28 research outputs found

    How cat-behavior advisors can improve clients’ willingness to adopt their advice: an investigation of advice severity, advisor credibility, and clients’ self-identity

    Get PDF
    Feline behavioral problems can be treated successfully by good advice from cat-behavior advisors, but guardians often do not comply with their advice. An experimental survey under 703 cat guardians was used to investigate what advisors can do to increase their clients’ compliance with environmental enrichment advice. By systematically varying the credibility of the advisor and the severity of their advice, the hypothesis was confirmed that highly credible advisors elicit more positive attitudes and compliance intentions than less credible advisors. Also as expected, mild advice resulted in stronger compliance intentions than severe advice because guardians believed they were better able to incorporate the required actions. Finally, guardians who more strongly thought of themselves as cat guardians were more likely to adopt the advice because they believed that other cat guardians would do the same. The investigation of factors that can increase cat guardians’ compliance with advisors’ recommendations for the treatment of behavioral problems is crucial because the wellbeing of domestic cats lies in the hands of their guardians. Several practical recommendations for cat-behavior advisors are offered.Social decision makin

    A Critical Analysis of Atoh7 (Math5) mRNA Splicing in the Developing Mouse Retina

    Get PDF
    The Math5 (Atoh7) gene is transiently expressed during retinogenesis by progenitors exiting mitosis, and is essential for ganglion cell (RGC) development. Math5 contains a single exon, and its 1.7 kb mRNA encodes a 149-aa polypeptide. Mouse Math5 mutants have essentially no RGCs or optic nerves. Given the importance of this gene in retinal development, we thoroughly investigated the possibility of Math5 mRNA splicing by Northern blot, 3′RACE, RNase protection assays, and RT-PCR, using RNAs extracted from embryonic eyes and adult cerebellum, or transcribed in vitro from cDNA clones. Because Math5 mRNA contains an elevated G+C content, we used graded concentrations of betaine, an isostabilizing agent that disrupts secondary structure. Although ∼10% of cerebellar Math5 RNAs are spliced, truncating the polypeptide, our results show few, if any, spliced Math5 transcripts exist in the developing retina (<1%). Rare deleted cDNAs do arise via RT-mediated RNA template switching in vitro, and are selectively amplified during PCR. These data differ starkly from a recent study (Kanadia and Cepko 2010), which concluded that the vast majority of Math5 and other bHLH transcripts are spliced to generate noncoding RNAs. Our findings clarify the architecture of the Math5 gene and its mechanism of action. These results have implications for all members of the bHLH gene family, for any gene that is alternatively spliced, and for the interpretation of all RT-PCR experiments

    Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism

    Get PDF
    Many Mendelian traits are likely unrecognized owing to absence of traditional segregation patterns in families due to causation by de novo mutations, incomplete penetrance, and/or variable expressivity. Genome-level sequencing can overcome these complications. Extreme childhood phenotypes are promising candidates for new Mendelian traits. One example is early onset hypertension, a rare form of a global cause of morbidity and mortality. We performed exome sequencing of 40 unrelated subjects with hypertension due to primary aldosteronism by age 10. Five subjects (12.5%) shared the identical, previously unidentified, heterozygous CACNA1H(M1549V) mutation. Two mutations were demonstrated to be de novo events, and all mutations occurred independently. CACNA1H encodes a voltage-gated calcium channel (CaV3.2) expressed in adrenal glomerulosa. CACNA1H(M1549V) showed drastically impaired channel inactivation and activation at more hyperpolarized potentials, producing increased intracellular Ca(2+), the signal for aldosterone production. This mutation explains disease pathogenesis and provides new insight into mechanisms mediating aldosterone production and hypertension

    The role of prolactin in fish reproduction

    Get PDF
    Prolactin (PRL) has one of the broadest ranges of functions of any vertebrate hormone, and plays a critical role in regulating aspects of reproduction in widely divergent lineages. However, while PRL structure, mode of action and functions have been well-characterised in mammals, studies of other vertebrate lineages remain incomplete. As the most diverse group of vertebrates, fish offer a particularly valuable model system for the study of the evolution of reproductive endocrine function. Here, we review the current state of knowledge on the role of prolactin in fish reproduction, which extends to migration, reproductive development and cycling, brood care behaviour, pregnancy, and nutrient provisioning to young. We also highlight significant gaps in knowledge and advocate a specific bidirectional research methodology including both observational and manipulative experiments. Focusing research efforts towards the thorough characterisation of a restricted number of reproductively diverse fish models will help to provide the foundation necessary for a more explicitly evolutionary analysis of PRL function
    corecore