumala orthohantavirus (PUUV). NE manifests typically with acute kidney injury (AKI), with a case fatality rate of about 0.1%. The treatment and management of hantavirus infections are mainly supportive, although neutralizing monoclonal antibodies and immune sera therapeutics are under investigation. In order to assess the potential use of antibody therapeutics in NE, we sought to determine the relationship between circulating PUUV neutralizing antibodies, PUUV nucleocapsid protein (N) IgG antibodies, and viral loads with markers of disease severity. The study included serum samples of extensively characterized patient cohorts (n = 116) from Tampere University Hospital, Finland. The results showed that upon hospitalization, most patients already had considerable neutralizing and anti-PUUV-N IgG antibody levels. However, contrary to expectations, neutralizing antibody titers from the first day of hospitalization did not appear to protect from AKI or correlate with more favorable disease outcomes. This indicates that further studies are needed to investigate the applicability of neutralizing antibodies as a therapy for hospitalized NE patients

    Neutralizing Antibody Titers in Hospitalized Patients with Acute Puumala Orthohantavirus Infection Do Not Associate with Disease Severity

    Get PDF
    Nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome (HFRS), is an acute febrile illness caused by Puumala orthohantavirus (PUUV). NE manifests typically with acute kidney injury (AKI), with a case fatality rate of about 0.1%. The treatment and management of hantavirus infections are mainly supportive, although neutralizing monoclonal antibodies and immune sera therapeutics are under investigation. In order to assess the potential use of antibody therapeutics in NE, we sought to determine the relationship between circulating PUUV neutralizing antibodies, PUUV nucleocapsid protein (N) IgG antibodies, and viral loads with markers of disease severity. The study included serum samples of extensively characterized patient cohorts (n = 116) from Tampere University Hospital, Finland. The results showed that upon hospitalization, most patients already had considerable neutralizing and anti-PUUV-N IgG antibody levels. However, contrary to expectations, neutralizing antibody titers from the first day of hospitalization did not appear to protect from AKI or correlate with more favorable disease outcomes. This indicates that further studies are needed to investigate the applicability of neutralizing antibodies as a therapy for hospitalized NE patients

    Neutralizing Antibody Titers in Hospitalized Patients with Acute Puumala Orthohantavirus Infection Do Not Associate with Disease Severity

    Full text link
    Nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome (HFRS), is an acute febrile illness caused by Puumala orthohantavirus (PUUV). NE manifests typically with acute kidney injury (AKI), with a case fatality rate of about 0.1%. The treatment and management of hantavirus infections are mainly supportive, although neutralizing monoclonal antibodies and immune sera therapeutics are under investigation. In order to assess the potential use of antibody therapeutics in NE, we sought to determine the relationship between circulating PUUV neutralizing antibodies, PUUV nucleocapsid protein (N) IgG antibodies, and viral loads with markers of disease severity. The study included serum samples of extensively characterized patient cohorts (n = 116) from Tampere University Hospital, Finland. The results showed that upon hospitalization, most patients already had considerable neutralizing and anti-PUUV-N IgG antibody levels. However, contrary to expectations, neutralizing antibody titers from the first day of hospitalization did not appear to protect from AKI or correlate with more favorable disease outcomes. This indicates that further studies are needed to investigate the applicability of neutralizing antibodies as a therapy for hospitalized NE patients

    Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome

    Get PDF
    Astrocyte function intertwines with the extracellular matrix, whose glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities are found in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We generated human induced pluripotent stem cell-derived FXS and control astrocytes and we found that several pathways associated with urokinase plasminogen activator (uPA) that modulates degradation of extracellular matrix were activated in FXS astrocytes compared with controls. Expression of uPA was increased in FXS astrocytes and levels of uPA were also increased in conditioned medium collected from FXS astrocyte cultures. Levels of uPA correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB, indicating effects of uPA on neuronal plasticity. FXS-specific changes of gene expression during neuronal differentiation preceding astrogenesis likely contributed to altered properties of FXS astrocytes. Our results identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.Peer reviewe

    Supplementary Table S1 from Reviewing the effects of food provisioning on wildlife immunity

    No full text
    Table S1. Key aspects of captive and food restriction studies assessing the effects of food provisioning on immunity in wildlife species. References are listed in the main document

    Orthohantavirus isolated in reservoir host cells displays minimal genetic changes and retains wild-type infection properties

    Get PDF
    Orthohantaviruses are globally emerging zoonotic pathogens. While the reservoir host role of several rodent species is well-established, detailed research on the mechanisms of host-othohantavirus interactions has been constrained by the lack of an experimental system that is able to effectively replicate natural infections in controlled settings. Here we report the isolation, and genetic and phenotypic characterization of a novel Puumala orthohantavirus (PUUV) in cells derived from its reservoir host, the bank vole. The isolation process resulted in cell culture infection that evaded antiviral responses, persisted cell passaging, and had minor viral genome alterations. Critically, experimental infections of bank voles with the new isolate resembled natural infections in terms of viral load and host cell distribution. When compared to an attenuated Vero E6 cell-adapted PUUV Kazan strain, the novel isolate demonstrated delayed virus-specific humoral responses. A lack of virus-specific antibodies was also observed during experimental infections with wild-type PUUV, suggesting that delayed seroconversion could be a general phenomenon during orthohantavirus infection in reservoir hosts. Our results demonstrate that orthohantavirus isolation on cells derived from a vole reservoir host retains wild-type infection properties and should be considered the method of choice for experimental infection models to replicate natural processes

    Data from: Food limitation constrains host immune responses to nematode infections

    No full text
    Trade-offs in the allocation of finite-energy resources among immunological defences and other physiological processes are believed to influence infection risk and disease severity in food-limited wildlife populations. However, this prediction has received little experimental investigation. Here we test the hypothesis that food limitation impairs the ability of wild field voles (Microtus agrestis) to mount an immune response against parasite infections. We conducted a replicated experiment on vole populations maintained in large outdoor enclosures during boreal winter, using food supplementation and anthelmintic treatment of intestinal nematodes. Innate immune responses against intestinal parasite infections were compared between food-supplemented and non-supplemented voles. Voles with high food availability mounted stronger immune responses against intestinal nematode infections than food-limited voles. No food effects were seen in immune responses to intracellular coccidian parasites, possibly owing to their ability to avoid activation of innate immune pathways. Our findings demonstrate that food availability constrains vole immune responses against nematode infections, and support the concept that spatio-temporal heterogeneity in food availability creates variation in infectious disease susceptibility
    corecore