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Dephasing in sequential tunneling through a double-dot interferometer
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Departement Physik und Astronomie, Universita¨t Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

~Received 22 March 2003; revised manuscript received 19 June 2003; published 5 November 2003!

We analyze dephasing in a model system where electrons tunnel sequentially through a symmetric interfer-
ence setup consisting of two single-level quantum dots. Depending on the phase difference between the two
tunneling paths, this may result in perfect destructive interference. However, if the dots are coupled to a bath,
it may act as a which-way detector, leading to partial suppression of the phase coherence and the reappearance
of a finite tunneling current. In our approach, the tunneling is treated in leading order whereas coupling to the
bath is kept to all orders@usingP(E) theory#. We discuss the influence of different bath spectra on the visibility
of the interference pattern, including the distinction between ‘‘mere renormalization effects’’ and ‘‘true dephas-
ing.’’
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I. INTRODUCTION

The destruction of quantum-mechanical phase cohere
due to coupling of a system to an irreversible bath is a s
ject important not only because of its connection to fun
mental issues~the quantum measurement process and
quantum-classical transition! but also because of its role i
the suppression of phenomena resulting from quantum in
ference effects, such as those studied in mesoscopic ph
~including Aharonov-Bohm interference, weak localizatio
and universal conductance fluctuations!. Recently, the field
of mesoscopic physics in particular has seen a reviva
interest in these questions, due to surprising experime
findings1 concerning a possible saturation of the wea
localization dephasing rate at low temperatures, which h
not yet been explained convincingly. Apart from investig
tions dealing directly with the problem of weak localizatio
in a disordered system of interacting electrons, several
models have been analyzed2–9 to answer the question
whether decoherence at zero temperature is possible a
contrary to the expectations based on perturbation the
One of the difficulties faced by models involving discre
levels consists in the fact that destruction of phase cohere
for a superposition of excited states of finite excitation e
ergy is perfectly possible even at zero temperature, du
spontaneous emission of energy into the bath. It is only in
zero-frequency limit of the linear response in a system wit
continuous spectrum~relevant for weak localization an
other equilibrium transport experiments! that perturbation
theory suggests in general a vanishing dephasing rate,
cause then the perturbation does not supply energy to
system, such that atT50 the system is not able to leave
trace in the bath, which is considered to be the prerequ
for decoherence.

Some questions of interest concerning dephasing, e
cially in connection with mesoscopic systems and low te
peratures, are the following ones. How reliable is the sim
classical picture of a phase being randomized by fluctua
external noise?10 In particular, what is the meaning of th
zero-point fluctuations of the bath in this picture, as oppo
to the thermal fluctuations dominating at frequencies low
than the temperature? When do the former lead to ‘‘m
0163-1829/2003/68~19!/195305~17!/$20.00 68 1953
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renormalization effects’’ and how is it possible to distingui
these from ‘‘true’’ dephasing? Under which circumstances
the suppression of off-diagonal terms in the reduced sys
density matrix itself already a good indicator of dephasin
How reliable are simple arguments based on golden rule
energy conservation, related to the connection betw
dephasing and the trace left in the bath by the part
~‘‘which-way’’ detection!? When does perturbation theor
fail qualitatively, what is the influence of non-Markoffia
behavior? How does the dephasing rate depend on the en
supplied by an external perturbation~frequencies excited in
linear response, bias voltage applied in a transport meas
ment!? What is the influence of the Pauli principle in a sy
tem of degenerate fermions? How strong are the qualita
differences in behavior resulting from different bath spect

In this work, we will present a model that is able to giv
insights into most of these questions.

Our model represents a kind of mesoscopic double-
setup. It consists of two single-level quantum dots which
tunnel coupled to two leads, with a possible phase differe
between the two interfering paths~see Fig. 1!. Due to de-
structive interference~at w5p), the tunneling current may
be suppressed completely, provided the two dot levels
degenerate and the setup is symmetric in the two interfe
paths. Coupling the dots to a bath may partly destroy
phase coherence and reenable the electrons to go throug

FIG. 1. The double-dot ‘‘double-slit’’ setup, with a fixed phas
differencew between the two paths and under the influence o
fluctuating environment.
©2003 The American Physical Society05-1
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setup. For a symmetric setup, with equal coupling stren
between the bath and each of the two dots, mere renor
ization effects will not be able to lift the destructive interfe
ence in this way. Thus, a finite tunneling current may
taken as a genuine sign of dephasing. This criterion
dephasing has been employed before in a model of dep
ing due to spin-flip transitions in first-order tunneling tran
port through one or two dots,11 as well as for cotunneling
through an Aharonov-Bohm ring coupled to a fluctuati
magnetic flux.5

The influence of phonons on sequential tunneling throu
two quantum dotsin serieshas been studied experimental
in Ref. 12. There, inelastic transitions induced by piezoel
tric coupling to acoustic phonons in GaAs have been es
tial for obtaining a finite current through the two off-resona
dot levels. This kind of setup has been analyzed theoretic
in Refs. 13–19. On the other hand, we will be analyzi
tunneling through two dots placedin parallel. Early theoret-
ical investigations of this problem~without a fluctuating en-
vironment! include Refs. 20 and 21. Recently, a parallel-d
tunneling setup has been realized experimentally in Ref.
with an emphasis on spectroscopy of the ‘‘molecular stat
of the doubledot system~with interdot tunneling present!. In
our model of an interference setup, we choose to descri
situation without tunneling between the dots~but with Cou-
lomb repulsion!. In addition, we want to concentrate on in
terference effects in the orbital motion and therefore cons
the case of spin-polarized transport. This model—in the
sence of a fluctuating environment—has been investiga
previously in Ref. 23. Other recent theoretical works co
cerning tunneling through dots in a parallel geometry ha
mostly investigated spin and Kondo physics,24–27 but also
dephasing by spin-flip transitions.11 Some works have treate
the influence of phonons in tunneling interferen
structures,28,29but no systematic discussion of dephasing a
the visibility of the interference pattern had been give
Some while ago, dephasing bynonequilibriumcurrent noise
has been investigated experimentally30 and theoretically31 in
a setup with a single quantum dot placed into one arm o
Aharonov-Bohm interferometer.

Our analysis of dephasing in sequential tunneling throu
a double dot will take into account the system-bath coupl
exactly, while we treat the tunnel coupling only in leadin
order. The presence of the Fermi sea in the leads introd
some aspects related to the Pauli principle and to the be
ior of systems with a continuous spectrum that cannot
analyzed in simpler models of dephasing in discrete syst
coupled to a bath.

The work is organized as follows: After setting up th
model~Sec. II!, we will present a qualitative discussion of i
main features~Sec. III!. In particular, we will discuss the
relation between entanglement, dephasing, and renorma
tion effects. Subsequently, we derive a general formula
the tunneling decay rate of an electron that has been pla
on the two dots in a symmetric superposition of states~Sec.
IV !. This is done by building on the concepts of theP(E)
theory of tunneling in a dissipative environment.32,33Follow-
ing this, we will evaluate the dependence of the tunnel
rate on the bias voltage and the bath spectra~Sec. V!. We
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will interpret the results in terms of ‘‘renormalization e
fects’’ and ‘‘true dephasing’’~Sec. VI!. Building on these
sections, we will finally derive a master equation for the ca
of weak tunnel coupling~Sec. VII!, which allows us to cal-
culate the sequential tunneling current as a function of b
voltage, temperature, and phase difference~Sec. VIII!.

The most important results derived in this work are t
following. Equation~13! is the general expression for th
phase-dependent tunneling decay rate in presence of the
tuating environment. It forms the basic input for the mas
equation@Eqs. ~48!–~50!#, which describes sequential tun
neling through the double dot, where the resulting curr
can be obtained from Eq.~52!. The visibility of the interfer-
ence pattern, which is defined by the phase dependenc
the current, is given in Eq.~65!. It is connected with the
visibility obtained from the phase dependence of the tunn
ing rate itself@Eqs.~16! and ~17!#.

II. THE MODEL

We consider a Hamiltonian describing two degener
single-level quantum dots, with respective single-parti
statesu1& andu2& ~spin is excluded for simplicity, since we
are interested in dephasing of the electronic motion!. Each of
them is tunnel coupled to two electrodes~with the same
strength for both dots!, but involving a possible phase differ
ence between the tunnel amplitudes~see Fig. 1!. In addition,
the potential difference between the two dots is given b
fluctuating fieldF̂, whose dynamics is derived from a linea
bath. It represents the fluctuations due to phonons or Nyq
noise. The system-bath coupling strength is taken to be
same for both dots, while the sign is opposite, such that
bath can distinguish between an electron being on dotu1& or
u2&:

Ĥ5e~ n̂11n̂2!1F̂~ n̂12n̂2!1Un̂1n̂2

1ĤL1ĤR1ĤB1V̂. ~1!

Here n̂6 are the particle numbers on the two dots~equal
to 0 or 1). The bath HamiltonianĤB describes a set o
uncoupled harmonic oscillators. It governs the dynamics
the fluctuating potentialF̂, which is assumed to be linear i
the oscillator coordinates. The coupling between electron
bath is of the form of the ‘‘independent boson model.’’34 For
the case of exactly one electron on the double dot, and in
absence of tunneling, it corresponds to a spin-boson mo
with ‘‘diagonal coupling.’’ In this model, no transition be
tween different levels is brought about by the bath, such t
pure dephasing results.U denotes the Coulomb repulsio
energy, which we will take to be so large that double occ
pancy is forbidden. Note that the degeneracy of the two
levels is important in the following: It is necessary to ensu
complete destructive interference atw5p ~compare also the
discussion in Sec. VII!.

The termsĤL andĤR contain the energies of the electron
in the left and right reservoirs:
5-2
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ĤL(R)5(
k

ekâL(R)k
† âL(R)k . ~2!

The tunneling between the dots and the leads is describe
V̂5V̂L1V̂R , with

V̂R5(
k

tk
RâRk

† ~ d̂11eiwd̂2!1H.c. ~3!

for the right junction, and

V̂L5(
k

tk
LâLk

† ~ d̂11d̂2!1H.c. ~4!

for the left junction.
Here d̂6 are the annihilation operators for the two do

(n̂65d̂6
† d̂6) and the phase factor ofeiw controls the inter-

ference between tunneling events along either the uppe
lower path. The tunneling phase difference might be thou
of as arising due to the Aharonov-Bohm phase from a m
netic flux penetrating the region between the quantum d

Note that the tunneling matrix elementstk
R(L) are assumed

not to depend on the dot stateu1& or u2& in our model. This
means that the dots are close enough such that they coup
the same point on the lead electrodes, to within less tha
Fermi wavelength. Obviously, there could be no apprecia
interference effect if the dots were separated by some la
distance~in which case thek dependence of matrix elemen
would be different for the two states!. The same idealized
assumption underlies several similar models~see, e.g., Refs
11,23,27!. The effect of an arbitrary dot separation has be
discussed in some detail in Ref. 21.

The present model, without the bath, has been analy
previously in Ref. 23~see also Sec. IV C of Ref. 11!. There,
an orbital type of Kondo effect was found in equilibrium, fo
w5p, when the level energy was below the chemical pot
tial. This arises because atw5p there are two states of th
double dot that couple only to the left and the right lea
respectively~denoted byue& anduo& in the following!. These
degenerate states form the pseudospin responsible fo
Kondo effect. However, that mechanism will be irreleva
for our analysis, as we consider the transport situation wh
the ~renormalized! level energy lies between the chemic
potentials of the left and the right lead. Therefore, the deg
eracy is effectively lifted by the bias voltage~which will be
assumed to be much larger than the tunneling rate!, and only
the state coupling to the left lead would be occup
at w5p.

III. QUALITATIVE DISCUSSION

In this and the following three sections, we first analy
the escape of a single electron into the right lead, where
electron is assumed to start out in a symmetric superpos
of the two dot levels, which has been formed by an elect
tunneling onto the dots from the left lead. In the situati
without any bath, this is the stateue&[(u1&1u2&)/A2.

Without dephasing, the tunneling decay out of stateue& is
made impossible in the case of perfect destructive inter
19530
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ence atw5p, while maximal constructive interference
present forw50. It should be noted that the attribution o
the phase factor to one of the tunnel couplings represen
certain choice of gauge, which affects the wave functions
the following discussion but none of the physically obse
able quantities that are derived as a result of the master e
tion in Sec. VII.

For simplicity, we will assume a zero-temperature situ
tion throughout the following qualitative discussion, with
bias eV.0 applied between the two dots and the lead
such a way that the electron is allowed to tunnel into the le
~see Fig. 2!. In addition, since we will describe the tunnelin
decay to the right, we will only consider the couplingV̂R to
the right lead in this section and drop the indexR for now.

Without the bath and for perfect constructive interferen
(w50), the tunneling decay rateG will take on its maximum
value of 2G0, with

G0[2pD^utku2&, ~5!

where D is the lead density of states at the Fermi ener
^utku2& is the angular average ofutku2 at this energy. The bias
voltageV does not enter in this case, as long as it is posit
~permitting decay!. For w5p, G vanishes due to perfec
destructive interference. In general, we have

G5G0~11cosw!. ~6!

If the bath is included in the description, the followin
happens.

First of all, the energy of a single extra electron on any
the two dots will be renormalized from its initial value ofe,
since the bath relaxes to a ground state of lower energ
presence of the electron. We will assume that the value oe
has been chosen exactly to compensate for this en
change, which is given by2*0

`dv^F̂F̂&v /v ~see Appendix
A!. Then, the energy of an electron on the dot~and the bath
in its new ground state! is the same as that of the electro
being in the lead, at the Fermi energy ofeF[0 ~for V50).

Tunneling of an electron from the dots to the lead will n
change the bath state, but it will displace the origin of t
harmonic oscillators comprising the bath, since the coupl

FIG. 2. The ground stateux1& (ux2&) which the bath assumes i
the presence of an electron on dotu1& (u2&), shown schematically
for a single bath oscillator~see main text!. After the electron has
tunneled into the lead,ux2& becomes a superposition of excite
states~dashed curve!, while the stateux0& represents the ground
state of the bath in the new potential.
5-3
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FLORIAN MARQUARDT AND C. BRUDER PHYSICAL REVIEW B68, 195305 ~2003!
to F̂ is switched off (n̂12n̂2 changes to zero!. Therefore,
the original ground state of the bath~in presence of the elec
tron! will become a superposition of excited states in the n
bath potential~in absence of the electron; see Fig. 2!. On the
other hand, since energy conservation has to be fulfilled w
respect to the total energy of the electrons and the bath
fore and after the tunneling event, only those excited b
states can be reached whose energies are not greater thaeV,
the energy supplied to the electron by the bias voltage. T
leads to the Coulomb-blockade typesuppressionof the tun-
neling rate at low bias voltages, forw50. Physically, this
effect is just the same as that described by Franck-Con
overlap integrals evaluated between vibronic states for e
tronic transitions in molecules. Qualitatively, this effect
independent of the interference setup, since it already oc
for tunneling through a single dot coupled to a bath.

In contrast, for the case of destructive interferencew
5p), the bath may actuallyenhancethe tunneling rate from
its initial value of 0, since it partly destroys the phase coh
ence that is a presupposition for perfect interference.
electron coming from the left lead will form the followin
entangled state with the bath, instead of the symmetric
perpositionue&5(u1&1u2&)/A2:

~ u1&ux1&1u2&ux2&)/A2. ~7!

Here the statesux6& denote the respective ground stat
of the bath for a bath Hamiltonian given byĤB6F̂, which
are related to each other by a parity transformation.~This
also means we assume by definition there to be no ph
factor between these states; e.g., both may be assume
have real-valued positive wave functions.! Actually, the en-
tangled state considered here will be formed only if the el
tron is given barely enough energy to enter the double do
all ~i.e., chemical potential of the left lead infinitesimal
larger than the renormalized level position!. Otherwise, ex-
cited bath states may be created even at this step. T
complications will be taken care of in the complete disc
sion of the sequential tunneling current~Sec. VII!. There, it
will turn out that the tunneling decay rate derived in t
following, based on our physically motivated ansatz~7!, is
exactly the rate that enters the full master equation. Thus
proceed with ansatz~7! for the initial entangled state, in or
der to calculate the rate for such an electron to tunnel into
right lead.

The bath measures~to some extent! which dot the elec-
tron resides on, such that the reduced system density m
~for the electron on the two dots! becomes mixed and it
off-diagonal elements get suppressed by the overlap fa
^x1ux2&. Put differently, the phase factor between the t
dot states in the wave function of the electron~initially equal
to 11) becomes uncertain. Therefore, there is a finite pr
ability of

Po5~12^x1ux2&!/2 ~8!

to find the electron in the antisymmetric~odd! state uo&[
(u1&2u2&)/A2. At w5p, where tunneling decay of th
symmetric superpositionue& is blocked due to destructiv
19530
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interference, the stateuo& is allowed to decay into the lead, a
the maximal rate of 2G0. In this way, the interference
induced blockade of electron tunneling is lifted by deph
ing.

However, this simple picture is true only for large bia
voltages, when energy conservation permits any final stat
the bath after the tunneling event. If the maximum ene
supplied to the electron is limited, the suppression discus
above~for the case ofw50) will apply again. In particular,
if the bias voltage is turned to zero, energy conservation o
allows the stateux0& to be reached, which is the ground sta
of the bath in the absence of any electrons on the dots. T
the tunneling rate is exactly zero again, despite the fact
the reduced density matrix of the electron may be mixed t
strong extent. The reason is the following. When the over
of the entangled state~7! with the stateux0& is taken, the two
overlap factors^x0ux1& and ^x0ux2& turn out to be the
same,if the coupling of the bath to the two dots is symmet
~i.e., of equal strength, only of opposite sign!, which we have
assumed in writing down the Hamiltonian, Eq.~1!. There-
fore, the electronic state resulting from the projection of E
~7! onto ux0& is equal to the symmetric combination, who
decay is forbidden. Thus, the combination of energy cons
vation and Pauli blocking prevents a finite tunneling rate
zero bias voltage, in spite of the mixed state of the elect
coupled to the bath. In this limit the entanglement betwe
electron and bath only leads to renormalization effects~such
as the change in tunneling rate!, but not to genuine dephas
ing. If the coupling were asymmetric, then destructive int
ference could be lost even without dephasing~merely due to
renormalization!, just as it would be the case for initially
asymmetric bare tunnel couplings. That is why the asymm
ric case is uninteresting for our purposes of distinguish
renormalization effects from real dephasing.

However, whether we are indeed able to claim th
dephasing actually vanishes in the limit of low bias voltag
will depend on the behavior of the tunneling rate as a fu
tion of V and on the comparison of the casesw50 andw
5p. Here, the bath spectrum, and, above all, its lo
frequency properties, enter. In order to be able to disc
G(V,w) quantitatively, we will make use of the concepts
the P(E) theory of tunneling in a dissipative environment

IV. DECAY RATE AND CONNECTION TO P„E… THEORY

The tunneling rateG will be calculated using the standar
Fermi golden rule, i.e., lowest-order perturbation theory
the bare tunneling rateG0, but taking into account exactly
the bath coupling. In deriving the formula forG, it turns out
to be useful to assume that the bath oscillators donot get
shifted in the tunneling event~unlike the qualitative consid-
erations from above!, but it is rather the bath states which g
displaced~in the opposite direction!. Obviously, this amounts
to the same, as long as we are interested only in ove
integrals of different bath states after the event. To that e
we introduce the displacement operator exp(if̂), which trans-
forms the bath ground state ofĤB into that ofĤB1F̂. Here
f̂ is a suitable Hermitian operator that is linear in t
5-4
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bosonic variables of the bath. In fact, this amounts to p
forming the canonical transformation of the independent
son model,34 see Appendix A. In terms of the two dot stat
1 and 2, we haveF̂15F̂ and F̂252F̂, as well asf̂1

5f̂ and f̂252f̂. The transformation eliminates th
system-bath coupling from the Hamiltonian, but gives rise
modified dot operatorsd̂68 5e6 i f̂d̂6 in the transformed tun-

nel HamiltonianV̂R8 @see Eq.~A7!#.
We will assume the tunnel coupling to be sufficien

weak, such that we can use lowest-order perturbation the
to calculate the tunneling decay rate

G52p(
f

u^ f uV̂R8 u i &u2d~Ef2Ei !, ~9!

where the initial stateu i & is given by the configuration in
volving the electron residing in the symmetric superposit
on the dots, the unperturbed Fermi sea in the lead, and
bath in its ground stateu i B&. The bath ground state has b
come independent of the position of the electron, due to
above-mentioned transformation. At finite temperatures,
additional thermal average over the initial bath state and
initial state of the electrons in the lead has to be perform
The energies and eigenstates refer to the Hamiltonian w
out tunnel coupling. Applying the new tunneling Ham
tonianV̂R8 to the initial state, we obtain the following expre
sion:

G5p(
k, f B

utku2@12 f ~ek1eV!#u

3^ f Bue1 i f̂1eiwe2 i f̂u i B&u2d~Ef
B2Ei

B1ek!. ~10!

Here f (•) is the Fermi function~for chemical potential
equal to zero!, andEf ,i

B are the energies of the initial and fin
bath states. The energy supplied to the bath is equal to
energy lost by the electron~given by2ek , since the renor-
malized dot energy is zero!. Following the usual derivation
of the P(E) theory,32,33 we express the energy-conservingd
function as an integral over time and also replace the s
over lead statesk by an integral over the energyE52ek
supplied to the bath, finally yielding

G5G0E
2`

1`

dE@12 f ~2E1eV!#E
2`

1` dt

2p
eiEt

3
1

2
^~e2 i f̂(t)1e2 iwei f̂(t)!~ei f̂1eiwe2 i f̂!&. ~11!

For the case of arbitrary temperature, the brackets de
a thermal average over the initial bath stateu i B&. We intro-
duce the definitions

P(2)~E!5
1

2pE2`

1`

dt eiEte6^f̂(t)f̂&2^f̂2&. ~12!

This permits us to write down our final result for th
tunneling decay rate in terms ofP(2)(E),
19530
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G5G0E
2`

1`

dE@12 f ~2E1eV!#@P~E!1cos~w!P2~E!#.

~13!

The formula given here constitutes the basic express
for the decay rate as a function of bias voltage and inter
ence phasew. It represents the appropriate modification
Eq. ~6! in presence of a bath.

Note that for the slightly more general case of arbitrar
correlated fluctuating potentialsF̂1 and F̂2 attached to the
dots ~i.e., an interaction of the formF̂1n̂11F̂2n̂2), the
function P2(E) would contain the cross correlator of th
associated phasesf̂1 andf̂2 , while P(E) would depend on
the autocorrelator off̂1 or f̂2 ~assumed to be the same, fo
the setup to remain symmetric!. In contrast to the mode
treated here, such an interaction would also involve fluct
tions of the sum of energies of the dot levels. However, th
would only add to the renormalization effects mentioned p
viously and do not contribute to dephasing by themselv
since such fluctuations cannot distinguish between the
interfering paths.

By using the definitions

g (2)[G0E dE@12 f ~2E1eV!#P(2)~E!, ~14!

we can write

G5g1cos~w!g2 . ~15!

The strength of the dependence ofG on the phasew may
be taken as a signature of phase coherence in our mode
define the ‘‘visibility’’ of the interference pattern in the usu
way, by

y[~Gmax2Gmin!/~Gmax1Gmin!, ~16!

which is equal to the ratio

y5
g2

g
. ~17!

The visibility y will be 1 whenever the destructive inte
ference is perfect, and it is zero if there is no dependenc
G on w.

The effects of the bath on the decay rate are encode
the functionsP(E) andP2(E), whose general properties w
will discuss now. In the following section, we will evaluat
them for different types of bath spectra.

As usual, the functionP(E) describes the probability
~density! that an electron will emit the energyE into the bath
while tunneling into the lead. It is real, non-negative, a
normalized to unity.33,32

At large timesutu→`, the correlation function̂ f̂(t)f̂&
2^f̂2& in the exponent of integral~12! will tend to
2^f̂2&, for a continuous bath spectrum. This means that
integrand ofP(E) approaches the value ofz[exp(2^f̂2&),
starting from 1 att50. Therefore,P(E) contains a ‘‘quasi-
particled peak’’ of strengthz at E50, if z does not vanish.
5-5
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FLORIAN MARQUARDT AND C. BRUDER PHYSICAL REVIEW B68, 195305 ~2003!
It corresponds to the probabilityz of having no energy trans
fer at all from the electron to the bath~similar to the recoil-
free emission of ag ray by a nucleus inside a crystal, i.e., th
Mössbauer effect!.

The functionP2(E) in front of the cos(w) term in Eq.
~13! is different: The integrand ofP2(E) will increase at
large times, towards the value ofz, starting fromz2 at t
50. The function P2(E) is real valued @because of

^f̂(t)f̂&5^f̂f̂(t)&* ], but it can become negative. Ther
fore, it cannot be interpreted as a probability density, in c
trast toP(E). Its normalization is given by

E dEP2~E!5z2. ~18!

If z is nonzero,P2(E) also has ad peak atE50, of
weight z, just asP(E). As a consequence, in the case
destructive interference (w5p), the tunneling rateG at
V→0,T50 still vanishes even in the presence of t
bath, since thed peaks contained inP(E) and P2(E)
cancel exactly in integral~13!. The physical reason for thi
coherence has been discussed at the end of the prec
section.

In the case of constructive interference (w50), at T50
and forV→0, the integration overE will only capture thed
peaks contained inP(2)(E), yielding G52zG0. Thus, the
tunneling rate is suppressed by the constant factorz from its
noninteracting value. However, this may be interpreted a
mere renormalization of the effective tunnel coupling, sin
the visibility y of the interference pattern is still equal
unity. In order to connect this result to the qualitative disc
sion from above, we note that the overlap of the two differ
bath ground states that are adapted to the absence or pre
of an electron on dot6, is given by

^x0ux6&5^x0ue6 i f̂ux0&5exp~2^f̂2&/2!5z1/2. ~19!

Therefore, the magnitude squared of this overlap, wh
determines the probability of tunneling without exciting a
bath mode, is equal toz.

On the other hand, for sufficiently large bias voltag
~much larger than the cutoff frequency of the bath spectru!,
the normalization conditions forP(2)(E) yield

G5G0@11z2 cos~w!#. ~20!

The visibility is given by y5z2. In this limiting case,
where the restrictions due to energy conservation and
Pauli principle are no longer important, the tunneling rateG
at the pointw5p of destructive interference does not vanis
It takes the valueG0(12z2), which is small if the effects of
the bath are weak (z near to 1) and is equal to one half th
ideal maximum value 2G0 for a bath that is sufficiently
strong to destroy phase coherence completely (z50), lead-
ing to an incoherent mixture of symmetric and antisymme
states on the two dots. In the latter case, the visibi
vanishes~even for arbitrary voltages!, since thenP2(E) is
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equal to zero, which makesG independent ofw. This will be
true for the Ohmic bath, to be discussed in the followi
section.

As explained above, the reduced density matrix of
electron on the dots coupled to the bath predicts a fin
probability of Po5(12^x1ux2&)/2 to find the electron in
the antisymmetric state if one starts out from the symme
superposition before coupling it to the bath. The overlap f
tor of the bath states involved in this probability can be e
pressed as

^x1ux2&5^x0u~e2 i f̂!2ux0&5z2. ~21!

Comparing with the resultG(w5p)5G0(12z2) given
above, it may be observed that the decay rate at sufficie
large bias voltages is indeed determined directly by the pr
ability to find the electron in the state whose decay is
forbidden by destructive interference@as has been argue
already at the end of the preceding section, near Eq.~8!#. It is
only in this limiting case, where an arbitrary amount
energy is available for excitation of the bath, that t
suppression of interference effects in the transport situa
is correctly deduced from the electron’s reduced den
matrix in the presence of the bath. Formally, this ho
because the sum over final bath statesf B in Eq. ~10! is
not restricted any more and corresponds to the insertion
complete set of basis states. Thus, one obtains, directly f
Eq. ~10!,

G5
G0

2
^x11e2 iwx2ux11eiwx2&, ~22!

which reduces to Eq.~20! when the overlaps are evaluate
using Eq.~21!. Physically, the case of high bias voltage co
responds to a kind of infinitely fast von Neumann projecti
measurement that determines the state of the electron, re
ing the fluctuations due to the bath. In contrast, at low b
voltages~low energy supply!, a kind of ‘‘weak’’ measure-
ment is carried out that takes a longer amount of time, s
that only the low-frequency fluctuations of the bath are i
portant for dephasing.

V. EVALUATION FOR DIFFERENT BATH SPECTRA

We will restrict the discussion toT50 at first.
The simplest example for the bath is a single harmo

oscillator of frequencyv. This offers an approximate de
scription of the interaction with optical phonon modes~‘‘Ein-
stein model’’!. In this case,P(E) and P2(E) can be ob-
tained easily by expanding the exponential in a Taylor se
and using^f̂(t)f̂&5^f̂2&exp(2ivt), before the integration
over time is performed. ForP(E), the resulting series ofd
peaks at harmonics ofv corresponds to all possible pro
cesses where the electron emits any numbern of phonons
into the bath while tunneling into the lead. The express
for P2(E) is the same, apart from alternating signs in fro
of the d functions:
5-6
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DEPHASING IN SEQUENTIAL TUNNELING THROUGH A . . . PHYSICAL REVIEW B68, 195305 ~2003!
P(2)~E!5z(
n50

`
^6f̂2&n

n!
d~E2nv!. ~23!

Thus, every process involving the transfer of an even num
of quanta to the bath will not ruin the destructive interferen
at w5p, since the corresponding contributions fromP(E)
andP2(E) cancel in Eq.~13!. This is because the couplin
between electron and bath is of the type (n̂12n̂2)F̂, which
gives a different sign of the interaction amplitude for a ph
non emission process, depending on the dot. Therefore
amplitude of emission of anevennumber of phonons will
not depend on the dot, it is insensitive to the state of
electron, and the amplitudes of the electron tunneling fr
u1& and u2& will still interfere destructively.

In contrast, emission processes involving an odd num
of quanta introduce a negative sign for an electron startin
stateu2&, ‘‘detecting’’ the path~or rather, the initial state! of
the electron and interferingconstructivelywith the processes
from u1&. This lifts the destructive interference and mak
GÞ0 at w5p. However, below the frequencyv of the os-
cillator, destructive interference atw5p is still perfect since
no quantum can be emitted, while the magnitude ofG at w
50 is renormalized by the factorz, as has been discusse
above in general for the limiting caseV→0. The same holds
true for any bath with a finite excitation gap, atT50. This is
shown in Figs. 4 and 5, to be discussed in the follow
section.

We now pass on to arbitrary bath spectra. At first, we w
cover the casezÞ0 ~‘‘weak baths’’!, when we can apply
perturbation theory to discuss the behavior ofP(2)(E) at low
energy transfersE ~and, consequently, that ofG at low volt-
ages!. A Taylor expansion of the exponent in Eq.~12! yields

FIG. 3. The bath spectrum̂F̂F̂&E ~bottom! and the resulting
functionsP(E) ~top! andP2(E) ~middle!, plotted vs energyE, for
different baths. Energies are measured in units of the ‘‘bath cut
vc . Energy axis is the same in all panels~starting atE50, hori-
zontal tick distance: 1); vertical tick distance in all panels is 0.5
s51.5, a50.25; b, ‘‘acoustic phonons,’’s53, a51; c, ‘‘optical
phonons,’’ Bath with gap; d,s51, a50.25; e,s51, a50.75~d, e
are ‘‘Ohmic’’ baths of different strength,z50).
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P(2)~E!5
z

2p (
n50

`
1

n! E2`

1`

dt eiEt@6^f̂~ t !f̂&#n

5z(
n50

`
~61!n

n!
~^f̂f̂&v* . . . * ^f̂f̂&v!~E!.

~24!

The repeated convolution product containsn times the
correlator ^f̂f̂&v , for n50 it is to equald(E), and the
negative sign holds forP2(E).

’’

,

FIG. 4. Decay rateG as a function of bias voltageV for the case
of constructiveinterference (w50), atT50. Curves correspond to
different bath spectra shown in Fig. 3. Dashed lines correspon
approximation Eq.~28!. The initial Coulomb-blockade type sup
pression to a value ofG/2G05z (z50 for the Ohmic bath d, e! is
lifted with increasing bias voltage, saturating atG/2G05(1
1z2)/2. Inset depicts energy diagram with definition of bias volta
for this situation.

FIG. 5. Decay rateG(V) for the case ofdestructiveinterference
(w5p), at T50. Dashed lines refer to Eq.~28!. Due to dephasing,
the decay rate becomes finite at finite voltages, saturating
G/2G05(12z2)/2. For the Ohmic bath~d, e! the dependence is
exactly equal to that forw50 ~Fig. 4!.
5-7
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For the following discussion, we prescribe the spectr
of the fluctuating potentialF̂ to be a power law in frequenc
v ~at T50), with exponents:

^F̂F̂&v
T5052avcS v

vc
D s

u~vc2v!u~v!. ~25!

The dimensionless parametera characterizes the bat
strength. In order to be able to rely on perturbation theo
we have to ensurez.0. Sincê f̂f̂&v5^F̂F̂&v /v2, the vari-
ance of the fluctuating phase,^f̂2&, will be finite only for
s.1 ~at T50, otherwises.2). In that case, we havez
5exp@22a/(s21)#. This means the perturbative analysis p
sented above is restricted to a super-Ohmic bath,s.1. The
case of the Ohmic bath will be discussed separately fur
below.

After keeping only terms up to second order in the exp
sion of P(2)(E) given in Eq.~24!, we get

P~E!1P2~E!5z@2d~E!1~^f̂f̂&v* ^f̂f̂&v!~E!1•••#

~26!

for the symmetric combination, which will determine th
prefactor of 11cos(w) in the expression forG, Eq. ~13!, and

P~E!2P2~E!52z^f̂f̂&E1••• ~27!

for the antisymmetric combination@determining the prefac
tor of 12cos(w)]. Inserting these into Eq.~13!, using the
power law for ^f̂f̂&v5^F̂F̂&v /v2 given by Eq.~25!, and
performing the energy integrals, we find, for sufficiently lo
voltages@2a(eV/vc)

s21!s21#,

G'
G0

2
zH @11cos~w!#F11

a2Cs

~s21! S eV

vc
D 2(s21)G

1@12cos~w!#
2a

s21 S eV

vc
D s21J . ~28!

The numerical prefactorCs is defined as *0
1@y(1

2y)#s22 dy.
From Eq.~28!, we see that the destructive interference

w5p is perfect atV50, but gets lifted when increasing th
bias voltage, with a powerVs21. In contrast, the decay rat
G at w50 starts out from the constant value of 2zG0 and
grows asV2(s21). Therefore, the visibilityy starts out at 1
for V50 but decreases as

y'12
4a

s21 S eV

vc
D s21

. ~29!

For s↓1, the range in bias voltageV where these approxi
mate expressions hold shrinks to zero~at constanta and
vc). At s51, i.e., for the Ohmic bath, the probabilityz of
not emitting energy into the bath vanishes completely.
discussed above, this means that there is now dependence a
all in G, and, consequently, the visibility is zero at all bi
voltages. Furthermore, the tunneling rate vanishes foreV
19530
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→0, even at w50. This is the well-known Coulomb-
blockade type of behavior for tunneling in presence
Ohmic dissipation.35 At higher bias voltages, the blockade
removed andG grows towardsG0. The growth at low volt-
ages is determined by the power-law behavior ofP(E),
which rises ascvc

22aE2a21, where the exponent is dete
mined by the bath strength rather than the exponents51 of
the bath spectrum. The dimensionless prefactorc must be
found from the normalization condition forP(E) and de-
pends only ona ~and the type of cutoff in the bath spec
trum!. Therefore, in the case of the Ohmic bath we have
low V andT50,

G~V!5G0

c

2a S eV

vc
D 2a

. ~30!

Finally, we briefly discuss the case of finite temperatur
T.0.

In that case, the variance off̂ is given by

^f̂2&5E
0

`

dv^f̂f̂&v
(T50) cothS v

2TD , ~31!

which yields

^f̂2&'^f̂2& (T50)14aS T

vc
D s21E

0

` ys22

ey21
dy. ~32!

The approximation of extending the integral to infini
holds for temperatures much smaller than the bath cutoffvc .
This formula gives the temperature dependence of the re
malization factorz5exp(2^f̂2&). The second integral di-
verges fors<2, becausez50 for these cases, in contrast
T50 wherez50 only for s<1. Again, this results in com-
plete absence of the interference effect in the tunneling
G(V,w) @becauseP2(E) vanishes#. It may seem surprising
that an infinitesimally small temperature can yield such
drastic qualitative change~for 1,s<2), compared to the
zero-temperature case, since the difference should be ob
able only at very large timest@1/T. However, it must be
remembered that our analysis is carried out for the limitG0
→0, where the average decay time of the given state
inifinitely large. In other words, the limitsT→0 and G0
→0 do not commute for such relatively strong baths.
finite G0, the transition from one to the other case shou
turn out to be smooth, but this goes beyond the pres
analysis.

Apart from the change inz with temperature, there ar
two other important differences to the caseT50. First of all,
even atV→0 the electron may emit energy into the bath, d
to the thermal smearing of the Fermi surface in the le
~lifting of Pauli blocking!. Second, it may now also absor
some energy during the tunneling process. Both facts will
general, lead to a finite tunneling decay rate atw5p, V
→0 for any bath, where, atT50, the rate had vanished i
any case.
5-8
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We can approximate the visibilityy at V→0 and finiteT
by using expansion~24!. Inserting the resulting expression
for g (2) ~14! into y5g2 /g, we obtain

y~T,V→0!'124E de^f̂f̂&e f ~e!. ~33!

We evaluate the integral for a power-law bath spectrum
the limit T!vc,

E de^f̂f̂&e f ~e!5E
0

`

de
^f̂f̂&e

T50

sinh~be!

'2avc
12sE

0

`

de
es22

sinh~be!
. ~34!

This yields

12y~T,V→0!'32aS T

vc
D s21S 1

2
222sDG~s21!z~s21!,

~35!

whereG is the Euler gamma function, andz the Riemann
zeta function. Therefore, the decrease of the visibility w
increasing temperatureT ~and V→0) is governed by the
same power law as that for increasing bias voltageV at T
50, see Eq.~29!.

VI. DISCUSSION OF THE RESULTS

The following discussion relates to the results obtain
for T50, which are plotted in the figures.

In Fig. 3, several different types of bath spectra^F̂F̂&E are
shown. Cases a, b, d, and e are power laws of the form g
in Eq. ~25!, for a cutoff frequency ofvc51. The last two~d,
e! are of Ohmic type (s51, z50), which corresponds
physically to gate voltage fluctuations due to Nyquist noi
Case c represents a bath with an excitation gap~for example,
optical phonons!, with a spectrum given by an inverted p
rabola. In the limit of infinitely small spectral bandwidth,
would correspond to the single harmonic oscillator~Einstein
mode! discussed above. Case b, with a bath spectrum ri
as v3, corresponds to the experimentally relevant case
piezoelectric coupling to acoustic phonons, which was de
mined to be the major inelastic mechanism in the exp
ments of Ref. 12 on double dots in GaAs~see Ref. 16 for a
theoretical analysis deriving this spectrum for waveleng
larger than the dot distance!. The spectra for the first thre
cases~a, b, c! have been chosen to give the same renorm
ization factor,z51/e. The same figure shows the resultin
functionsP(E) andP2(E). These have been obtained usi
the integral equation described in Refs. 32 and 36. We re
that the low-energy behavior ofP(E) is given by ^f̂f̂&E

5^F̂F̂&E /E2 for the cases withzÞ0, where perturbation
theory may be applied. In case c, the alternating signs of
different contributions toP2(E) may be observed, whos
physical meaning has been explained above for the limi
case of the harmonic oscillator.

We now briefly mention some numerical estimates for
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bath strengths as they may occur in experimental situatio
In GaAs, the lack of inversion symmetry leads to piez

electric fields proportional to the lattice deformation, who
effect on electrons at low frequencies is much stronger t
that of the usual deformation potential~where it is only the
potential that is proportional to the deformation!. For the
piezoelectric coupling37 to acoustic phonons in GaAs, on

finds ~compare Ref. 16! ^f̂f̂&v
T505W v/(cs /d)2 for v

!cs /d, wherecs'53103 m/s is an estimate for the averag
velocity of longitudinal sound waves in GaAs, andd denotes
the distance between the quantum dots. We obtainW
5const(eh14/4p)2/(\rcs

3), where eh1451.4 eV/nm is the
single piezoelectric modulus in the cubicTd structure of
GaAs andr55.33103 kg/m3 the mass density. The numer
cal constant is of order 1 and accounts for the details of
sound wave dispersion relation as well as the orientation
the crystal axes with respect to the vector separating
quantum dots. Inserting these values,W is found to be on the
order of 0.01. In order to obtain the renormalization factorz,
the spectrum̂ f̂f̂&v must be integrated over all frequencie
~see above!, i.e., up to the cutoff frequencyvc . The effective
cutoff frequencyvc}cs /d0 is determined by the extentd0 of
the dot wave functions~for d05100 nm one obtainsvc
;50 GHz). Given the present values, and assumingd0'd,
this leads to estimates for*^f̂f̂&v dv on the order of 0.01,
yielding z5exp(2^f̂2&) near 1. Note that the distanced be-
tween the dots cancels in the estimate forz, as long as the
cutoff frequency is assumed to be given byvc}cs /d. How-
ever, asvc might be considerably larger thancs /d ~if d0
!d), one could also obtain az that deviates more strongl
from unity.

For the Ohmic bath, we may imagine the quantum d
placed inside a capacitorC connected to a circuit of resis
tanceR, such that the potential difference 2F̂ between the
dots would be given by the fluctuating voltage drop acro
the capacitor. This leads to a bath spectrum^F̂F̂&v

T50

5p(R/RQ)\2v/@11(RCv)2#, with RQ5h/e2 the quantum
of resistance. Therefore, the dimensionless coupling cons
a introduced above would be equal toa5(p/2)R/RQ ,
which can have values both larger and smaller than 1.

Finally, for optical phonons, we use the Fro¨hlich interac-
tion Hamiltonian ~Ref. 34! with a dimensionless Fro¨hlich
coupling constant ofa50.07 ~GaAs! to obtain the rough
estimate ^F̂F̂&v

T505d(v2vLO)(1 meV)2(100 nm/d0),
with vLO'531013 Hz. This yields az deviating from unity
by about 1023.

However, in the plots we have chosenz51/e for illustra-
tive purposes.

The resulting behavior ofG(w,V) at T50, calculated
from Eq. ~13!, is shown in Figs. 4 and 5. In the case
constructive interference (w50, Fig. 4!, the decay rate for
the ‘‘weak baths’’~a, b, c! starts out fromG/2G05z at V
50 and goes toG/2G05(11z2)/2 at eV/vc@1. The initial
deviation from the constant value ofz at low voltages is
given by the power lawV2(s21) contained in Eq.~28!. In
contrast, the decay rate for the Ohmic bath~d, e! starts at
G50, rising with a power law and saturating at a value
5-9
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FLORIAN MARQUARDT AND C. BRUDER PHYSICAL REVIEW B68, 195305 ~2003!
G/2G051/2, corresponding to an equal admixture of odd a
even states in the reduced density matrix of the elec
coupled to the bath. For destructive interference (w5p, Fig.
5!, the behavior of a and b at low voltages is given byVs21

@see Eq.~28!#, while the decay rate of the Ohmic bath~d, e!
remains the same as that forw50. In the special case c o
the gapped bath, we observe perfect destructive interfere
up to the excitation threshold of the bath ateV5vc , where
G(w5p,V) increases in a stepwise manner for the first tim
with the next increase ateV53vc . Note that, on the othe
hand,G(w50,V) increases at even multiples of the excit
tion gap. The difference comes about because it is only
emission of an odd number of phonons into the bath t
reveals the location of the electron, as discussed above.
feature would be absent if the two dots were coupled to
independent baths, whereas the other qualitative prope
would remain the same.

From the decay rates atw50 andw5p, we may calcu-
late the visibility y of the ‘‘interference pattern’’ that is de
fined by the dependence ofG on w. The result is shown in
Fig. 6. As we have noted before, the visibility is always ze
for the Ohmic bath. On the other hand, for the ‘‘weak bath
it is perfect~equal to 1) atV→0, due to the perfect destruc
tive interference, regardless of the suppression factorz ap-
pearing inG(w50). In general, the visibility decreases t
wards higher bias voltages before saturating at the limit
value ofz2. However, in contrast to intuitive expectation, th
decrease may be nonmonotonous, i.e., the visibility of
interference effect may actually be enhanced by increa
the supply of energy available to the electron, although
decay rateG always increases monotonously at anyV. This
is particularly striking in case c, where the visibility drop
down to zero in a certain range before rising again. T
decrease down to the exact value of 0 is related to the sp
choice of^f̂2&51 (z51/e), which gives equal strengths o
the peak atE50 and the first peak aroundE5vc , which

FIG. 6. Visibility y5(Gw502Gw5p)/(Gw501Gw5p) as a func-
tion of bias voltageV for different bath spectra~see Fig. 3!. For the
Ohmic bath~cases d, e! y[0. Dashed lines correspond to Eq.~29!.
Inset illustrates change in interference patternG(w) upon switching
on the interaction with the bath.
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then are able to cancel in the integralg2 over P2(E) that is
proportional to the visibility. However, the physical reas
for a dip in visibility is rather generic: In that energy rang
the decay rateG for w5p has already increased due
dephasing, while the blockade-type suppression of the va
of G for w50 has not yet been lifted. This is a consequen
of the even-odd effect discussed above.

VII. SEQUENTIAL TUNNELING THROUGH
THE DOUBLE DOT

Up to now, we have discussed in detail the influence
the bath on the tunneling decay rate of an electron which
been placed onto the two dots in the symmetric superp
tion. In order to complete the picture, we have to calcul
the sequential tunneling current through such a double
interference setup. This will be done by deriving and solvi
a master equation for the reduced density matrix of
double-dot system, taking into account the system-bath c
pling exactly, while the tunnel coupling is treated in leadi
order. We are interested specifically in the nonlinear
sponse, i.e., in how an increasing bias voltage helps to
stroy the phase coherence. The tunneling rates calcul
previously will serve as input to the master equation.

However, in order to facilitate the understanding of t
results, we first turn to a qualitative description of the situ
tion without the bath.

At w5p, tunneling is completely blocked, since the le
reservoir only couples to the even stateue&, while the right
reservoir couples to the antisymmetric~odd! superposition,
uo&. At w50, both reservoirs couple toue&, whereasuo& is
completely decoupled from the leads~compare the discus
sion in Ref. 27!. This means that a current may flow ifuo& is
empty. However, ifuo& is filled, the current vanishes, becau
double occupancy is forbidden in our model. Since there
no way to change the occupation ofuo&, the stationary den-
sity matrix of the double dot atw50 will be any convex
combination of these two possibilities~at T50, in the ab-
sence of other relaxation paths!. At any value ofw in be-
tween these extremes, there is always the stateuC&5(u1&
2e2 iwu2&)/A2, whose decay into the right lead is blocke
by destructive interference. As there is a nonvanishing ov
lap betweenuC& and the stateue& which is reached by tun-
neling from the left lead, one will observe an accumulati
of population inuC&, until the current is blocked again. Thi
argument holds atT50, while at finite temperatures th
electron can decay towards the left lead and make a
attempt. Therefore, in this simple picture, the stationary c
rent atT50 would be zero at anyw except forw50, where
it is undefined.

However, one has to take into account that the coupling
the reservoirs does not only lead to decay but also to
effective tunnel coupling betweenu1& and u2&. Although
this cannot change the blockade of the current atw5p ~lead-
ing only to an energy shift ofue& vs uo&), it does lift the
blockade at other values ofw. This is because the blocke
stateuC& is no longer stationary, such that an electron w
not remain there forever. The degeneracy atw50 still re-
mains. Therefore, in the ideal case without coupling to
5-10
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bath, we expect the current to vanish atw5p and to rise
towards a maximal amplitude nearw50. According to the
previous argument, atT50 this maximal amplitude will be
determined by the effective tunnel coupling between the
states.

Introducing the bath will then lead to renormalization e
fects and spoil the perfect destructive interference at hig
values of the bias voltage~or temperature!, qualitatively in
the same way as has been explained above. We will s
that the actual visibilityy I of the current interference patter
I (w) is given by a monotonous function of the visibilityy
introduced above for the tunneling rate~at symmetric bias!.

We start with the Hamiltonian that is obtained after app
ing the unitary transformation of the independent bos
model ~A5! onto our Hamiltonian~1!,

Ĥ85e8~ n̂11n̂2!1U8n̂1n̂21ĤB1ĤL1ĤR1V̂8.
~36!

Here e8 is the ~renormalized! energy of the two states
which we will take to bee850 from now on.U8 is the
interaction constant that involves both the Coulomb rep
sion as well as the effective attractive interaction induced
the bath. We assumeU,U8@T,eV, such that double occu
pancy is forbidden.

The term which we will treat as a perturbation is given
V̂8, describing the tunneling to the left and the right leads
the presence of the bath. It is the transformed version oV̂
@compare Eqs.~3! and~4! and Appendix A#, where the addi-
tional fluctuating phase factors exp(6if̂) have been intro-
duced:

V̂85 (
j 5 l ,r

(
a51,2

ĵ ad̂a1H.c., ~37!

where

l̂ 65e6 i f̂ l̂ , ~38!

l̂ 5(
k

tk
LâLk

† , ~39!

r̂ 15e1 i f̂ r̂ , ~40!

r̂ 25e2 i f̂eiw r̂ , ~41!

r̂ 5(
k

tk
RâRk

† . ~42!

As usual, the current through the device does not o
depend on the rates for electrons to tunnel into and out of
dots, but also on the stationary state which the system
sumes in the nonequilibrium situation, i.e., under an app
bias voltage.

We will now derive a master equation for the reduc
density matrixr̂ of the double-dot system, which contain
the populationsr11 ,r22 ,r00 ~‘‘0’’ denoting ‘‘no elec-
tron’’ ! and the coherencesr12 and r21 ~with r0051
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2r112r22 , ra05r0a50 for aÞ0, and r215r12* ).
We cannot simply use the standard kind of master equat
since we have to deal with two degenerate levelsu1& and
u2&, and it is important that a tunneling event may creat
coherent superposition ofu1& and u2& ~for example, the
even stateue&). Such a master equation—for degenera
levels—has also been employed in Ref. 11~without coupling
to the bath, and evaluated in the linear-response regime!. The
equation is different from that employed in the ‘‘orthodox
theory of sequential tunneling, where no coherent superp
tions are involved. Note that for a finite tunnel coupling t
levels could be treated as degenerate as long as their e
getic distance is much smaller than the level broadening
to tunneling. However, as we consider the limitG0→0, we
need to have exactly equal energies. Otherwise, the energ
the hole that is created in the left electrode would betray
dot state which the electron has entered, thus preventing
coherent superposition to form.

Given the initial reduced density matrixr̂(0), andassum-
ing the state of the environment~bath and reservoirs! to be
independent of the electronic state on the dot att50, we
obtain the time evolutionr̂(t) by tracing over the environ-
mental degrees of freedom~‘‘ E’’ !,

r̂~ t !5tr EF T̂expS 2 i E
0

t

ds V̂8~s! D r̂~0! ^ r̂E

3 T̃̂expS i E
0

t

ds V̂8~s! D G
5 r̂~0!2E

0

t

dt1E
0

t1
dt2 tr E@V̂8~ t1!V̂8~ t2!

3 r̂~0! ^ r̂E1H.c.#1E
0

t

dt1E
0

t

dt2

3tr E@V̂8~ t1!r̂~0! ^ r̂EV̂8~ t2!#1•••. ~43!

Physically, by using factorized initial conditions, we n
glect correlations between subsequent tunneling ev
which could be due to excitations in the electrodes or in
bath. Since the tunneling rate is very small, these excitati
will have traveled away from the double dot until the ne
event takes place. The entanglement between electron
bath~discussed in the previous sections! would preclude fac-
torized initial conditions, if it were not treated indirectly i
this approach~via the unitary transformation!. Note that we
do not have to make any secular approximation at this po
unlike the usual derivation of a master equation.38 It turns
out that all contributions only depend on the time differen
t12t2 anyway, because the dot levels are degenerate. Th
fore, in the long-time limitt→`, the integration over (t1
1t2)/2 results in a factort, and the endpoints of the integra
over t12t2 may be extended tò . This yields the desired
master equation that will determine the stationaryr̂, as well
as the current, in the limit of weak tunnel coupling. Som
details of the derivation are provided in Appendix B. We al
point out that it is possible to handle even the case of n
5-11
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degenerate levels correctly~at least for the case without th
bath!, by omitting the secular approximation from th
outset.39

In order to abbreviate the resulting expressions, we in
duce the following definitions for the effective in- and ou
tunneling rates as well as the effective tunnel couplings g
erated by the electrodes:

gL(2)[GL0E de@12 f L~e!#P(2)~2e!, ~44!

gL(2)
in [GL0E de f L~e!P(2)~e!, ~45!

DL[2
GL0

p E
2`

L

de@12 f L~e!#E dv
P2~v!

e1v
, ~46!

g̃L2[gL2@P° P̃#5gL21 iDL . ~47!

Analogous definitions hold forL°R.
Equation ~44! is equivalent to definition~14! used for

g (2) in previous sections. Note that the effective tunnel co
pling DL(R) depends onP2 , because it arises from trans
tions between the statesu1& and u2&, via an intermediate
lead state. In the expression forDL(R) , the energy depen
dence of the density of states and the tunnel coupling to
reservoir electrode should be kept in order to have a con
gent integral. We will take this into account by introducin
an effective upper energy cutoffL in the integral.

One might wonder why the effective tunnel couplin
DL(R) depend on the occupation of electron states in the
ervoirs. After all, in the noninteracting case, it is possible
calculate such a change of the effective single-part
Hamiltonian prior to filling in the electron states. Altern
tively, in a calculation that already takes into account oc
pation factors, there would be two contributions which a
up to an integral that does not depend on the Fermi funct
However, we consider the interacting caseU5`, such that
~even without the bath! one of these contributions is missin
~since it would involve intermediate states with double oc
pancy!. The resulting logarithm is analogous to that whi
appears in the Kondo problem. This effective tunnel coupl
has also been discussed in Ref. 23, for the case witho
bath. There, the upper cutoffL was provided by the Cou
lomb coupling U, since for higher energies double occ
pancy is no longer forbidden and the noninteracting c
takes over~where two contributions arise that cancel ea
other!. If we take the limitU→`, thenL will be set by a
cutoff in the tunnel matrix elements~or the electron reser
voir’s density of states!.

The general master equation for the reduced density
trix of the double dot, derived in the limit of weak tunn
coupling but arbitrary electron-bath coupling, follows by i
serting definitions~44!–~47! into Eqs.~B2! and ~B3!:

ṙ1152r11~gL1gR!1r00~gL
in1gR

in!

2
r21

2
~eiwg̃R21g̃L2!2H.c., ~48!
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ṙ2252r22~gL1gR!1r00~gL
in1gR

in!

2
r12

2
~e2 iwg̃R21g̃L2!2H.c., ~49!

ṙ1252r12~gL1gR!1r00~eiwgR2
in 1gL2

in !

2
r11

2
~eiwg̃R2* 1g̃L2* !2

r22

2
~eiwg̃R21g̃L2!.

~50!

The ingredients of the master equation obtained here m
be interpreted as follows:

One part of the right-hand side corresponds to the unit
time evolution generated by the effective tunneling Ham
tonian,

Ĥe f f
T 5 1

2 ~eiwDR1DL!u1&^2u1H.c. ~51!

Furthermore, the in-tunneling contributions in the equ
tions forr11 andr22 depend onP(E), while that forr12

is determined byP2(E), since it describes the creation of
coherent superposition ofu1& andu2& ~which is hindered by
the bath!. This term would be absent in the usual mas
equation. In particular, ifgL2

in →gL
in , which will be the case

at T50 for vanishing bias between the dots and the l
electrode, an electron tunneling from the left lead will end
in the coherent superposition wherer125r115r22 . Tak-
ing into account that we are working in a transformed ba
this describes just the entangled state~7!, confirming the
starting point of our earlier discussion. Note that the o
tunneling contribution forr11 also depends onr12 , for
example. This reflects the fact that a superposition betw
the two states may be blocked from decaying into the le
while each state can decay separately.

The stationary density matrix is obtained by demand
dr̂/dt50 ~and using the relationsr00512r112r22 and
r215r12* ). This will give us the density matrix in zeroth
orderG0

0 in the bare tunnel coupling, which we need to ca
culate the current in leading orderG0

1.
We can obtain the current from the contribution of the l

electrode to the changeṙ111 ṙ22 in the double-dot occu-
pation ~i.e., keeping only terms that stem from the left ele
trode in the master equation!. This is equal to the right-going
current in the stationary limit:

I

e
5~ ṙ111 ṙ22!L52r00gL

in2gL~r111r22!

22gL2 Re@r12#. ~52!

An alternative way of deriving the current would be
start from the general Meir-Wingreen formula40 which ex-
presses the current in terms of the exact Green’s function
the double dot, to be calculated in presence of the tun
coupling and the bath. This has been the approach of Re
for the case without the bath, and we have checked Eq.~52!
to give the same result in that case.
5-12
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VIII. EVALUATION OF THE SEQUENTIAL TUNNELING
CURRENT AND THE VISIBILITY

In order to evaluate the current as a function of tempe
ture T, bias voltageV, and phase differencew, we will now
specialize to the case of symmetric bias and left-right sy
metric tunnel couplings (GR05GL05G0). All essential fea-
tures~in particular, the perfect destructive interference in a
sence of the bath! are independent of this assumption. W
will find that the current is symmetric underw°2w even
for the nonlinear response considered here, due to the s
metry of the model~compare Ref. 11 for a systematic anal
sis of phase locking in a variety of interference geometrie!.

We find from Eqs.~44!–~47!, using f (e)512 f (2e),

gR(2)5gL(2)
in 5g (2)[G0E de f ~e2m!P(2)~e!, ~53!

wherem5eV/2 is the chemical potential of the left reservo
This is definition~14!, with eV replaced bym5eV/2 ~since
we deal with the symmetric bias case!. Furthermore, we
use the condition of detailed balance,P(2)(2E)
5exp(2bE)P(2)(E) ~see, for example, Ref. 32!, which leads
to

gL(2)5gR(2)
in 5e2bmg (2) . ~54!

The effective tunnel couplings are still different~because
of the different Fermi distributions!,

DL(R)52
G0

p E
2`

L

de f @2~e7m!#E dv
P2~v!

e1v
. ~55!

The lower sign belongs to the right electrode.
For the special case ofT50, electrons always enter from

the left and go to the right, such that we havegL5gL2

5gR
in5gR2

in 50 andgR(2)5gL(2)
in 5g (2) , with

g (2)5G0E
0

m

de P(2)~e!. ~56!

The effective tunnel couplings are, atT50,

DL(R)52
G0

p E dv P2~v!lnF L1v

um6vuG . ~57!

Note that, without any bath present,DL(R) will have a
logarithmic singularity atm→0, for T50. The upper cutoff
L will be given by the minimum of the Coulomb repulsio
energyU and the bandwidth of the reservoir’s electronic e
ergy band~or by some cutoff in the tunnel matrix elements!.
For the purposes of our discussion, we assumeL@m,v.

In the limit of high bias voltages (v!L,m), we obtain
effective tunnel couplings whose magnitude goes asz2 and
decreases logarithmically with increasingm,

DL'DR'2
G0

p
lnFLm G E dv P2~v!52z2

G0

p
lnFLm G .

~58!
19530
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By solving the master equation for the stationary dens
matrix and inserting the result into Eq.~52!, we obtain the
expression for the current through the double dot in terms
all of the quantities mentioned previously. In general~at ar-
bitrary T), it is found that the current may be written as th
product ofg with a dimensionless function of the phase d
ferencew and the ratiosy5g2 /g, dL(R)5DL(R) /g, and
bm,

I 5egI 0@w,bm,y,dL ,dR#. ~59!

The complete expression forI 0 is very cumbersome, al
though it may be found analytically by straightforward sol
tion of the master equation~it is listed forT50 in Appendix
C!. Therefore, let us first discuss the situation without co
pling to a bath. In that case, we obtain

dL5dR[d52
G0

p E
2`

L de

e
f ~m2e! ~60!

and g5g25G0f (2m). The current turns out to be~with
l[e2bm)

I

eg
5

4~12l!~d21l!cos2S w

2 D
3d212~11l1l2!13d2 cos~w!

. ~61!

Several points should be noticed about this express
First, the destructive interference atw5p remains perfect
regardless of temperature, because there are no cur
carrying states at all. At zero temperature (l50), the maxi-
mal amplitude of the current isI max/eg52d2/(3d211),
which vanishes when the effective tunnel couplingd goes to
zero. This has been explained above as a consequence o
possible transition into a current-blocking state, which c
only be undone by the effective tunnel coupling. At fini
temperatures (l.0), the maximal current is nonzero eve
for d→0, where it approaches the value ofI max/eg
52l(12l)/(11l1l2). This has a maximum at aroun
T;m. It vanishes for larger temperatures asm/T, which is
to be expected for tunneling through a localized level~de-
creasing derivative of the Fermi function!. In addition, the
shape ofI (w) depends ond andl, with a sharper minimum
at w5p in the case of largerudu. In the limit of d→0, the
current becomes a pure cosine. At finite temperatures~as
well as foryÞ1) the behavior is similar, except for the finit
amplitude of the current atd→0.

Now we turn to the situation including the bath. The ge
eral expression for the current is very lengthy, and we w
omit it here. However, it turns out that the maximal a
minimal current are functions merely ofy and l5e2bm,
while they are independent ofdL,R .

The amplitude of the minimal current~at w5p) is given
by

I ~w5p!

eg
5

2~11l!~12l2!~12y2!

3~11l!21~12l!2y2
, ~62!

while the maximal current~at w50) is
5-13
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I ~w50!

eg
5

2

3
~12l!. ~63!

It should be noted that expression~61! for the current in the
ideal case seems to contradict this simple formula. Howe
that is because the limitsw→0 andy→1 do not commute.
This is shown in Fig. 7. It means that forT50 and dL,R
→0 the maximal current calculated according to Eq.~63!,
which is independent ofdL,R , and the ‘‘typical’’ amplitude
of the current (}dL

2) may deviate strongly. The peculiar be
havior nearw50 seems to be connected to the physical
generacy of the casew50, y51 which has been discusse
above.

From these formulas, we obtain the visibility, defined
terms of the current,

y I[
I ~w50!2I ~w5p!

I ~w50!1I ~w5p!
. ~64!

It can be expressed entirely by the visibilityy defined
previously in terms of the tunneling rates@Eqs. ~16! and
~17!#, as well as the temperature-dependent factorl5e2bm

(m5eV/2),

y I5
2~11l1l2!y2

3~11l!22~114l1l2!y2
. ~65!

This is a monotonous mapping ofy to the interval@0,1#,
with only a weak dependence onl. The other parameter
dL ,dR only modify the amplitude and shape of the curre
patternI (w). Therefore, all the statements about the visib
ity made in the previous discussion of the tunneling de
out of the symmetric superposition continue to hold up
this monotonous transformation~and with eV replaced by
m5eV/2). In particular, atT50, we have

FIG. 7. The currentI for different values of the visibilityy
5g2 /g50.8,0.9,0.99,0.999,0.9999~from top to bottom!. The lim-
its w→0 andy→1 do not commute. Other parameters held fixe
l5e2bm50.2 anddL5dR521.
19530
r,

-

t
-
y

y I5
2y2

32y2
. ~66!

The dependence of the visibilityy I on the bias voltage
eV52m, the temperatureT, and the bath spectrum is dis
played in Fig. 8, for bath spectra of type b and c. The d
crease ofy I at m50 with increasing temperatureT in case b
is well approximated by Eq.~35! for y(T,V→0) @employing
the relation y I5y2/(22y2) for m50]. @The functions
P(2)(E) for finite temperatures have been calculated num
cally using the fast Fourier transform, from the defining E
~12!#.

Note that for bath spectra withz50 ~i.e., exponents<1
at T50 ands<2 atT.0) the visibility vanishes entirely~at
any V), as has been explained in the previous sections.
have already pointed out that this picture is expected
change if one treats the tunnel coupling to higher ord
However, we have to leave this analysis for the future. O
possible approach to a nonperturbative~but still approxi-
mate! treatment of both the tunnel-coupling and the syste
bath coupling at the same time seems to be the nume
‘‘real-time renormalization group’’ scheme.41

IX. CONCLUSIONS

We have analyzed dephasing in tunneling through t
parallel single-level quantum dots with a fluctuating ener
difference between the dots. The disappearance of pe
destructive interference in a symmetric setup has been ta
as a criterion for ‘‘genuine’’ dephasing, as opposed to m
renormalization. The coupling to the bath has been taken
account exactly, via the ‘‘independent boson model’’ and
concepts of the ‘‘P(E) theory’’ of tunneling in a dissipative
environment, while the tunnel coupling has been treated
leading order.

:

FIG. 8. The visibility y I of the patternI (w), for piezoelectric
coupling to acoustic phonons~b! ~solid line! and for the optical
phonon bath~c! ~dashed line!, plotted vsm5eV/2, at different tem-
peraturesT/vc50.01, 0.05, 0.1, 0.2, 0.4, 0.5~top to bottom!. Inset
depicts energy diagram for tunneling in this situation.
5-14
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We have discussed in detail the behavior of the den
matrix of a single electron that has been placed in a su
position of the two dot levels. The bath measures~to some
extent! the position of the electron, such that the electro
density matrix becomes mixed. However, this allows dir
conclusions about the ‘‘incoherent current’’ only in the lim
of high bias voltages, corresponding to a fast ‘‘projectio
measurement of the electron’s state. For lower voltages,
the low-frequency part of the bath spectrum contributes
the lifting of destructive interference. Thus, for any ‘‘wea
bath,’’ whose spectrum falls off fast towards low frequenci
the visibility of the interference effect becomes perfect in
limit of low bias voltagesV and temperaturesT, when the
energy supplied to the electron is vanishingly small. This
the case for a fluctuation spectrum}vs with s.1 (s.2) for
T50 (T.0). The visibility may show a nonmonotonou
behavior as a function of bias voltage. For ‘‘stronger’’ spe
tra ~smaller exponents), including the Ohmic bath (s51),
there is the well-known zero-bias anomaly~suppression of
the tunneling current at low voltages!, which affects equally
both the cases of constructive and destructive interfere
Therefore, the visibility vanishes exactly at any bias volta
in our approach, where the tunnel coupling has been tre
only in leading order. Although there is always a suppress
of the magnitude of the tunnel current for the case of c
structive interference, this may be interpreted as a m
renormalization of the effective tunnel coupling, since t
perfect destructive interference is not affected and sinc
occurs even for a bath with an excitation gap. The full d
pendence of the sequential tunneling currentI (w) on volt-
age, temperature, bath spectrum, and phase differencew be-
tween the interfering paths has been derived by setting u
master equation for the state of the double dot~which is
special due to the degeneracy of dot levels!.

The major questions that have remained open in
analysis are related to the behavior at stronger tunnel c
pling. In particular, the perfect destructive interference m
also be overcome by correlated tunneling of several parti
~with an intermediate ‘‘virtual’’ excitation of the bath!, and
this process will therefore contribute to dephasing, althou
it is expected to be suppressed strongly at low voltages
temperatures. Likewise, the visibility for the Ohmic bath~or
other strong baths!, which turns out to be zero in the prese
approximation, may be changed at low bias voltages
temperatures comparable to the tunneling rate. This will
quire other methods to analyze the competition betw
strong tunnel coupling and system-bath coupling.
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APPENDIX A: INDEPENDENT BOSON MODEL

For reference purposes, we describe here the cano
transformation employed in the independent boson mo
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See Ref. 34 for more details~concerning the case of at mo
a single particle!. Consider a set of electronic levelsj that
couple to bath operatorsF̂ j which are assumed to be linear
the coordinates~and momenta! of a bath of harmonic oscil-
lators,ĤB ,

Ĥ5(
j

~« j1F̂ j !n̂ j1ĤB . ~A1!

Here « j is the unperturbed level energy andn̂ j5d̂ j
†d̂ j is

the number of particles on levelj. The fluctuating fields are
characterized completely by their power spectra atT50,

^F̂ l F̂ j&v
T50[

1

2pE2`

1`

dt eivt^F̂ l~ t !F̂ j&
T50. ~A2!

Here we will restrict ourselves to the case where the d
ferent variables commute,@ F̂ l ,F̂ j #50. As a consequence
the spectrum̂ F̂ l F̂ j&v

T50 is real valued, but there may still b
correlations.

The most straightforward solution proceeds via a unit
transformation34 ~essentially a gauge transformation!. One
introduces the fluctuating phasesf̂ j , whose time derivatives
are given by theF̂ j ,

ḟ̂ j[ i @ĤB ,f̂ j #52F̂ j . ~A3!

The exponent generating the unitary transformation is
fined as

x̂5(
j

f̂ j n̂ j . ~A4!

Applying the transformation to the Hamiltonian in Eq
~A1! yields

Ĥ85e2 i x̂Ĥe1 i x̂5(
j

« j n̂ j2(
l j

Jl j n̂l n̂ j1ĤB . ~A5!

The coupling between system and bath has been el
nated, resulting in an effective interaction between partic
on the different levels, with

Jl j 5E
0

`

dv
^F̂ l F̂ j&v

T50

v
. ~A6!

The Jl j are real valued and independent of temperatu
For l 5 j they describe energy shifts of single-particle leve
The canonical transformation also changes the particle a
hilation and creation operators,

d̂ j85e2 i x̂d̂ je
1 i x̂5ei f̂ j d̂ j , ~A7!

andd̂ j8
†5d̂ j

†e2 i f̂ j . This will affect all Green’s functions and
therefore, also the time evolution of the single-particle de
sity matrix. In addition, it becomes important if a tunnelin
part is added to the Hamiltonian, where the operatorsd̂ j

(†)

appear, such that they have to be transformed accordin
5-15
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Eq. ~A7!. However, since the phasesf̂ j and the particle op-
eratorsd̂ j

(†) commute~even at different times, when evolve

according toĤ8), the evaluation of Green’s functions alway
splits into a part referring to the particles and a sepa
average over the bath operators. This is the major simp
cation brought about by the ‘‘diagonal coupling’’ betwee
system and bath.

APPENDIX B: DETAILS OF THE MASTER
EQUATION DERIVATION

The general expression for the time evolution of the
duced density matrix, Eq.~43!, may be evaluated by notin
that in the expectation values of productsV̂8V̂8 only those
contributions remain which combined̂a ĵ a ~tunneling out of
the dots! with ĵ b

† d̂b
† ~tunneling onto the dots!,

dr̂

dt
52 (

a,b, j
E

0

`

ds$d̂a~s!d̂b
† r̂^ ĵ a~s! ĵ b

†&1H.c.

1d̂a
†~s!d̂br̂^ ĵ a

†~s! ĵ b&1H.c.%

1 (
a,b, j

E
2`

1`

ds$d̂a~s!r̂d̂b
†^ ĵ b

† ĵ a~s!&

1d̂a
†~s!r̂d̂b^ ĵ b ĵ a

†~s!&%. ~B1!

~Note that there is no minus sign from fermion operator
ordering in this factorization of dot and reservoir part, as
reservoir fermion operators are dragged past an even num
of dot operators; compare, e.g., Ref. 41; alternatively, i
also possible to define them as commuting operators, s
there is no interaction between them.! We get for the indi-
vidual matrix elements~for brevity, the summation overj
5 l ,r is implied!:

ṙ1152r11E
2`

1`

dŝ ĵ 1
† ~s! ĵ 1&1r00E

2`

1`

dŝ ĵ 1 ĵ 1
† ~s!&

2r21E
0

`

dŝ ĵ 1
† ~s! ĵ 2&2H.c., ~B2!

ṙ1252r12E
0

`

dŝ ĵ 1
† ~s! ĵ 1&2r12E

0

`

ds^ ĵ 2
† ĵ 2~s!&

1r00E
2`

1`

dŝ ĵ 2 ĵ 1
† ~s!&2r11E

0

`

ds^ ĵ 1
† ĵ 2~s!&

2r22E
0

`

dŝ ĵ 1
† ~s! ĵ 2&. ~B3!

The equation forr22 follows from that forr11 by in-
terchanging indices1 and2.

Now we have to evaluate environment correlators, suc
the prefactor ofr11 in the second equation~e.g., for j
5r ),
19530
te
-

-

-
e
er

s
ce

as

^ r̂ 1
† r̂ 2~s!&5eiw^e2 i f̂e2 i f̂(s)&^ r̂ †r̂ ~s!&. ~B4!

By introducing the bare tunneling ratesGR(L)0

52pDR(L)^utk
R(L)u2& @compare Eq.~5!#, we get, using Eq.

~42! ~rememberr̂ createsa reservoir electron!,

^ r̂ †r̂ ~s!&5
GR0

2p E de@12 f R~e!#e1 i es. ~B5!

Here we have neglected any energy dependence of
tunnel-coupling and electrode density of states, assuming
relevant voltages and temperatures to be sufficiently sm
~but see below!. The bath correlator in Eq.~B4! evaluates to
exp@2^f̂f̂(s)&2^f̂2&#, which can be expressed by using de
nition ~12! for P2(v). There, we have to sets°2s because
of the reversed order in thef̂ correlator,

e2^f̂f̂(s)&2^f̂2&5E dv P2~v!eivs. ~B6!

Therefore, we obtain

E
0

`

dŝ r̂ 1
† r̂ 2~s!&5eiw

GR0

2 E de@12 f R~e!# P̃2* ~2e!,

~B7!

with

P̃2~e!5
1

pE dv P2~v!E
0

`

ds ei (e2v)s

5P2~e!1
i

pE dv
P2~v!

e2v
. ~B8!

The integral in the second line is understood as
principal-value integral. By using definitions~44!–~47! intro-
duced in the main text, Eq.~B7! becomes equal to
exp(iw)g̃R2* /2. Other terms are evaluated similarly.

APPENDIX C: CURRENT EXPRESSION
FOR SEQUENTIAL TUNNELING THROUGH

THE DOUBLE DOT

At T50, for the symmetric situation, the currentI is
given by I 5eg I 0@y,dL ,dR#, with

I 0@y,dL ,dR#52@2dL
21~y221!~11dR

2 !

12dLdR~y221!cosw1dL
2y2cos2w#

3@23dL
212dLdRy21~11dR

2 !~y223!

12@y2~11dL
21dR

2 !1dLdR~y223!#cosw

1dL~dL12dR!y2cos2w#21. ~C1!
5-16
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