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RESEARCH ARTICLE

Recurrent gain of function mutation
in calcium channel CACNA1H causes
early-onset hypertension with primary
aldosteronism
Ute I Scholl1,2, Gabriel Stölting3, Carol Nelson-Williams1, Alfred A Vichot1,
Murim Choi1,4, Erin Loring1,4, Manju L Prasad5, Gerald Goh1, Tobias Carling6,
C Christofer Juhlin6,7, Ivo Quack2, Lars C Rump2, Anne Thiel2, Marc Lande8,
Britney G Frazier9, Majid Rasoulpour10, David L Bowlin11, Christine B Sethna12,
Howard Trachtman13, Christoph Fahlke3, Richard P Lifton1,4*

1Department of Genetics, Howard Hughes Medical Institute, Yale University School of
Medicine, New Haven, United States; 2Division of Nephrology, Heinrich Heine
University Düsseldorf, Düsseldorf, Germany; 3Institute of Complex Systems, Zelluläre
Biophysik, Forschungszentrum Jülich, Jülich, Germany; 4Yale Center for Mendelian
Genomics, New Haven, United States; 5Department of Pathology, Yale University
School of Medicine, New Haven, United States; 6Yale Endocrine Neoplasia
Laboratory, Yale School of Medicine, New Haven, United States; 7Department of
Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm,
Sweden; 8Division of Pediatric Nephrology, University of Rochester Medical Center,
Rochester, United States; 9Madigan Army Medical Center, Tacoma, United States;
10Connecticut Children’s Medical Center, Hartford, United States; 11Intermed
Consultants Ltd, Edina, United States; 12Department of Pediatrics, Cohen Children’s
Medical Center of New York, New Hyde Park, United States; 13Department of
Pediatrics, NYU Langone Medical Center, New York, United States

Abstract Many Mendelian traits are likely unrecognized owing to absence of traditional segregation

patterns in families due to causation by de novo mutations, incomplete penetrance, and/or variable

expressivity. Genome-level sequencing can overcome these complications. Extreme childhood phenotypes

are promising candidates for new Mendelian traits. One example is early onset hypertension, a rare form

of a global cause of morbidity and mortality. We performed exome sequencing of 40 unrelated subjects

with hypertension due to primary aldosteronism by age 10. Five subjects (12.5%) shared the identical,

previously unidentified, heterozygousCACNA1HM1549V mutation. Twomutations were demonstrated to be

de novo events, and all mutations occurred independently. CACNA1H encodes a voltage-gated calcium

channel (CaV3.2) expressed in adrenal glomerulosa. CACNA1HM1549V showed drastically impaired channel

inactivation and activation at more hyperpolarized potentials, producing increased intracellular Ca2+, the

signal for aldosterone production. This mutation explains disease pathogenesis and provides new insight

into mechanisms mediating aldosterone production and hypertension.

DOI: 10.7554/eLife.06315.001

Introduction
The steroid hormone aldosterone is normally produced in the adrenal zona glomerulosa in response

to either angiotensin II, which is produced in response to volume depletion, or hyperkalemia (high

plasma K+ level). Both stimuli cause membrane depolarization, activating voltage-gated Ca2+ channels;
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increased intracellular Ca2+ provides the signal that triggers aldosterone production (Spät and

Hunyady, 2004). In the setting of volume depletion, aldosterone signaling in renal and intestinal

epithelia produces increased salt (re)absorption, promoting restoration of intravascular volume; in

hyperkalemia, aldosterone promotes increased potassium secretion, restoring electrolyte balance.

Pathological secretion of aldosterone in the absence of normal physiological stimuli leads to

primary aldosteronism (PA), producing increased salt (re)absorption and hypertension. Hypokalemia is

a frequently associated finding, resulting from increased renal K+ elimination. PA is found in 10% of

patients referred for evaluation of hypertension (Conn, 1955; Rossi et al., 2006). About half of these

patients have adrenal aldosterone-producing adenomas (APAs). Germline mutations in three genes

have been shown to cause rare Mendelian forms of early-onset PA. Gene fusions leading to constitutive

expression of aldosterone synthase (encoded by CYP11B2), a rate-limiting enzyme in aldosterone

biosynthesis, cause Glucocorticoid-Remediable Aldosteronism (GRA) (Lifton et al., 1992).

Mutations in and near the selectively filter of the K+ channel encoded by KCNJ5 result in channels

that conduct Na+, leading to adrenal glomerulosa cell depolarization and activation of Ca2+ channels,

producing a Mendelian form of aldosteronism (Choi et al., 2011). Gain of function mutations in the

calcium channel encoded by CACNA1D cause increased Ca2+ channel activity and another form of PA.

These latter patients also have seizures, neurodevelopmental and neuromuscular abnormalities owing

to gain of function effects of CACNA1D in the nervous system (Scholl et al., 2013). Families with GRA

often have many affected subjects and were identified by linkage analysis in extended families (Lifton

et al., 1992). Germline mutations in KCNJ5 are typically de novo or in small nuclear families; similarly,

CACNA1D mutations to date are all de novo (Choi et al., 2011; Scholl et al., 2012, 2013). Germline

mutations in KCNJ5 and CACNA1D were found following identification of the same or related

somatic mutations as drivers of APAs (Choi et al., 2011; Scholl et al., 2012; Azizan et al., 2013;

Scholl et al., 2013).

eLife digest The consequence of mutations to the large majority of human genes is unknown.

Most mutations that are currently known were discovered by tracing their effects through families.

This allows the locations of mutations to be pinpointed on chromosomes—the structures that

genetic material is packaged into. Other mutations are harder to trace because individuals with these

mutations may develop very different signs and symptoms, or not develop clinical abnormalities at

all. Alternatively, a trait may appear sporadically in a family because the mutation arises anew in the

affected subject.

Recently developed technologies that allow scientists to rapidly sequence all the gene-encoding

regions of an individual’s DNA—their genome—offer a new way to identify harmful genetic variants.

Comparing the genomes of individuals with rare disorders can reveal if the individuals share any

genetic mutations in common that could cause their symptoms.

Scholl et al. used this strategy to sequence the genomes of 40 individuals with a rare type of

hypertension—a condition that causes high blood pressure, and increases the risk of strokes, kidney

failure and heart attacks—that develops early in childhood. In this form of the disease, high blood

pressure is caused by the adrenal glands above the kidneys producing too much of a hormone called

aldosterone. Some genetic causes of this form of the disease have already been identified. Now,

Scholl et al. have found a new genetic mutation present in five families with this condition. Two of the

individuals were the first in their families to develop this mutation, while three others inherited it.

Some of the family members with this mutation had hypertension and some did not.

The mutation is in a gene that encodes a type of calcium channel—a protein found in the

membrane that surrounds cells, and which can open and close to control the amount of calcium in the

cell. This particular calcium channel is abundant in the cells of the adrenal gland. Scholl et al. found

that the mutation causes the calcium channels to be more likely to open and take longer to close.

This increases the number of calcium ions that move into the cell, which causes the adrenal gland to

produce more aldosterone. These new insights have provided a new way of diagnosing early-onset

hypertension, and suggest that targeting calcium channels could help to develop new treatments for

this disease.

DOI: 10.7554/eLife.06315.002
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The causes of PA in many patients remain undetermined. Although Mendelian inheritance has been

suggested by recurrence of PA in some kindreds without mutations in known genes (Stowasser et al.,

1992; Torpy et al., 1998; Lafferty et al., 2000), traditional linkage analysis has failed to identify

additional causative genes, likely due to a combination of factors including locus heterogeneity, high

frequency of de novo mutations, reduced penetrance and/or variable expressivity. The advent of

next-generation sequencing, allowing the search for recurrent mutations or greater burden of rare

variants in individual genes than expected by chance, can permit identification of such loci in the

absence of classical segregation patterns. Very rare phenotypes, such as childhood PA, are promising

candidates for such traits.

Using exome sequencing, we here identify five independent occurrences of the identical mutation in

CACNA1H among 40 subjects with unexplained PA in childhood. CACNA1H encodes a voltage-gated

calcium channel that is expressed in adrenal glomerulosa. Electrophysiology demonstrates that this

variant causes reduced inactivation and a shift of activation to more hyperpolarized potentials, effects

inferred to produce increased calcium influx and PA.

Results

Whole-exome sequencing of 40 subjects with PA
From a cohort of more than 1500 unrelated subjects referred for evaluation of genetic forms of

hypertension, we identified 40 subjects diagnosed with hypertension and PA by age 10 years in whom

disease-causing mutations in CYP11B2, KCNJ5, and CACNA1D (Lifton et al., 1992; Choi et al., 2011;

Scholl et al., 2013) were excluded. Clinical details are shown in Supplementary file 1A. All subjects

had hypertension with elevated aldosterone levels despite low plasma renin activity (PRA). None of

the subjects studied were the offspring of consanguineous union. DNA from peripheral blood was

subjected to exome capture and sequencing; mean coverage was 73 independent reads per targeted

base (Supplementary file 1B). Variants were called as described in ‘Materials and methods’ (Lemaire

et al., 2013).

We performed three analyses tailored to the expectation of a rare genetic disease (‘Materials and

methods’). We sought previously unreported (absent in dbSNP, NHLBI, 1000Genomes and Yale exome

databases) protein-altering variants that occurred in more than one subject (Supplementary file 1C); we

performed gene burden analyses to search for previously unreported or rare (minor allele frequency

[MAF] < 0.01%) heterozygous variants that collectively occurred in any gene more often than expected

by chance (Supplementary file 1D); we searched for rare (MAF < 0.1%) homozygous and potential

compound heterozygous variants that collectively occurred in any genes more often than expected by

chance (Supplementary file 1E).

Identification of a recurrent novel variant in CACNA1H
There was only one result that surpassed genome-level significance: we found five apparently

unrelated subjects with the identical previously unreported heterozygous A > G variant, resulting in

a p.Met1549Val substitution in CACNA1H, which encodes the pore-forming alpha subunit of a T-type,

low voltage-activated calcium channel (aka CaV3.2) (Figure 1, Table 1, Supplementary file 1F)

(Perez-Reyes, 2003). This variant is absent among more than 129,000 alleles sequenced from

diverse populations in the Exome Aggregation Consortium (Exome Aggregation Consortium),

and Yale databases. No other CACNA1H alleles with allele frequencies <0.01% were found

among our cohort. Like other Ca2+ channel alpha subunits, CACNA1H contains four homologous

repeats (I–IV), each with six transmembrane segments (S1–S6). The CACNA1HM1549V variant lies

in the S6 segment of repeat III (Marksteiner et al., 2001). Sanger sequencing in each case

confirmed the heterozygous variant (Figure 1A).

Three index cases were of European ancestry, one Hispanic, and one African American by self-

report and principal component analysis (Figure 1—figure supplement 1). Members of the extended

families were recruited, and sequencing of these subjects demonstrated that CACNA1HM1549V was

a de novo mutation (absent in the biological parents) in both the index case of kindred 1347, and in

the affected mother of the index case in kindred 1390 (Figure 1). Analysis of highly polymorphic

markers confirmed paternity and maternity in both kindreds (Supplementary file 1G). This establishes

independent occurrences of CACNA1HM1549V in these two kindreds. In the remaining three kindreds,

the variant was transmitted to the index case from a parent, and samples from grandparents were not
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available for further analysis of transmission (Figure 1). Analysis of kinship coefficients using SNP

genotypes of affected subjects from Illumina Human 1M-Quad beadchips and the KING algorithm

(Manichaikul et al., 2010) provided no evidence that these three kindreds shared recent common

ancestry (Supplementary file 1H, ‘Materials and methods’). Further, haplotypes flanking the CACNA1H

mutation were phased using the BEAGLE program, revealing that the maximum shared haplotype

flanking the CACNA1H mutation among these three kindreds was only 53.6 kb (87.0 kb for the two

European kindreds, Figure 2). From this data, the maximum likelihood estimate of the number of

generations since the last shared common ancestor among these subjects is estimated to be

714 generations 95% CI 290-1268 (Genin et al., 2004). A more conservative analysis identifying

homozygous discordant SNPs (eliminating inference of haplotypes by phasing) still limited the

Figure 1. Kindreds with hypertension and primary aldosteronism (PA) with CACNA1HM1549V mutation at conserved position of S6 domain. (A) Pedigrees of

kindreds with CACNA1HM1549V mutation are shown. Studied subjects with early-onset hypertension are shown as black filled symbols, and subjects with

early-onset hypertension by family history (K333) or low renin with normal blood pressure (K1393) are shown as grey filled symbols. Genotypes are

indicated below each symbol (+/+ denotes wild type sequence; +/M denotes heterozygosity for CACNA1HM1549V variant). Corresponding Sanger

sequencing results for selected subjects are depicted to the right. (B) Transmembrane structure of CaV3.2 (encoded by CACNA1H), the pore-forming

subunit of a voltage-gated Ca2+ channel, is shown. These channels have four internal homologous repeats (I–IV), each with six transmembrane segments

(S1–S6) and a membrane-associated loop between the pore-forming S5 and S6 segments. The p.Met1549Val mutation is located in S6 of repeat III. (C)

Conservation of CACNA1HM1549 in CACNA1H orthologs and paralogs. The amino acid sequences of the S6 segment of domain III of CACNA1H, orthologs

and paralogs are shown. The S6 segment, including Met1549, is virtually completely conserved (highlighted in yellow) among orthologs and all paralogs

that are activated by small changes in membrane potential (l, low voltage-activated) but not those activated by large changes (h, high voltage-activated).

M1549 is part of the Met-Phe-Val sequence that is implicated in rapid channel inactivation (Marksteiner et al., 2001).

DOI: 10.7554/eLife.06315.003

The following source data and figure supplements are available for figure 1:

Source data 1. Source data corresponding to Figure 1.

DOI: 10.7554/eLife.06315.004

Figure supplement 1. Cohort population structure by principal component analysis (PCA).

DOI: 10.7554/eLife.06315.005
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shared haplotype to less than 127.1 kb, consistent with the results of phasing using BEAGLE.

These findings indicate that the CACNA1HM1549V mutation in these three kindreds has not been

inherited from a recent common ancestor, and has either arisen independently or has been

inherited from an extremely remote common ancestor. The latter possibility is extremely unlikely

given the absence of this mutation in more than 129,000 alleles studied to date.

The probability of finding any recurrent protein-altering de novo mutation among 40 kindreds

is ∼4.0 × 10−6 (see ‘Materials and methods’). Even with a conservative estimate of the allele frequency of

CACNA1HM1549V of 0.00001 in the general population (‘conservative’ because it has never been seen

among >129,000 alleles in subjects not selected for early PA), the probability of finding three additional

instances of this mutation in 38 unrelated subjects is ∼8.4 × 10−12. Combined, the probability of finding

these five instances of the identical variant by chance is conservatively estimated to be 3.4 × 10−17,

providing extremely strong statistical support for the role of this mutation in PA.

CACNA1H is expressed in human adrenal glomerulosa
If the CACNA1HM1549V mutation causes early-onset PA, CACNA1H (CaV3.2) should be expressed in

human adrenal glomerulosa. CACNA1H transcripts have previously been reported in human kidney,

liver, heart and brain (Cribbs et al., 1998), and our prior analysis of gene expression of human adrenal

cortex showed that CACNA1H was the second most highly expressed calcium channel alpha subunit,

after CACNA1D (Scholl et al., 2013). We performed immunohistochemistry with two different

antibodies specific for the encoded channel protein (CaV3.2), demonstrating strong staining of

human adrenal glomerulosa; this staining was abolished after preincubation with immunogenic

peptide (Figure 3). These results are consistent with prior in situ hybridization and electrophysiological

studies of rodent and bovine glomerulosa (Schrier et al., 2001;Hu et al., 2012) as well as a recent study

of human adrenal gland (Felizola et al., 2014).

Clinical features of subjects with CACNA1HM1549V variant
The clinical features of the index cases harboring the CACNA1HM1549V variant were uniform.

All presented with hypertension by age 10 and had persistent inappropriate elevation of serum

aldosterone with suppressed PRA and high aldosterone:PRA ratio, indicative of autonomous adrenal

aldosterone production (Table 1). Adrenal imaging by computed tomography, magnetic resonance or

ultrasound showed no evidence of mass or hyperplasia at the time of presentation. There were no

other recurrent or distinctive features of the index cases, specifically no history of seizures, neurologic

or neuromuscular disorders as found in patients with CACNA1D mutations (Scholl et al., 2013).

Additional details are presented in Appendix 1.

By direct Sanger sequencing, we identified five additional CACNA1HM1549V mutation carriers among

family members, including four parents and one uncle of an index case (Figure 1). Of these five, three

were diagnosed with early severe hypertension while two were not, and in fact were normotensive as

adults (Appendix 1 and Supplementary file 1I). For example, subject 1390-2 was diagnosed with severe

hypertension and PA at age 17; her hypertension was difficult to control, leading to unilateral

adrenalectomy at age 29. Her hypertension nonetheless recurred, requiring reinstitution of treatment.

Table 1. Clinical features of index cases with CACNA1HM1549V

Subject ID Gender Age dx BP (%ile)

Aldo

(ng/dl)

PRA

(ng/ml/hr)

ARR (ng/dl:

ng/ml/hr)

1347-1 M 3 yrs 160/105 (>99th) 20 <0.1 >200

1390-1 F 7 yrs 150/90 (>99th) 66 0.2 330

1368-1 M 8 yrs 140/90 (>99th) 20 <0.2 >100

333-2 M 9 yrs 192/144 (>99th) 40 <0.7 >57

1393-1 M 2 mos 170/110 (>99th) 87 <0.6 >145

M, male; F, female; age dx, age at diagnosis of hypertension; yrs, years; mos, months; BP, blood pressure; (%ile),

percentile adjusted for age and gender; Aldo, serum aldosterone; PRA, plasma renin activity; ARR, aldosterone:renin

ratio, values >20 with aldosterone level >15 are considered indicative of primary aldosteronism (PA).

DOI: 10.7554/eLife.06315.006
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Interestingly, the histology of her adrenal gland showed striking microscopic hyperplasia. While the

normal adrenal glomerulosa comprises only a few cell layers and is about 70 μm in depth, the

glomerulosa of subject 1390-2 was ∼30 cell layers and ∼300 μm in depth (Figure 4A–C). CACNA1H

was expressed in the hyperplastic glomerulosa layer (Figure 4, Appendix 1). In this kindred, the

CACNA1HM1549V variant arose concordantly and segregated precisely with PA and early hypertension

(Table 2). Two mutation carriers (1368-2 and 1393-3) were normotensive as adults and had not

been diagnosed as hypertensive in childhood; in subject 1393-3, PRA was at the lower limit of

normal with normal aldosterone level, while PRA and aldosterone levels were normal in 1368-2

(Supplementary file 1I).

Specificity of CACNA1HM1549V variant for early-onset PA
To explore the specificity of this mutation for early-onset PA, we performed targeted Sanger sequencing

for the CACNA1HM1549V variant in germline DNA of 1632 additional unrelated subjects, comprising 324

subjects with PA diagnosed after age 10 years, 96 with hypertension and bilateral adrenal hyperplasia,

and 1212 referred for potential genetic causes of hypertension without evidence of PA. We also

sequenced tumor DNA of 90 APAs, including 40 that did not have mutations in previously implicated

genes (KCNJ5, CACNA1D, ATP1A1, ATP2B3, and CTNNB1 [Choi et al., 2011; Azizan et al., 2013;

Beuschlein et al., 2013; Scholl et al., 2013]). No additional CACNA1HM1549V mutations were identified,

demonstrating striking specificity for early-onset PA.

CACNA1HM1549 lies in a conserved MFV motif
Members of the CaV3 family are activated by small depolarizing changes in the membrane potential

(activation threshold ∼ −60 mV) and display very fast voltage-dependent inactivation (Perez-Reyes,

2003). Methionine at the position corresponding to CACNA1HM1549 is conserved in the S6 helix of repeat

three in all identified orthologs, including invertebrates. In addition, methionine occurs at the paralogous

position in other calcium channels activated by small depolarizing potential changes (Figure 1C).

Prior studies of CaV3.1 (CACNA1G) have shown that methionine 1549 lies in a methionine-

phenylalanine-valine (MFV) tripeptide that regulates channel inactivation (Hering et al., 1998;

Marksteiner et al., 2001). Mutation of the homologous methionine in CaV3.1 to isoleucine or

alanine results in delayed channel inactivation (Marksteiner et al., 2001), and related calcium

channels with isoleucine at the homologous position inactivate more slowly than those with

methionine (Hering et al., 1997) (Figure 1C).

Figure 2. Shared haplotypes in subjects with inherited CACNA1HM1549V variant. Haplotypes of three affected

individuals from kindreds without proven de novo occurrence of CACNA1HM1549V variant were phased using BEAGLE

(‘Materials and methods’) (Browning and Browning, 2007). This analysis identified a very small maximum interval

shared among all three individuals (∼53.6 kb, green box) flanked by rs1075789 and rs3760122. If only homozygous

discordant calls (*) were considered in the absence of phasing, the maximum interval shared by all three subjects

would be 127.1 kb and the longest pairwise shared haplotype would be 200.0 kb between 1393-1 and 333-1.

DOI: 10.7554/eLife.06315.007
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CACNA1HM1549V causes loss of normal inactivation
To assess the biophysical properties of CACNA1HM1549V, we heterologously expressed either

CACNA1HWT or CACNA1HM1549V in HEK293T cells and performed whole-cell patch clamp recordings

(Figure 5A). Upon depolarizing voltage steps from −90 mV, CACNA1HWT showed fast activation of

calcium currents followed by rapid inactivation, consistent with prior studies (Cribbs et al., 1998).

In contrast, CACNA1HM1549V exhibited marginally slower activation followed by a dramatically slowed

inactivation. While CACNA1HWT is virtually fully inactivated by 400 ms, CACNA1HM1549V shows strong

tail currents after returning to the holding potential of −90 mV (Figure 5A), demonstrating loss of

normal inactivation, an effect still evident after sustained depolarization for 5 s (Figure 5B).

We fitted mono-exponential equations to the decay phase of the calcium current between −50 mV

and +30 mV. The determined time constants represent the mean time at which the current has

decreased to 1/e of its initial amplitude; the results demonstrate ∼10-fold slower inactivation of

CACNA1HM1549V compared to CACNA1HWT (p < 0.001 at all voltages studied, Figure 5C). In contrast,

Figure 3. Immunohistochemistry of CaV3.2 in normal human adrenal gland. Sections of normal human adrenal are

shown. C denotes adrenal capsule; G, glomerulosa; F, fasciculata. (A) Normal adrenal gland stained with

hematoxylin and an antibody to CaV3.2 (Alomone). (B) Higher power image of adrenal in panel (A). (C, D) Absence of

staining after preincubation of the antibody with the antigenic peptide, demonstrating specificity. (E) A second

normal human adrenal gland stained for CACNA1H as in (A, B). (F) Gland from (A–D) stained with a second

α-CACNA1H antibody (Santa Cruz). Scale bars, 100 μm (A, C); 50 μm (B, D, E, F). The results demonstrate expression

of CaV3.2 in the normal zona glomerulosa, which is only several cells in depth.

DOI: 10.7554/eLife.06315.008
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activation and recovery from inactivation were only marginally slower in mutant channels (Figure 5D,

Figure 5—figure supplement 1).

CACNA1HM1549V leads to a shift of activation to less depolarizing
potentials
We also observed a significant shift of activation to less depolarizing potentials (Figure 6). CACNA1HWT

showed half-maximal activation (V1/2 ) at −38.9 ± 1.1 mV (N = 11); in contrast, CACNA1HM1549V showed

V1/2 of −44.2 ± 1.1 mV (N = 11, p = 0.003), resulting in a lower threshold for activation and increase in

size of the ‘window current’, the area under the intersection of activation and inactivation curves

where a fraction of channels are constitutively open. There was no significant effect on single channel

conductance (Figure 6—figure supplement 1).

Figure 4. Glomerulosa hyperplasia in adrenal gland of subject 1390-2 with CACNA1HM1549V mutation. C denotes

adrenal capsule; G, glomerulosa; F, fasciculata; R, reticularis; M, medulla. (A) Low power image stained with

hematoxylin and eosin. Scale bar 1000 μm. (B, C) Higher power images of adrenal from panel (A), scale bars 400 μm
(B) or 100 μm (C). The mutant adrenal shows marked zona glomerulosa hyperplasia, with micronodular invasion of

the capsule (denoted by *). (D) Same adrenal gland stained with hematoxylin and antibody to CaV3.2 (Santa Cruz),

demonstrating specific staining of zona glomerulosa. Scale bar, 400 μm. (E, F), higher power images stained with

second antibody to CaV3.2 (Alomone). Scale bars 250 μm (E) or 100 μm (F). CaV3.2 is expressed in the hyperplastic

zona glomerulosa.

DOI: 10.7554/eLife.06315.009
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Collectively, the changes in inactivation and voltage-dependence of activation cause Ca2+ influx at

membrane potentials close to the resting potential and result in channels that remain open longer,

allowing increased Ca2+ entry.

Discussion
These findings define a previously unrecognized form of PA resulting from a recurrent germline gain

of function mutation in the Ca2+ channel encoded by CACNA1H. The extremely strong statistical

evidence implicating this mutation, its clear gain of function effect, and the known role of Ca2+

signaling on aldosterone production and cell proliferation (Spät and Hunyady, 2004) all strongly

support this conclusion. The effects of this mutation phenocopy the adrenal effects of PA-causing

mutations in KCNJ5 (Choi et al., 2011) and CACNA1D (Scholl et al., 2013), demonstrating a shared

final common pathway by which PA results from increased Ca2+ entry via voltage-gated channels.

These results allow a simple genetic test for this specific cause of severe hypertension and suggest

that inhibition of mutant CACNA1H activity would ameliorate hypertension in patients with this

mutation. While the CACNA1HM1549V mutation explains a significant fraction of the early PA cases, the

causes of the remaining cases in our cohort are still unknown.

There is striking genotype–phenotype correlation among patients with germline and somatic

mutations in KCNJ5 and CACNA1H. Several recurrent germline mutations in KCNJ5 (e.g.,

p.Gly151Arg and p.Thr158Ala) support robust cell proliferation leading to massive adrenal

hyperplasia identifiable on CT scan, leading to adrenalectomy (Choi et al., 2011; Scholl et al.,

2012). In contrast, another recurrent mutation in KCNJ5 (p.Gly151Glu) shows no or minimal

hyperplasia discernable by adrenal imaging (Mulatero et al., 2012; Scholl et al., 2012). While

the former mutations are also found as somatic mutations in about 40% of APAs (Choi et al., 2011;

Mulatero et al., 2012), the latter have not been found in more than 900 APAs (Scholl and Lifton, 2013).

This phenotypic difference is likely accounted for by different effects on Na+ conductance- the germline

mutations that are not associated with APAs or hyperplasia cause markedly greater Na+ conductance,

resulting in very high cell lethality, preventing sustained increases in cell mass (Mulatero et al., 2012;

Scholl et al., 2012). Similarly, adrenal glands with CACNA1HM1549V show little or no hyperplasia by CT

scan and neither this mutation nor other activating mutations in CACNA1H have been seen in APAs. We

have not observed high cell lethality in HEK293T cells expressing CACNA1HM1549V. Germline mutations

that cause massive hyperplasia and somatic mutations that cause APA formation likely require an

optimal Ca2+ signal, one that is high enough to support proliferation but not so high as to cause cell

lethality (Berridge et al., 2000).

Table 2. Laboratory values of carriers and non-carriers of CACNA1HM1549V in kindred 1390

Subject

ID Gender

Age

(yrs)

K+

(mmol/l)

Aldo

(ng/dl)

PRA

(ng/ml/hr)

ARR

(Aldo/PRA)

Direct renin

(μIU/ml)

Aldo/direct

renin

Carriers

1390-1 F 15 3.7 37 0.42 88.1 NA NA

1390-2 F 29 3.5 22 NA NA 3 7.3

Non-Carriers

1390-4 M 17 4.3 2 1.65 1.2 NA NA

1390-8 M 37 3.8 <1 2.25 <0.4 NA NA

1390-5 F 62 4.1 16 18.92 0.8 NA NA

1390-6 F 51 4.0 4 1.87 2.1 NA NA

1390-7 F 46 4.3 3 1.67 1.8 NA NA

M, male; F, female; Age (yrs), Age in years when sample was obtained; K+, serum potassium (reference 3.5–5.5

mmol/l); Aldo, serum aldosterone; PRA; direct renin <5 is indicative of volume-mediated hypertension; ARR,

aldosterone:renin ratio, values >20 (using PRA) or values of aldo/direct renin >2.4 with aldosterone level greater than

15 are considered indicative of PA. Blood samples were drawn on the same day, and values were determined in the

same laboratory (except for 1390-2, in whom values are pre-adrenalectomy at age 29). See Figure 1 for relationships.

1390-6 and −7 are not included in Figure 1, and are sisters of 1390-5.

DOI: 10.7554/eLife.06315.010
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While germline mutations in KCNJ5 and CACNA1D were discovered following the initial

identification of their somatic mutations in APAs (Choi et al., 2011; Scholl et al., 2013), the discovery of

the recurrent CACNA1Hmutation relied entirely on brute force sequencing of patients with early severe

aldosteronism and hypertension. The occurrence of de novo mutations, the reduced penetrance in

adults with the absence of large multiplex families, as well as the absence of distinctive phenotypes that

distinguish these patients from others with early hypertension and aldosteronism, all suggest reasons

that CACNA1H mutations were not previously linked to PA.

The reduced penetrance in adults in particular is interesting—two mutation-carrier parents were

normotensive as adults, without clear evidence of PA. Incomplete penetrance among some carriers of

Figure 5. CACNA1HM1549V impairs channel inactivation. Whole-cell patch clamp recordings were performed in

HEK293T cells transfected with CACNA1HWT or CACNA1HM1549V. (A) Cells were held at −90 mV, and voltage steps

between −90 and +50 mV were applied to elicit calcium currents, followed by a step to −90 mV to evoke tail

currents. Representative recordings show rapid activation and inactivation of CACNA1HWT currents and delayed

inactivation of CACNA1HM1549V. Tail currents are exclusively present in CACNA1HM1549V and suggest the presence of

non-inactivated mutant channels at the end of the depolarizing pulse. (B) Tail currents are still present after a 5-s

pulse to −20 mV. The fraction of non-inactivated channels after 5 s was determined by dividing the peak amplitude

at −20 mV before and after 5 s long pulses to voltages between −90 and −20 mV in 5 mV increments

(CACNA1HM1549V: 6.7 ± 1%, N = 12; CACNA1HWT: 2.4 ± 0.5%, N = 9; p = 0.004, protocol not shown in figure).

(C) Exponential fits of the current decay between −50 and +30 mV provide inactivation time constants. Data from

CACNA1HM1549V are shown in blue circles, CACNA1HWT data are shown in red squares. The mutant channel shows

almost 10-fold slower inactivation than wild-type (N = 9 for CACNA1HWT, N = 7–14 for CACNA1HM1549V, p < 0.001

across all voltages studied, Mann–Whitney rank sum test). (D) In contrast, activation time constants at different

voltages are only slightly slower in CACNA1HM1549V compared to WT (cf. ‘Materials and methods’ for details). Source

files are available in Figure 5—source data 1.

DOI: 10.7554/eLife.06315.011

The following source data and figure supplements are available for figure 5:

Source data 1. Source data corresponding to Figure 5.

DOI: 10.7554/eLife.06315.012

Figure supplement 1. Recovery from inactivation is slightly slower in CACNA1HM1549V.

DOI: 10.7554/eLife.06315.013
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mutations that cause aldosteronism (Stowasser

et al., 1995; Mulatero et al., 2002; Scholl et al.,

2013) has been previously described. The explan-

ations for these effects remain unclear, however

age-dependent activity of the renin-angiotensin

system and the ability of older individuals to

modulate dietary salt intake in response to

physiologic demand are potential contributors.

This is well described in the case of heterozygous

loss of function mutation in the receptor for

aldosterone (the mineralocorticoid receptor, MR).

These patients have life-threatening salt-wasting

and volume depletion in the first years of life due

to low signaling through MR, but are asymptom-

atic as adults. Adult subjects show increased

dietary salt intake and increase MR signaling

by induction of the renin-angiotensin system,

thereby markedly increasing aldosterone levels

(Geller et al., 1998). Other possible mechanisms

for incomplete penetrance include genetic modi-

fiers either in cis or in trans, including the

possibility of somatic mosaicism resulting in

absence of the gain of function mutation the

adrenal gland (Youssoufian and Pyeritz,

2002). While such mosaicism cannot be ex-

cluded, Sanger sequence traces provided no

suggestion of mosaicism in circulating white

blood cell or saliva DNA (Figure 1A).

CACNA1HM1549V shows constitutive activity at

membrane potentials close to the resting potential,

allowing channels to be activated despite

suppression of the renin-angiotensin system

and absence of hyperkalemia. CACNA1HM1549V

channels also show strikingly delayed inactiva-

tion, a finding similar to mechanisms in several

other channelopathies (Cannon et al., 1991;

Lerche et al., 1993; Scholl et al., 2013).

In glomerulosa, delayed inactivation is inferred

to increase the period of membrane potential

depolarizations. Interestingly, recent studies

in mouse have implicated CACNA1H activity

in regular glomerulosa membrane potential

oscillations that may amplify small changes in

membrane potential to produce significant Ca2+

signals (Hu et al., 2012). Thus this regular activation of CACNA1H, together with a shift of activation

to less depolarized potentials and prolonged activity, provides a mechanism for increased Ca2+

entry, leading to aldosteronism. While a common variant in CACNA1H has been suggested to be

associated with blood pressure in a small genome-wide association study of African American

individuals (Adeyemo et al., 2009), this result did not pass criteria for genome-wide significance,

was only found after exclusion of hypertensive individuals, and was not replicated in larger studies

(International Consortium for Blood Pressure Genome-Wide Association Studies et al., 2011;

Kidambi et al., 2012).

The apparent limitation of the phenotype associated with CACNA1HM1549V to PA with

hypertension despite the expression of CACNA1H in other organs including heart and brain

(Cribbs et al., 1998) is notable, and underscores the challenges in predicting human phenotypes

from knowledge of underlying mutations. No mutation carrier had a history of seizures or cardiac

Figure 6. CACNA1HM1549V shifts activation to more

hyperpolarized potentials. (A) Current-voltage plots and

(B) activation curves show a shift of V1/2 for activation of

the mutant channel to less depolarizing potentials. The

voltage dependence of inactivation is shown as open

circles or squares. For CACNA1HM1549V, the area under

the intersection of activation and inactivation curves

(where a fraction of channels show continuous activity) is

larger and shifted to more hyperpolarized potentials

compared to CACNA1HWT, allowing for increased

constitutive Ca2+ influx at potentials close to the resting

potential of zona glomerulosa cells (Hu et al., 2012).

Source files are available in Figure 6—source data 1.

DOI: 10.7554/eLife.06315.014

The following source data and figure supplements are

available for figure 6:

Source data 1. Source data corresponding to Figure 6.

DOI: 10.7554/eLife.06315.015

Figure supplement 1. CACNA1HM1549V and

CACNA1HWT whole-cell current densities and

non-stationary noise analysis.

DOI: 10.7554/eLife.06315.016
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arrhythmia. While some prior studies have suggested a role of rare gain of function mutations

in CACNA1H in epilepsy (Chen et al., 2003; Liang et al., 2006; Heron et al., 2007), these

studies have not approached genome-wide levels of significance, do not appear to confer high

risk, and have not been uniformly replicated (Heron et al., 2004; Chioza et al., 2006; Liang

et al., 2006).

Our findings are consistent with evidence supporting a normal role for CACNA1H in the regulation

of human aldosterone biosynthesis (Felizola et al., 2014). Because CACNA1H is activated by small

depolarizing changes in glomerulosa membrane potential, it is likely activated in response to small

day-to-day changes in serum K+ concentration and angiotensin II levels that require fine adjustments

in aldosterone production to maintain volume and electrolyte balance. In contrast, CACNA1D, which

is the most highly expressed calcium channel in adrenal cortex, and which shows larger single channel

conductance than CACNA1H (Michels et al., 2002; Bock et al., 2011), is only activated by large

depolarizations. Activation of this channel likely contributes to the high levels of aldosterone

produced in response to marked volume depletion or hyperkalemia. We suggest that CACNA1H and

CACNA1D act in series in the regulation of aldosterone, with CACNA1H being activated in response

to small, frequent physiologic perturbations and CACNA1D in response to more infrequent large

physiologic challenges.

These findings also raise the question whether inhibition of wild type CACNA1H would lower

blood pressure or aldosterone production. In the general population, loss-of-function variants in

CACNA1H are very rare (cumulative frequency of splice site, frameshift and nonsense variants in the

ExAC database of 0.06%, resulting in expected compound heterozygosity or homozygosity in about

1 in 2.6 million subjects), making such studies challenging. It seems plausible that loss of CACNA1H

could be compensated by activation of the renin-angiotensin system, leading to greater glomerulosa

cell depolarization with consequent activation of CACNA1D, maintaining normal aldosterone

production and blood pressure. Consistent with this suggestion, blood pressure was reportedly

unchanged in a CACNA1H knockout mouse model, although aldosterone levels were not reported

(Chiang et al., 2009). Similarly, selective inhibitors of CACNA1H inhibit aldosterone production in

vitro (Rossier et al., 1998; Perez-Reyes et al., 2009), but do not apparently reduce aldosterone

levels or blood pressure in vivo (Schmitt et al., 1992; Ragueneau et al., 2001). Whether additional

non-dihydropyridine compounds will prove to be more effective in lowering aldosterone levels or

blood pressure will be interesting to assess.

Materials and methods

Subjects
PA was diagnosed based on elevated ARR (>20 ng/dl:ng/ml/hr), typically with aldosterone >15 ng/dl,

or marginally elevated values in the presence of unexplained hypokalemia (Funder et al., 2008).

Venous blood or saliva samples were obtained from subjects with unexplained early-onset PA and

family members. Research protocols were approved by the local institutional review board (IRB), and

informed consent was obtained from all research participants.

DNA preparation, and exome sequencing
DNA was prepared from venous blood or saliva samples using standard procedures. Exome capture

was performed using the 2.1M NimbleGen Exome reagent (Roche NimbleGen, Madison, WI), and 75

base paired end sequencing on the Illumina (San Diego, CA) platform was performed as previously

described (Lemaire et al., 2013). Coverage statistics are provided in Supplementary file 1B.

Sanger sequencing of genomic DNA and genotyping of parent-offspring
trios
Direct bidirectional Sanger sequencing of CACNA1HP1523-R1584 from genomic DNA of indicated

subjects was performed following PCR amplification using primers

CACNA1H_25F (5′-GACCCACCGCCTCTGTG-3′) and CACNA1H_25R (5′-AGCGCCT-

TACTCCTGCG-3′).
Parent-offspring trios were genotyped as previously described, except for locus D7S820 in kindred

1390 (primers [5′-ATGTTGGTCAGGCTGACTATG-3′] and [5′-GATTCCACATTTATCCTCATTGAC-3′])
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(Scholl et al., 2013). Alleles without known frequencies in the population were omitted from

the analysis.

Immunohistochemistry
Normal human adrenal tissue was obtained from the Yale Pathology archive, and adrenal tissue

from subject 1390-2 from Pathology Services of Beaufort/Charleston (South Carolina, USA).

Immunohistochemistry was performed as previously described (Scholl et al., 2013). Primary

antibodies were α-CaV3.2 (#ACC-025, Alomone, Jerusalem, Israel) or T-type Ca++ CP α1H
(SC-25691, Santa Cruz Biotechnology, Santa Cruz, CA), both at dilutions of 1:100; secondary

antibody was donkey α-rabbit (#035-152, 1:500, Jackson, Bar Harbor, ME). For the Alomone

antibody, preincubation with the antigenic peptide (1:1, wt/wt in 10% FBS) was performed for

1 hr at RT. Both antibodies were tested on two independent glands. H&E staining was

performed at Yale Research Histology using routine procedures.

Molecular cloning
Myc-DDK-tagged CACNA1H in pCMV6-Entry was obtained from Origene (Rockville, MD)

(RC212772, NM_021098.2). Site-directed mutagenesis (QuikChange, Agilent Technologies,

Santa Clara, CA) was performed to introduce the p.Met1549Val mutation according to

the manufacturer’s instruction. Each construct was validated by sequencing of the entire

coding region.

Transient transfection and electrophysiological recordings
Culturing of HEK293T cells was performed as described (Scholl et al., 2013). Cells were

transfected with 3 μg of CACNA1HWT or CACNA1HM1549V expression plasmids. For each construct,

two clones were functionally tested. Whole cell patch clamp recordings were performed on

a HEKA EPC10 amplifier (HEKA Elektronik, Ludwigshafen, Germany) as described previously

(Scholl et al., 2013). The extracellular solution contained: 5 mM CaCl2, 125 mM TEA-Cl, 10 mM

HEPES, 15 mM Mannitol, pH 7.4. Pipette solution contained: 100 mM CsCl, 5 mM TEA-Cl, 3.6 mM

PCr-Na2, 10 mM EGTA, 5 mM Mg-ATP, 0.2 mM Na-GTP, 10 mM HEPES, pH 7.4 (titration

with CsOH).

Voltage dependences of activation were determined from the peak current–voltage relation

and fit by a Boltzmann function as described (Marcantoni et al., 2010; Scholl et al., 2013). The

fraction of non-inactivated channels was determined by dividing the peak amplitude at −20 mV

before and after 5 s long pulses to voltages between −90 and −20 mV. Time courses of activation

or inactivation were analyzed by fitting a mono-exponential function (Scholl et al., 2013). The

recovery from inactivation was measured using envelope protocols consisting of an inactivation of

channels during a 5 s pulse to −20 mV followed by holding the membrane potential at −90 for

increasing durations (Coulter et al., 1989). Afterwards, peak currents at −20 mV were measured

and divided by the previous peak current. A plot of these ratios vs the duration of the pulse to −90
mV was fit with a mono-exponential function to obtain time constants for the recovery from

inactivation.

Non-stationary noise analysis was performed as described (Hebeisen and Fahlke, 2005)

using a voltage protocol that activates channels at −20 mV followed by the analysis of the

decay of currents and variance at −90 mV. The initial variance at the holding potential of

−90 mV before activation was regarded as background variance and subtracted from

the recordings. The Lorentzian noise produced by channel opening and closing depends on

the unitary current amplitude (i), the number of channels (N), and the absolute open

probability (P):

σ2 =  N · i2 ·p · ð1−pÞ: (1)

Since the macroscopic current amplitude is given by

I=N ·p  · i; (2)

the variance-current relationship results in a quadratic distribution:
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σ2 =   i · ÆIæ−

 
ÆIæ2

N

!
: (3)

The single channel amplitude (i) was derived from the initial slope of a plot of the

variance against the mean isochronal current results. Due to a low open probability (p < 0.5) at

5 mM of external Ca2+, the recorded data points only described a small part of the

usual parabola and did not allow for determination of the number of channels and open

probabilities.

Data were analyzed in FitMaster (HEKA Elektronik), SigmaPlot (Jandel Scientific, San Rafael, CA)

and Python. Statistical comparisons were performed using Student’s t-test or Mann–Whitney

rank sum test.

Orthologs and paralogs
Proteins encoded by orthologs or close paralogs of CACNA1H in vertebrate and

invertebrate species were identified by a BLAST search. GenBank accessions included

NP_066921.2 (Homo sapiens), O88427.3 (Mus musculus), XP_414830.4 (Gallus gallus),

XP_002932520.2 (Silurana tropicalis), XP_002122425.1 (Ciona intestinalis) and NP_001024496.1

(Caenorhabditis elegans). Human α1 subunit paralogs were as previously described (Scholl

et al., 2013).

Principal component analysis, analysis of relatedness, shared haplotypes
and mutation age
Principal component analysis was performed as previously described (Lemaire et al., 2013).

For analysis of close relatedness, genomic DNA from subjects 333-1, 1347-1, 1368-1, 1390-1,

and 1393-1 was genotyped on Illumina Human 1M-Quad beadchips according to the

manufacturer’s instructions. Data were analyzed using a combination of GenomeStudio

(Illumina) and PLINK v1.07 softwares (Purcell et al., 2007). Mean call rate was 95.7%. Kinship

coefficients were calculated by using the robust algorithm in KING 1.4 (Manichaikul et al.,

2010). For 1393-1, 1368-1 and 333-1, PLINK format was converted to BEAGLE format using

Mega2 (Mukhopadhyay et al., 2005). Haplotypes flanking the CACNA1HM1549V mutation were

phased by observed transmission in kindred 1393 and by maximum likelihood in kindreds 1368

and 333 using BEAGLE v.3.3.2 (Browning and Browning, 2007) and a reference panel (phase 1

1000Genomes project). Only SNPs called in at least two samples were used for imputation, and

only called SNPs were used for determination of the shared interval. Four additional

heterozygous variants in close proximity to CACNA1HM1549V were identified from the 1393-1

exome. For 1368-1 and 333-1, the inferred haplotype producing the largest shared interval was

chosen for further analysis. Mutation age was determined from haplotypes including flanking 41

markers using ESTIAGE (Genin et al., 2004). Recombination fractions were calculated from

marker distances and average recombination rate across the interval (2.9 cM/Mb, deCODE).

Shared allele frequencies were from EUR population (1000 Genomes project), and mutation rate

was set to 2 × 10−8.

Statistical analysis
For statistical analysis, a de novo mutation rate of 1.4 × 10−8 was assumed. The binomial

probability of observing two or more de novo mutations at a specified position in a set of 41

cases (including one affected parent) was calculated and corrected for the target size of the

human exome (24.75 Mb). The likelihood of observing three additional independent mutations

at the identical position in 38 patients was calculated as a binomial probability from the assumed

allele frequency.

The mutation burden per gene in the cohort of patients with PA was compared to that in

a control cohort comprising 724 unaffected parents of patients with congenital heart disease

sequenced to similar depth of coverage on the same exome platform (Zaidi et al., 2013) using

Fisher’s exact test.
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MV, Geller DS, Mane S, Hellman P, Westin G, Åkerström G, Wang W, Carling T, Lifton RP. 2011. K+ channel
mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331:768–772.
doi: 10.1126/science.1198785.

Conn JW. 1955. Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome.
The Journal of Laboratory and Clinical Medicine 45:3–17.

Scholl et al. eLife 2015;4:e06315. DOI: 10.7554/eLife.06315 16 of 22

Research article Genes and chromosomes | Human biology and medicine

http://www.ncbi.nlm.nih.gov/clinvar/?term=SCV000218508
http://www.ncbi.nlm.nih.gov/clinvar/?term=SCV000218508
http://www.ncbi.nlm.nih.gov/clinvar/?term=SCV000218508
http://www.ncbi.nlm.nih.gov/clinvar/docs/submit/#where_to_submit
http://www.ncbi.nlm.nih.gov/clinvar/docs/submit/#where_to_submit
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://exac.broadinstitute.org/terms
http://exac.broadinstitute.org/terms
http://dx.doi.org/10.1371/journal.pgen.1000564
http://dx.doi.org/10.1038/ng.2716
http://dx.doi.org/10.1038/35036035
http://dx.doi.org/10.1038/ng.2550
http://dx.doi.org/10.1074/jbc.M111.269951
http://dx.doi.org/10.1086/521987
http://dx.doi.org/10.1016/0896-6273(91)90064-7
http://dx.doi.org/10.1002/ana.10607
http://dx.doi.org/10.1161/CIRCRESAHA.108.184051
http://dx.doi.org/10.1016/j.eplepsyres.2006.01.009
http://dx.doi.org/10.1126/science.1198785
http://dx.doi.org/10.7554/eLife.06315


Coulter DA, Huguenard JR, Prince DA. 1989. Calcium currents in rat thalamocortical relay neurones: kinetic
properties of the transient, low-threshold current. The Journal of Physiology 414:587–604. doi: 10.1113/jphysiol.
1989.sp017705.

Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E.
1998. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene
family. Circulation Research 83:103–109. doi: 10.1161/01.RES.83.1.103.

Exome Aggregation Consortium. Cambridge, MA. URL: http://exac.broadinstitute.org [accessed Dec 2014].
Felizola SJ, Maekawa T, Nakamura Y, Satoh F, Ono Y, Kikuchi K, Aritomi S, Ikeda K, Yoshimura M, Tojo K, Sasano
H. 2014. Voltage-gated calcium channels in the human adrenal and primary aldosteronism. The Journal of Steroid
Biochemistry and Molecular Biology 144:410–416. doi: 10.1016/j.jsbmb.2014.08.012.

Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M, Young WF Jr, Montori
VMEndocrine Society. 2008. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an
endocrine society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism 93:3266–3281.
doi: 10.1210/jc.2008-0104.

Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, Lifton RP. 1998. Mutations in the
mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nature Genetics
19:279–281. doi: 10.1038/966.

Genin E, Tullio-Pelet A, Begeot F, Lyonnet S, Abel L. 2004. Estimating the age of rare disease mutations: the
example of Triple-A syndrome. Journal of Medical Genetics 41:445–449. doi: 10.1136/jmg.2003.017962.

Hebeisen S, Fahlke C. 2005. Carboxy-terminal truncations modify the outer pore vestibule of muscle chloride
channels. Biophysical Journal 89:1710–1720. doi: 10.1529/biophysj.104.056093.

Hering S, Aczel S, Kraus RL, Berjukow S, Striessnig J, Timin EN. 1997. Molecular mechanism of use-dependent
calcium channel block by phenylalkylamines: role of inactivation. Proceedings of the National Academy of
Sciences of USA 94:13323–13328. doi: 10.1073/pnas.94.24.13323.

Hering S, Berjukow S, Aczel S, Timin EN. 1998. Ca2+ channel block and inactivation: common molecular
determinants. Trends in Pharmacological Sciences 19:439–443. doi: 10.1016/S0165-6147(98)01258-9.

Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC,
Zamponi GW. 2007. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H
functional variants. Annals of Neurology 62:560–568. doi: 10.1002/ana.21169.

Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, Scheffer IE. 2004. Genetic variation of
CACNA1H in idiopathic generalized epilepsy. Annals of Neurology 55:595–596. doi: 10.1002/ana.20028.

Hu C, Rusin CG, Tan Z, Guagliardo NA, Barrett PQ. 2012. Zona glomerulosa cells of the mouse adrenal cortex are
intrinsic electrical oscillators. The Journal of Clinical Investigation 122:2046–2053. doi: 10.1172/JCI61996.

International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, Rice
KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider
P, O’Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sõber
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HK, Völker U, Völzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai
G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MV, Denniff M, Zukowska-Szczechowska E, Wagenknecht LE,
Fowkes FG, Charchar FJ, Schwarz PE, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O,
Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, Vineis P,
Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF,
Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han BG, Zhu X, Kooner
JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J,

Scholl et al. eLife 2015;4:e06315. DOI: 10.7554/eLife.06315 17 of 22

Research article Genes and chromosomes | Human biology and medicine

http://dx.doi.org/10.1113/jphysiol.1989.sp017705
http://dx.doi.org/10.1113/jphysiol.1989.sp017705
http://dx.doi.org/10.1161/01.RES.83.1.103
http://exac.broadinstitute.org
http://dx.doi.org/10.1016/j.jsbmb.2014.08.012
http://dx.doi.org/10.1210/jc.2008-0104
http://dx.doi.org/10.1038/966
http://dx.doi.org/10.1136/jmg.2003.017962
http://dx.doi.org/10.1529/biophysj.104.056093
http://dx.doi.org/10.1073/pnas.94.24.13323
http://dx.doi.org/10.1016/S0165-6147(98)01258-9
http://dx.doi.org/10.1002/ana.21169
http://dx.doi.org/10.1002/ana.20028
http://dx.doi.org/10.1172/JCI61996
http://dx.doi.org/10.7554/eLife.06315


Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler D, Loos RJ, Shuldiner AR, Gieger C, Meneton P,
Uitterlinden AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, Strachan DP, Witteman JC, Hartikainen
AL, Beckmann JS, Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Järvelin MR, Psaty BM, Abecasis GR,
Chakravarti A, Elliott P, van Duijn CM, Newton-Cheh C, Levy D, Caulfield MJ, Johnson T. 2011. Genetic variants
in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109. doi: 10.1038/
nature10405.

Kidambi S, Ghosh S, Kotchen JM, Grim CE, Krishnaswami S, Kaldunski ML, Cowley AW Jr, Patel SB, Kotchen TA.
2012. Non-replication study of a genome-wide association study for hypertension and blood pressure in African
Americans. BMC Medical Genetics 13:27. doi: 10.1186/1471-2350-13-27.

Lafferty AR, Torpy DJ, Stowasser M, Taymans SE, Lin JP, Huggard P, Gordon RD, Stratakis CA. 2000. A novel
genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22).
Journal of Medical Genetics 37:831–835. doi: 10.1136/jmg.37.11.831.
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Appendix 1

Case reports

K1347. Subject 1347-1 is a 9-year old male of European ancestry who was diagnosed with

hypertension at age 3 years (blood pressures [BPs] 140–160/90–105 mmHg, >99th percentile).

Evaluation revealed serum aldosterone 12–20 ng/dl, despite completely suppressed plasma

renin activity (PRA) on repeated measures (<0.1 ng/ml/hr); aldosterone:renin ratio (ARR) > 120

to >200 ng/dl:ng/ml/hr. MRI of the abdomen revealed no adrenal or other mass. Further

extensive evaluation for other causes of hypertension was unrevealing. He had normal

echocardiogram, unremarkable serum chemistry including K+ of 3.8 mmol/l (nl 3.3–4.6), normal

renal ultrasound, MR angiogram and computed tomography (CT) angiogram of the renal

vessels, normal urine analysis, thyroid function, 24 hr urinary catecholamines, vanillylmandelic

acid, homovanillic acid, metanephrines, unremarkable evaluation for congenital adrenal

hyperplasia and normal urinary free 18-hydroxy cortisol. The subject was developmentally

delayed (walked at age 14 months, spoke at age >2 years) and received physical and

occupational therapy in early childhood. Neither parent was hypertensive, and there was no

family history of early hypertension, cerebral hemorrhage, stroke or intracranial aneurysm. PRA

remained low on treatment with spironolactone and isradipine, and BP was difficult to control.

On atenolol, amlodipine and amiloride, he continued to have suppressed PRA, and

aldosterone was normal to elevated. His blood pressure is currently well controlled on triple

antihypertensive therapy with eplerenone, amlodipine, and chlorthalidone.

K1390. Subject 1390-1 is a 15-year old African American female. She was born prematurely at

28 weeks gestational age following a pregnancy complicated by maternal pre-eclampsia and

prolonged rupture of membranes (birth weight 1331 g, length 38 cm, head circumference 28

cm, appropriate for gestational age). She developed respiratory distress, bradycardia, mild

pulmonary artery branch stenosis, hyperbilirubinemia and necrotizing enterocolitis that

responded to medical management. Developmental milestones were reported to be normal.

At age 6 years, she was diagnosed with asthma and seasonal allergies. At age 7 years, she

presented with headache, blurry vision and hyperactivity, and was diagnosed with hypertension

(BP 150/90 mmHg, >99th percentile). Evaluation was remarkable for primary aldosteronism with

elevated serum aldosterone (66 ng/dl) and suppressed PRA of 0.2 ng/ml/hr (ARR 330 ng/dl:ng/

ml/hr). No adrenal masses or hypertrophy were observed on CT imaging. Renal ultrasound and

echocardiography were normal. Follow up revealed hypokalemia (serum K+ 3.1 mmol/l), serum

aldosterone of 34 ng/dl and PRA of 0.3 ng/ml/hr (ARR of 113 ng/dl:ng/ml/hr). Her current

medications include hydrochlorothiazide, lisinopril, montelukast and loratadine. Her current

height is 160 cm (38th percentile), and weight is 68.1 kg (89th percentile). Recent BP off

medication was 165/105 mmHg.

The patient’s family history was remarkable for early severe hypertension in her 38-year old

mother (1390-2) who was diagnosed with hypertension (BP 215/115 mmHg) and hypokalemia at

age 17 years. Two pregnancies were complicated by pre-eclampsia, a third resulted in

a miscarriage following complication from appendicitis. Evaluation for secondary hypertension

was consistent with primary aldosteronism. A CT scan at age 29 years showed mild left adrenal

fullness without discrete adrenal mass. Adrenal venous sampling demonstrated aldosterone:

cortisol ratios of 92 ng/dl:13.8 μg/dl = 6.67 ng/μg on the left side, 11 ng/dl:6.9 μg/dl = 1.59 ng/

μg on the right side and 22 ng/dl:9.7 μg/dl = 2.27 ng/μg in the inferior vena cava. Direct renin

was 3 μIU/ml (<5 suggestive of sodium/volume mediated hypertension).

This subject (1390-2) underwent unilateral adrenalectomy at age 29 years to attempt to mitigate

severe hypertension with PA. Pathology demonstrated a 4.8 × 3.5 × 2 cm (normal 5 cm × 2.5 cm)

specimen weighing 8 g (normal 2.8–5.5 g) (Neville and O’Hare, 1982). There was no

macroscopic nodularity. Histology was significant for marked hyperplasia of the adrenal zona

glomerulosa within a ∼0.1 cm cortex with all cell layers and cell types present. While the normal
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adrenal glomerulosa comprises only a few cell layers and is about 70 μm in depth, the

glomerulosa of subject 1390-2 had ∼30 cell layers and was ∼300 μm in depth (Figure 4A–C).

Clusters and trabeculae of glomerulosa cells infiltrated the fibrous capsule of the gland at

multiple foci, with occasional micronodules just over the capsule. Staining with specific

antibodies demonstrated that CACNA1H was expressed in the hypercellular glomerulosa of

the patient (Figure 4D–F). Consistent with her germline mutation, hypertension recurred after

surgery, requiring reinstitution of treatment. Her current medications are hydrochlorothiazide,

lisinopril and metoprolol succinate, and recent BP on medication was 138/87.

The index case’s father (1390-3), brother (1390-4) and maternal grandfather (1390-10) are

normotensive. While the maternal grandmother (1390-5) was diagnosed with adult-onset

hypertension, her aldosterone was normal (16 ng/dl), with non-suppressed PRA (18.92 ng/ml/hr)

(Table 2).

K1368. Subject 1368-1 is a 19-year old male of European ancestry. His birth weight was 3740 g.

Perinatal history was unremarkable. He underwent pyloromyotomy due to pyloric stenosis at

age 5 weeks, and was hospitalized for respiratory distress at age 7 months. At age 8 years, he

was found to be hypertensive, and evaluation at age 9 years revealed BPs of 130–140/80–90

mmHg (>99th percentile systolic; >95th percentile diastolic). Serum aldosterone was 20 ng/dl,

PRA <0.2 ng/ml/hr (ARR >100 ng/dl:ng/ml/hr), and urinary aldosterone 20 μg/24 hr (nl 2–20).

Renal ultrasound and angiogram at age 9 were unremarkable, and no adrenal enlargement was

noted. On treatment with lisinopril and amlodipine, BP was 120–130/60–65 mmHg at age 13

(>95th percentile systolic, >50th percentile diastolic). Serum K+ was 3.6 mmol/l, and total CO2

was 30 mmol/l. Repeat aldosterone on medication was 5 ng/dl, and PRA was 0.1 ng/ml/hr.

Neurologic evaluation revealed attention deficit disorder, but no medication was started.

Height at age 14 was 157.5 cm (10th percentile), and weight was 41 kg (fifth percentile). BP

further improved to 118/74 mmHg at age 14 (>50th percentile); serum K+ was 3.8 mmol/l and

total CO2 25 mmol/l. After diagnosis of a mild mitral valve prolapse, treatment with a beta-

blocker was started, and amlodipine was discontinued.

The patient’s family history was remarkable for a maternal uncle (1368-4) who was diagnosed

with hypertension at age 24 (BP 200/100 by history). He was treated with hydrochlorothiazide.

At age 51 years, on treatment with 12.5 mg hydrochlorothiazide, his BP was 120/80 mmHg, with

aldosterone 11 ng/dl and PRA 1.2 ng/ml/hr (note that treatment with hydrochlorothiazide

increases PRA), with serum K+ 3.8 mmol/l. The patient’s mother was normotensive, with a home

BP of 116/80 mmHg. There was no evidence of primary aldosteronism (aldosterone 8 ng/dl,

PRA 4.73 ng/ml/hr, serum K+ 3.7 mmol/l. The maternal grandfather reportedly had hypokalemia

and hypertension and a remote history of seizures, which had resolved. He died from

hemorrhagic stroke at age 76 years.

K333. Subject 333-2 is a 35-year old male of European ancestry who was diagnosed with

hypertension at age 9 years (BP 192/144 mmHg) with a history of headaches, enuresis, polyuria

and polydipsia. Retrospectively, a BP of 160/80 prior to surgery for unilateral orchiopexy and left

inguinal hernia repair at age 2 years was noted. Serum K+ was 3.7 mmol/l, Cl− 108 mmol/l (nl

95–105), and other serum electrolytes, creatinine and blood urea nitrogen were normal.

Extensive evaluation including ultrasound, CT scan, angiogram and i.v. pyelogram did not

reveal any renal or adrenal abnormalities. ECG and echocardiogram were normal. Aldosterone

levels were 25 and 40 ng/dl, and renin was suppressed at <0.7 ng/ml/hr. A dexamethasone test

(0.5 mg 4 times a day) did not change BP, but aldosterone after 36 hr decreased to 3.2 ng/dl,

and PRA was 0.3 ng/ml/hr. The subject had normal 24-hr urine vanillylmandelic acid, free

cortisol, 5-OH indoleacetic acid and 17-OH progesterone, serum corticosterone, dehydroe-

piandrosterone, deoxycorticosterone, progesterone, 17-OH pregnenolone, ACTH and TSH. At

age 17 years, height was 178 cm (78th percentile), and weight was 75 kg (62th percentile).

Treatment with spironolactone, and later minoxidil, atenolol, hydrochlorothiazide, and lisinopril

was initiated. At age 35 years, height was 185 cm, and weight was 109 kg. BP was 124/65
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mmHg, and serum K+ was 3.7 mmol/l on treatment with atenolol, hydrochlorothiazide, lisinopril,

minoxidil, and potassium chloride.

Family history was significant for early-onset hypertension in the subject’s father (333-1), who

was diagnosed with hypertension at age 13 years, but had been hospitalized at age 5 years for

evaluation of precocious puberty, with recorded BPs of 130–160/90–120 mmHg. He has been

on antihypertensive medication since age 19 years. The paternal grandmother was also

reportedly diagnosed with hypertension in her youth.

K1393. Subject 1393-1 is a 5-year old Hispanic male (height 111.8 cm, 72nd %ile, weight 20.9

kg, 82nd %ile). He presented at age 2 months with a viral illness, was admitted to rule out sepsis

and found to be extremely hypertensive (BP 170s/100s mmHg, >99th percentile). Serum K+ was

4.1 mmol/l, Cl− 110 mmol/l, and other electrolytes and creatinine were normal. On

echocardiogram, he had mild left ventricular hypertrophy without coarctation. A renal

angiogram was normal. Aldosterone was elevated at 87.2 ng/dl, and PRA was suppressed at

<0.6 ng/ml/hr. Laboratory evaluation for other causes of hypertension was unrevealing and

included normal thyroid function test, 24-hr urine metanephrines, vanillylmandelic acid,

homovanillylmandelic acid and tests for congenital adrenal hyperplasia. ECG at age 4 years

showed right ventricular conduction delay and prominent mid precordial ventricular forces, and

echocardiogram showed minimal concentric left ventricular hypertrophy without left ventricular

outflow obstruction, systolic or diastolic dysfunction.

Treatment with propranolol, captopril, hydralazine and spironolactone was started, and

aldosterone increased to 290 ng/dl, with renal vein renin <0.6 ng/ml/hr. Current medications

include Enalapril, Spironolactone and Propranolol. There was no known family history of

hypertension. The father (1393-3) had serum of K+ 3.9 mmol/l, low plasma renin of 0.81 ng/ml/hr

and normal aldosterone of 9.3 ng/dl, with BP of 120/82 mmHg.
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