398 research outputs found

    Evolution of stars with suppressed core convection

    Get PDF
    Stellar evolution on the upper main sequence was computed for models of stars with cores assumed to be in radiative equilibrium, up to the point of central helium ignition. The role of the Schonberg-Chandrasekhar limit for an isothermal core is found to be critical for the evolutionary tracks. Observational data are used to rule out the hypothesis of evolution with radiative cores (in upper main-sequence stars) and, by implication, of magnetic fields that are sufficiently strong to have suppressed the core convention

    Pulsational instability of yellow hypergiants

    Full text link
    Instability of population I (X=0.7, Y=0.02) massive stars against radial oscillations during the post-main sequence gravitational contraction of the helium core is investigated. Initial stellar masses are in the range from 65M_\odot to 90M_\odot. In hydrodynamic computations of self-exciting stellar oscillations we assumed that energy transfer in the envelope of the pulsating star is due to radiative heat conduction and convection. The convective heat transfer was treated in the framework of the theory of time-dependent turbulent convection. During evolutionary expansion of outer layers after hydrogen exhaustion in the stellar core the star is shown to be unstable against radial oscillations while its effective temperature is Teff > 6700K for Mzams=65M_\odot and Teff > 7200K for mzams=90M_\odot. Pulsational instability is due to the \kappa-mechanism in helium ionization zones and at lower effective temperature oscillations decay because of significantly increasing convection. The upper limit of the period of radial pulsations on this stage of evolution does not exceed 200 day. Radial oscillations of the hypergiant resume during evolutionary contraction of outer layers when the effective temperature is Teff > 7300K for Mzams=65M_\odot and Teff > 7600K for Mzams=90M_\odot. Initially radial oscillations are due to instability of the first overtone and transition to fundamental mode pulsations takes place at higher effective temperatures (Teff > 7700K for Mzams=65M_\odot and Teff > 8200K for Mzams=90M_\odot). The upper limit of the period of radial oscillations of evolving blueward yellow hypergiants does not exceed 130 day. Thus, yellow hypergiants are stable against radial stellar pulsations during the major part of their evolutionary stage.Comment: 20 pages, 7 gigures. Accepted for publication in Astronomy Letter

    Diffusive convective overshoot in core He-burning intermediate mass stars. I: the LMC metallicity

    Full text link
    We present detailed evolutionary calculations focused on the evolution of intermediate mass stars with 3 Msun < M < 9 Msun of metallicity typical of the Large Magellanic Cloud (LMC), i.e. Z=0.008. We compare carefully the models calculated by adopting a diffusive scheme for chemical mixing, in which nuclear burning and mixing are self-consistently coupled, while the eddy velocities beyond the formal convective core boundary are treated to decay exponentially, and those calculated with the traditional instantaneous mixing approximation. We find that: i) the physical and chemical behaviour of the models during the H-burning phase is independent of the scheme used for the treatment of mixing inside the CNO burning core; ii) the duration of the He-burning phase relative to the MS phase is systematically longer in the diffusive models, due to a slower redistribution of helium to the core from the outer layers; iii) the fraction of time spent in the blue part of the clump, compared to the stay in the red, is larger in the diffusive models. The differences described in points ii) and iii) tend to vanish for M > Msun. In terms of the theoretical interpretation of an open cluster stellar population, the differences introduced by the use of a self-consistent scheme for mixing in the core with adjacent exponential decay are relevant for ages in the range 80 Myr < t < 200 Myr. These results are robust, since they are insensitive to the choice of the free-parameters regulating the extension of the extra-mixing region.Comment: 14 pages, 14 figure, accepted for publication on Astronomy & Astrophysic

    Evidence for mass ejection associated with long secondary periods in red giants

    Full text link
    Approximately 30% of luminous red giants exhibit a Long Secondary Period (LSP) of variation in their light curves, in addition to a shorter primary period of oscillation. The cause of the LSP has so far defied explanation: leading possibilities are binarity and a nonradial mode of oscillation. Here, large samples of red giants in the Large Magellanic Cloud both with and without LSPs are examined for evidence of an 8 or 24 ÎĽ\mum mid-IR excess caused by circumstellar dust. It is found that stars with LSPs show a significant mid-IR excess compared to stars without LSPs. Furthermore, the near-IR JJ-KK color seems unaffected by the presence of the 24 ÎĽ\mum excess. These findings indicate that LSPs cause mass ejection from red giants and that the lost mass and circumstellar dust is most likely in either a clumpy or a disk-like configuration. The underlying cause of the LSP and the mass ejection remains unknown.Comment: 6 pages, accepted for publication in Ap

    Intermediate mass stars: updated models

    Get PDF
    A new set of stellar models in the mass range 1.2 to 9 M⊙M_{\odot} is presented. The adopted chemical compositions cover the typical galactic values, namely 0.0001≤Z≤0.020.0001 \le Z \le 0.02 and 0.23≤Y≤0.280.23 \le Y \le 0.28. A comparison among the most recent compilations of similar stellar models is also discussed. The main conclusion is that the differencies among the various evolutionary results are still rather large. For example, we found that the H-burning evolutionary time may differ up to 20 %. An even larger disagreement is found for the He-burning phase (up to 40-50 %). Since the connection between the various input physics and the numerical algorithms could amplify or counterbalance the effect of a single ingredient on the resulting stellar model, the origin of this discrepancies is not evident. However most of these discrepancies, which are clearly found in the evolutionary tracks, are reduced on the isochrones. By means of our updated models we show that the ages inferred by the theory of stellar evolution is in excellent agreement with those obtained by using other independent methods applied to the nearby Open Clusters. Finally, the theoretical initial/final mass relation is revised.Comment: 35 pages, 24 figures, 4 tables, accepted for publication in the Astrophisycal Journa

    The Variable Stars of the Draco Dwarf Spheroidal Galaxy - Revisited

    Get PDF
    We present a CCD survey of variable stars in the Draco dwarf spheroidal galaxy. This survey, which has the largest areal coverage since the original variable star survey by Baade & Swope, includes photometry for 270 RR Lyrae stars, 9 anomalous Cepheids, 2 eclipsing binaries, and 12 slow, irregular red variables, as well as 30 background QSOs. Twenty-six probable double-mode RR Lyrae stars were identified. Observed parameters, including mean V and I magnitudes, V amplitudes, and periods, have been derived. Photometric metallicities of the ab-type RR Lyrae stars were calculated according to the method of Jurcsik & Kovacs, yielding a mean metallicity of = -2.19 +/- 0.03. The well known Oosterhoff intermediate nature of the RR Lyrae stars in Draco is reconfirmed, although the double-mode RR Lyrae stars with one exception have properties similar to those found in Oosterhoff type II globular clusters. The period-luminosity relation of the anomalous Cepheids is rediscussed with the addition of the new Draco anomalous Cepheids.Comment: Accepted to AJ. 61 pages, 14 figures, 10 table

    On the stability of very massive primordial stars

    Full text link
    The stability of metal-free very massive stars (ZZ = 0; M = 120 - 500 \msol) is analyzed and compared with metal-enriched stars. Such zero-metal stars are unstable to nuclear-powered radial pulsations on the main sequence, but the growth time scale for these instabilities is much longer than for their metal-rich counterparts. Since they stabilize quickly after evolving off the ZAMS, the pulsation may not have sufficient time to drive appreciable mass loss in Z = 0 stars. For reasonable assumptions regarding the efficiency of converting pulsational energy into mass loss, we find that, even for the larger masses considered, the star may die without losing a large fraction of its mass. We find a transition between the ϵ\epsilon- and κ\kappa-mechanisms for pulsational instability at Z\sim 2\E{-4} - 2\E{-3}. For the most metal-rich stars, the κ\kappa-mechanism yields much shorter ee-folding times, indicating the presence of a strong instability. We thus stress the fundamental difference of the stability and late stages of evolution between very massive stars born in the early universe and those that might be born today.Comment: 7 pages, 5 figures. Minor changes, more results given in Table 1, accepted for publication in Ap

    Bayesian time series analysis of terrestrial impact cratering

    Full text link
    Giant impacts by comets and asteroids have probably had an important influence on terrestrial biological evolution. We know of around 180 high velocity impact craters on the Earth with ages up to 2400Myr and diameters up to 300km. Some studies have identified a periodicity in their age distribution, with periods ranging from 13 to 50Myr. It has further been claimed that such periods may be causally linked to a periodic motion of the solar system through the Galactic plane. However, many of these studies suffer from methodological problems, for example misinterpretation of p-values, overestimation of significance in the periodogram or a failure to consider plausible alternative models. Here I develop a Bayesian method for this problem in which impacts are treated as a stochastic phenomenon. Models for the time variation of the impact probability are defined and the evidence for them in the geological record is compared using Bayes factors. This probabilistic approach obviates the need for ad hoc statistics, and also makes explicit use of the age uncertainties. I find strong evidence for a monotonic decrease in the recorded impact rate going back in time over the past 250Myr for craters larger than 5km. The same is found for the past 150Myr when craters with upper age limits are included. This is consistent with a crater preservation/discovery bias modulating an otherwise constant impact rate. The set of craters larger than 35km (so less affected by erosion and infilling) and younger than 400Myr are best explained by a constant impact probability model. A periodic variation in the cratering rate is strongly disfavoured in all data sets. There is also no evidence for a periodicity superimposed on a constant rate or trend, although this more complex signal would be harder to distinguish.Comment: Minor typos corrected in arXiv v2. Erratum (minor notation corrections) corrected in arXiv v3. (Erratum available from http://www.mpia-hd.mpg.de/~calj/craterTS_erratum.pdf

    Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability

    Get PDF
    Kidney podocytes’ function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology
    • …
    corecore