1,395 research outputs found

    A classical analog to topological non-local quantum interference effect

    Full text link
    The two main features of the Aharonov-Bohm effect are the topological dependence of accumulated phase on the winding number around the magnetic fluxon, and non-locality -- local observations at any intermediate point along the trajectories are not affected by the fluxon. The latter property is usually regarded as exclusive to quantum mechanics. Here we show that both the topological and non-local features of the Aharonov-Bohm effect can be manifested in a classical model that incorporates random noise. The model also suggests new types of multi-particle topological non-local effects which have no quantum analog.Comment: 4 pages, to be published in Phys. Rev. Let

    Species Doublers as Super Multiplets in Lattice Supersymmetry: Exact Supersymmetry with Interactions for D=1 N=2

    Full text link
    We propose a new lattice superfield formalism in momentum representation which accommodates species doublers of the lattice fermions and their bosonic counterparts as super multiplets. We explicitly show that one dimensional N=2 model with interactions has exact Lie algebraic supersymmetry on the lattice for all super charges. In coordinate representation the finite difference operator is made to satisfy Leibnitz rule by introducing a non local product, the ``star'' product, and the exact lattice supersymmetry is realized. The standard momentum conservation is replaced on the lattice by the conservation of the sine of the momentum, which plays a crucial role in the formulation. Half lattice spacing structure is essential for the one dimensional model and the lattice supersymmetry transformation can be identified as a half lattice spacing translation combined with alternating sign structure. Invariance under finite translations and locality in the continuum limit are explicitly investigated and shown to be recovered. Supersymmetric Ward identities are shown to be satisfied at one loop level. Lie algebraic lattice supersymmetry algebra of this model suggests a close connection with Hopf algebraic exactness of the link approach formulation of lattice supersymmetry.Comment: 34 pages, 2 figure

    Dirac-like Monopoles in Three Dimensions and Their Possible Influences on the Dynamics of Particles

    Get PDF
    Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional electrodynamics with electric and magnetic sources. Some general properties and similarities of them when are considered in Minkowski or Euclidian space are mentioned. However, by virtue of the structure of the space-time in which they are considered a number of differences among them take place. Furthermore, we pay attention to some consequences of these objects when acting upon usual particles. Among other subjects, special attention is given to the study of a Lorentz-violating non-minimal coupling between neutral fermions and the field generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this framework.Comment: 20 pages. Latex format. No figures. Accepted for publication in Phys. Rev.

    Massless Decoupled Doublers: Chiral Yukawa Models and Chiral Gauge Theories

    Full text link
    We present a new method for regularizing chiral theories on the lattice. The arbitrariness in the regularization is used in order to decouple massless replica fermions. A continuum limit with only one fermion is obtained in perturbation theory and a Golterman-Petcher like symmetry related to the decoupling of the replicas in the non-perturbative regime is identified. In the case of Chiral Gauge Theories gauge invariance is broken at the level of the regularization, so our approach shares many of the characteristics of the Rome approach.Comment: 11 page

    Ground-State Magnetization for Interacting Fermions in a Disordered Potential : Kinetic Energy, Exchange Interaction and Off-Diagonal Fluctuations

    Full text link
    We study a model of interacting fermions in a disordered potential, which is assumed to generate uniformly fluctuating interaction matrix elements. We show that the ground state magnetization is systematically decreased by off-diagonal fluctuations of the interaction matrix elements. This effect is neglected in the Stoner picture of itinerant ferromagnetism in which the ground-state magnetization is simply determined by the balance between ferromagnetic exchange and kinetic energy, and increasing the interaction strength always favors ferromagnetism. The physical origin of the demagnetizing effect of interaction fluctuations is the larger number of final states available for interaction-induced scattering in the lower spin sectors of the Hilbert space. We analyze the energetic role played by these fluctuations in the limits of small and large interaction UU. In the small UU limit we do second-order perturbation theory and identify explicitly transitions which are allowed for minimal spin and forbidden for higher spin. These transitions then on average lower the energy of the minimal spin ground state with respect to higher spin. For large interactions UU we amplify on our earlier work [Ph. Jacquod and A.D. Stone, Phys. Rev. Lett. 84, 3938 (2000)] which showed that minimal spin is favored due to a larger broadening of the many-body density of states in the low-spin sectors. Numerical results are presented in both limits.Comment: 35 pages, 24 figures - final, shortened version, to appear in Physical Review

    Dephasing in sequential tunneling through a double-dot interferometer

    Get PDF
    We analyze dephasing in a model system where electrons tunnel sequentially through a symmetric interference setup consisting of two single-level quantum dots. Depending on the phase difference between the two tunneling paths, this may result in perfect destructive interference. However, if the dots are coupled to a bath, it may act as a which-way detector, leading to partial suppression of the phase-coherence and the reappearance of a finite tunneling current. In our approach, the tunneling is treated in leading order whereas coupling to the bath is kept to all orders (using P(E) theory). We discuss the influence of different bath spectra on the visibility of the interference pattern, including the distinction between "mere renormalization effects" and "true dephasing".Comment: 18 pages, 8 figures; For a tutorial introduction to dephasing see http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm

    Vortex waistlines and long range fluctuations

    Get PDF
    We examine the manner in which a linear potential results from fluctuations due to vortices linked with the Wilson loop. Our discussion is based on exact relations and inequalities between the Wilson loop and the vortex and electric flux order parameters. We show that, contrary to the customary naive picture, only vortex fluctuations of thickness of the order of the spatial linear size of the loop are capable of producing a strictly linear potential. An effective theory of these long range fluctuations emerges naturally in the form of a strongly coupled Z(N) lattice gauge theory. We also point out that dynamical fermions introduced in this medium undergo chiral symmetry breaking.Comment: 17 pages, LaTex file with 7 eps figures, revised references, minor comments adde

    Searching for Exoplanets Using a Microresonator Astrocomb

    Get PDF
    Detection of weak radial velocity shifts of host stars induced by orbiting planets is an important technique for discovering and characterizing planets beyond our solar system. Optical frequency combs enable calibration of stellar radial velocity shifts at levels required for detection of Earth analogs. A new chip-based device, the Kerr soliton microcomb, has properties ideal for ubiquitous application outside the lab and even in future space-borne instruments. Moreover, microcomb spectra are ideally suited for astronomical spectrograph calibration and eliminate filtering steps required by conventional mode-locked-laser frequency combs. Here, for the calibration of astronomical spectrographs, we demonstrate an atomic/molecular line-referenced, near-infrared soliton microcomb. Efforts to search for the known exoplanet HD 187123b were conducted at the Keck-II telescope as a first in-the-field demonstration of microcombs

    Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV

    Full text link
    The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in this reaction, between 52 and 95 A.MeV bombarding energies, the number of particles emitted in the intermediate velocity region is related to the overlap volume between projectile and target. Mean transverse energies of these particles are found particularly high. In this context, the mass of the QP decreases linearly with the impact parameter from peripheral to central collisions whereas its excitation energy increases up to 8 A.MeV. These results are compared to previous analyses assuming a pure binary scenario

    Anti-nausea effects and pharmacokinetics of ondansetron, maropitant and metoclopramide in a low-dose cisplatin model of nausea and vomiting in the dog: a blinded crossover study

    Get PDF
    Nausea is a subjective sensation which is difficult to measure in non-verbal species. The aims of this study were to determine the efficacy of three classes of antiemetic drugs in a novel low dose cisplatin model of nausea and vomiting and measure change in potential nausea biomarkers arginine vasopressin (AVP) and cortisol. A four period cross-over blinded study was conducted in eight healthy beagle dogs of both genders. Dogs were administered 18 mg/m2 cisplatin intravenously, followed 45 min later by a 15 min infusion of either placebo (saline) or antiemetic treatment with ondansetron (0.5 mg/kg; 5-HT3 antagonist), maropitant (1 mg/kg; NK1 antagonist) or metoclopramide (0.5 mg/kg; D2 antagonist). The number of vomits and nausea associated behaviours, scored on a visual analogue scale, were recorded every 15 min for 8 h following cisplatin administration. Plasma samples were collected to measure AVP, cortisol and antiemetic drug concentrations
    corecore