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Dephasing in sequential tunneling through a double-dot interferometer
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We analyze dephasing in a model system where electrons tunnel sequentially through a symmetric interfer-
ence setup consisting of two single-level quantum dots. Depending on the phase difference between the two
tunneling paths, this may result in perfect destructive interference. However, if the dots are coupled to a bath,
it may act as a which-way detector, leading to partial suppression of the phase coherence and the reappearance
of a finite tunneling current. In our approach, the tunneling is treated in leading order whereas coupling to the
bath is kept to all orderfausingP (E) theory]. We discuss the influence of different bath spectra on the visibility
of the interference pattern, including the distinction between “mere renormalization effects” and “true dephas-

ing.”
DOI: 10.1103/PhysRevB.68.195305 PACS nuntber73.23.Hk, 71.38-k, 03.65.Yz

[. INTRODUCTION renormalization effects” and how is it possible to distinguish
these from “true” dephasing? Under which circumstances is
The destruction of quantum-mechanical phase coherendbe suppression of off-diagonal terms in the reduced system
due to coupling of a system to an irreversible bath is a subdensity matrix itself already a good indicator of dephasing?
ject important not only because of its connection to fundaHow reliable are simple arguments based on golden rule and
mental issuegthe quantum measurement process and th€nergy conservation, related to the connection between
quantum-classical transitipmut also because of its role in dephasing and the trace left in the bath by the particle
the suppression of phenomena resulting from quantum intef“Which-way” detection? When does perturbation theory
ference effects, such as those studied in mesoscopic physitail qualitatively, what is the influence of non-Markoffian
(including Aharonov-Bohm interference, weak localization, b€havior? How does the dephasing rate depend on the energy
and universal conductance fluctuatipnRecently, the field supplied by an external perturbati¢iiequencies excited in
of mesoscopic physics in particular has seen a revival ofinear response, bias voltage applied in a transport measure-
interest in these questions, due to surprising experimentaneny? What is the influence of the Pauli principle in a sys-
findings: concerning a possible saturation of the weak-tem of degenerate fermions? How strong are the qualitative
localization dephasing rate at low temperatures, which havéifferences in behavior resulting from different bath spectra?
not yet been explained convincingly. Apart from investiga- I this work, we will present a model that is able to give
tions dealing directly with the problem of weak localization insights into most of these questions.
in a disordered system of interacting electrons, several toy Our model represents a kind of mesoscopic double-slit
models have been analyZed to answer the question Setup. It consists of two single-level quantum dots which are
whether decoherence at zero temperature is possible at afnnel coupled to two leads, with a possible phase difference
contrary to the expectations based on perturbation theoretween the two interfering patlisee Fig. 1. Due to de-
One of the difficulties faced by models involving discrete Structive interferencéat ¢= ), the tunneling current may
levels consists in the fact that destruction of phase coherend® suppressed completely, provided the two dot levels are
for a superposition of excited states of finite excitation en-degenerate and the setup is symmetric in the two interfering
ergy is perfectly possible even at zero temperature, due tBaths. Coupling the dots to a bath may partly destroy the
spontaneous emission of energy into the bath. It is only in th@hase coherence and reenable the electrons to go through the
zero-frequency limit of the linear response in a system with a
continuous spectrunirelevant for weak localization and |-|—>
other equilibrium transport experimeptthat perturbation
theory suggests in general a vanishing dephasing rate, be-
cause then the perturbation does not supply energy to the
system, such that &t=0 the system is not able to leave a
trace in the bath, which is considered to be the prerequisite
for decoherence.
Some questions of interest concerning dephasing, espe-
cially in connection with mesoscopic systems and low tem- fup
peratures, are the following ones. How reliable is the simple | > (o

classical picture of a phase being randomized by fluctuating

external noise? In particular, what is the meaning of the

zero-point fluctuations of the bath in this picture, as opposed FIG. 1. The double-dot “double-slit” setup, with a fixed phase
to the thermal fluctuations dominating at frequencies lowedifference ¢ between the two paths and under the influence of a
than the temperature? When do the former lead to “merdluctuating environment.
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setup. For a symmetric setup, with equal coupling strengthwill interpret the results in terms of “renormalization ef-
between the bath and each of the two dots, mere renormafects” and “true dephasing”(Sec. V). Building on these
ization effects will not be able to lift the destructive interfer- sections, we will finally derive a master equation for the case
ence in this way. Thus, a finite tunneling current may beof weak tunnel couplingSec. VII), which allows us to cal-
taken as a genuine sign of dephasing. This criterion fofulate the sequential tunneling current as a function of bias
dephasing has been employed before in a model of depha%oltage, temperature, and phase differe(ec. VilI).
ing due to spin-flip transitions in first-order tunneling trans- The most important results derived in this work are the
port through one or two dofd,as well as for cotunneling following. Equation(13) is the general_expressmn for the
through an Aharonov-Bohm ring coupled to a fluctuatingpha?’e'dep?nde”t tunneling decay ratg in presence of the fluc-
magnetic flux tuating environment. It forms_ the ba5|p input for th(_a master
The influence of phonons on sequential tunneling througtfduation[Egs. (48)—(50)], which describes sequential tun-
two quantum dotsn serieshas been studied experimentally N€ling through the double dot, where the resulting current
in Ref. 12. There, inelastic transitions induced by piezoelecc@n be obtained from ES52). The visibility of the interfer-
tric coupling to acoustic phonons in GaAs have been esserfC€ pattern, which is defined by the phase dependence of
tial for obtaining a finite current through the two off-resonantth€ current, is given in Eq(65). It is connected with the
dot levels. This kind of setup has been analyzed theoretically/iSibility obtained from the phase dependence of the tunnel-
in Refs. 13—19. On the other hand, we will be analyzing'"d rate itself[Egs. (16) and (17)].
tunneling through two dots placed parallel. Early theoret-
ical investigations of this problertwithout a fluctuating en- Il. THE MODEL
vironmen} include Refs. 20 and 21. Recently, a parallel-dot
tunneling setup has been realized experimentally in Ref. 22, We consider a Hamiltonian describing two degenerate
with an emphasis on spectroscopy of the “molecular statessingle-level quantum dots, with respective single-particle
of the doubledot systertwith interdot tunneling presentln  stateg +) and|—) (spin is excluded for simplicity, since we
our model of an interference setup, we choose to describe are interested in dephasing of the electronic moti&ach of
situation without tunneling between the ddksit with Cou-  them is tunnel coupled to two electrodésith the same
lomb repulsion. In addition, we want to concentrate on in- strength for both dojsbut involving a possible phase differ-
terference effects in the orbital motion and therefore consideence between the tunnel amplitudsse Fig. 1 In addition,
the case of spin-polarized transport. This model—in the abthe potential difference between the two dots is given by a

sence of a fluctuating environment—has been investigatefiyctuating fieldF, whose dynamics is derived from a linear

previously in Ref. 23. Other recent theoretical works con-path. It represents the fluctuations due to phonons or Nyquist
cerning tunneling through dots in a parallel geometry havepise. The system-bath coupling strength is taken to be the
mostly investigated spin and Kondo physfts:” but also  same for both dots, while the sign is opposite, such that the

dephasing by spin-flip transitiors Some works have treated path can distinguish between an electron being or tor
the influence of phonons in tunneling interference -):

structure€®2°but no systematic discussion of dephasing an
the visibility of the interference pattern had been given.

Some while ago, dephasing Impnequilibriumcurrent noise H=e(n,+n_)+F(n,—n_)+Un,n_
has been investigated experimentillgnd theoreticall§* in PN ~ A
a setup with a single quantum dot placed into one arm of an +HL +HgTHg+V. )

Aharonov-Bohm interferometer.

Our analysis of dephasing in sequential tunneling through Heren..
a double dot will take into account the system-bath couplin 0 £ The bath Hamiltoniafi. d ib f
exactly, while we treat the tunnel coupling only in leading 0 0 or1). The a amiltoniairg describes a set o
order. The presence of the Fermi sea in the leads introducé‘g1COu|OIeOI harmonic o§C|IIators. It governs the dynamics of
some aspects related to the Pauli principle and to the behathe fluctuating potentiat, which is assumed to be linear in
ior of systems with a continuous spectrum that cannot béhe oscillator coordinates. The coupling between electron and
analyzed in simpler models of dephasing in discrete systemath is of the form of the “independent boson mod#!.For
coupled to a bath. the case of exactly one electron on the double dot, and in the

The work is organized as follows: After setting up the @bsence of tunneling, it corresponds to a spin-boson model
model(Sec. 1), we will present a qualitative discussion of its With “diagonal coupling.” In this model, no transition be-
main featuregSec. Il). In particular, we will discuss the tween different levels is brought about by the bath, such that
relation between entanglement, dephasing, and renormalizRUre dephasing resultd) denotes the Coulomb repulsion
tion effects. Subsequently, we derive a general formula fonergy, which we will take to be so large that double occu-
the tunneling decay rate of an electron that has been plact®nCy is forbidden. Note that the degeneracy of the two dot
on the two dots in a symmetric superposition of stdfsc. levels is important in the following: It is necessary to ensure
IV). This is done by building on the concepts of tREE) c_omplet_e d_estructive interference@t 7 (compare also the
theory of tunneling in a dissipative environméf®Follow-  discussion in Sec. V]I
ing this, we will evaluate the dependence of the tunneling The termsH, andHg contain the energies of the electrons
rate on the bias voltage and the bath spet®ec. \j. We  in the left and right reservoirs:

are the particle numbers on the two déesjual
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The tunneling between the dots and the leads is described by \

V:\A/L'f'\A/R, W|th

Vr=> tRal(d.+e'*d_)+H.c. ©)
k

for the right junction, and

FIG. 2. The ground state ;) (] x_)) which the bath assumes in
V. = 2 tké’[k(a+ +d_)+H.c. (4)  the presence of an electron on diet) (|—)), shown schematically
K for a single bath oscillatofsee main tejt After the electron has
. . tunneled into the lead,y_) becomes a superposition of excited
for the l?ﬁ junction. states(dashed curve while the state]y,) represents the ground
Hered. are the annihilation operators for the two dots state of the bath in the new potential.
(n.=dd.) and the phase factor @&¢ controls the inter-
ference between tunneling events along either the upper @nce ate=m, while maximal constructive interference is
lower path. The tunneling phase difference might be thoughpresent fore=0. It should be noted that the attribution of
of as arising due to the Aharonov-Bohm phase from a magthe phase factor to one of the tunnel couplings represents a
netic flux penetrating the region between the quantum dotscertain choice of gauge, which affects the wave functions in
Note that the tunneling matrix elemenf$") are assumed the following discussion but none of the physically observ-
not to depend on the dot stdte ) or |—) in our model. This ~ able quantities that are derived as a result of the master equa-
means that the dots are close enough such that they coupletien in Sec. VII.
the same point on the lead electrodes, to within less than a For simplicity, we will assume a zero-temperature situa-
Fermi wavelength. Obviously, there could be no appreciabldion throughout the following qualitative discussion, with a
interference effect if the dots were separated by some largdtias eV>0 applied between the two dots and the lead in
distance(in which case thé dependence of matrix elements such a way that the electron is allowed to tunnel into the lead
would be different for the two statesThe same idealized (see Fig. 2 In addition, since we will describe the tunneling
assumption underlies several similar modelse, e.g., Refs. decay to the right, we will only consider the coupling to
11,23,27. The effect of an arbitrary dot separation has beerthe right lead in this section and drop the ind@for now.
discussed in some detail in Ref. 21. Without the bath and for perfect constructive interference
The present model, without the bath, has been analyze@ly=0), the tunneling decay rafé will take on its maximum
previously in Ref. 23see also Sec. IV C of Ref. L1There,  value of A", with
an orbital type of Kondo effect was found in equilibrium, for
o=, when the level energy was below the chemical poten- Io=27D{|t|?), (5)
tial. This arises because at= 7 there are two states of the ) ) )
double dot that couple only to the left and the right Iead,""hezre_D is the lead density of sztates at the Fermi energy,
respectively(denoted bye) and|o) in the following. These  (|t|*) iS the angular average ¢t|” at this energy. The bias
degenerate states form the pseudospin responsible for tQtageV does not enter in this case, as long as it is positive
Kondo effect. However, that mechanism will be irrelevant (Permitting decay. For ¢=, I' vanishes due to perfect
for our analysis, as we consider the transport situation wherd€structive interference. In general, we have
the (renormalized level energy lies between the chemical
potentials of the left and the right lead. Therefore, the degen-
Z;zz;;:zdegeggvrilzclgt;drgbe); :Egnb;ﬁz Yf*tsgﬁgiwlggi If the bath is included in the description, the following

the state coupling to the left lead would be occupiedhappens' .
at =1. First of all, the energy of a single extra electron on any of

the two dots will be renormalized from its initial value ef
since the bath relaxes to a ground state of lower energy in
lll. QUALITATIVE DISCUSSION presence of the electron. We will assume that the value of
In this and the following three sections, we first analyzehas been chosen exactly to compensate for this energy
the escape of a single electron into the right lead, where thehange, which is given byfﬁdw(ﬁﬁ)w/w (see Appendix
electron is assumed to start out in a symmetric superpositioA). Then, the energy of an electron on the ¢and the bath
of the two dot levels, which has been formed by an electrorin its new ground stajeis the same as that of the electron
tunneling onto the dots from the left lead. In the situationbeing in the lead, at the Fermi energy f=0 (for V=0).
without any bath, this is the state)=(|+)+|—))/V2. Tunneling of an electron from the dots to the lead will not
Without dephasing, the tunneling decay out of stajeis  change the bath state, but it will displace the origin of the
made impossible in the case of perfect destructive interferharmonic oscillators comprising the bath, since the coupling

I'=Ty(1+cosyp). (6)
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to F is switched off 6. —n_ changes to zejo Therefore, interference, the state) is allowed to decay into the lead, at
the original ground state of the batim presence of the elec- the maximal rate of E,. In this way, the interference-
tron) will become a superposition of excited states in the newinduced blockade of electron tunneling is lifted by dephas-
bath potentialin absence of the electron; see Fi@. @n the  ING.
other hand, since energy conservation has to be fulfilled with However, this simple picture is true only for large bias
respect to the total energy of the electrons and the bath b&oltages, when energy conservation permits any final state of
fore and after the tunneling event, only those excited batfihe bath after the tunneling event. If the maximum energy
states can be reached whose energies are not greater\than supplied to the electron is limited, the suppression discussed
the energy supplied to the electron by the bias voltage. Thigbove(for the case ofp=0) will apply again. In particular,
leads to the Coulomb-blockade typappressiorof the tun-  if the bias voltage is turned to zero, energy conservation only
neling rate at low bias voltages, fer=0. Physically, this allows the statgy,) to be reached, which is the ground state
effect is just the same as that described by Franck-Condo®f the bath in the absence of any electrons on the dots. Then,
overlap integrals evaluated between vibronic states for eledhe tunneling rate is exactly zero again, despite the fact that
tronic transitions in molecules. Qualitatively, this effect is the reduced density matrix of the electron may be mixed to a
independent of the interference setup, since it already occurong extent. The reason is the following. When the overlap
for tunneling through a single dot coupled to a bath. of the entangled stai@) with the statd x,) is taken, the two

In contrast, for the case of destructive interferenge ( overlap factors(xolx:) and (xo|x_) turn out to be the
= ’7T), the bath may actua”?nhancahe tunne"ng rate from same|f the coupling of the bath to the two dots is symmetric
its initial value of 0, since it partly destroys the phase coher{i.€., of equal strength, only of opposite sigwhich we have
ence that is a presupposition for perfect interference. Ar@ssumed in writing down the Hamiltonian, E@). There-
electron coming from the left lead will form the following fore, the electronic state resulting from the projection of Eq.
entangled state with the bath, instead of the symmetric su/) Onto|xo) is equal to the symmetric combination, whose

perposition|e)= (| + ) +|—))/\2: decay is forbidden. Thus, the combination of energy conser-
vation and Pauli blocking prevents a finite tunneling rate at
(M) + =Yy -NIV2. (7)  zero bias voltage, in spite of the mixed state of the electron

coupled to the bath. In this limit the entanglement between

Here the statefy..) denote the respective ground stateselectron and bath only leads to renormalization efféestech
of the bath for a bath Hamiltonian given tEyBiIA:, which @S the change in tunneling ratéut not to genuine dephas-

are related to each other by a parity transformatidinis ing. If the coupling were asymmetric, then destructive inter-
also means we assume by definition there to be no phaggrence C.OUIq be_ lost even without dephasimerely d_u_e_to
factor between these states; e.g., both may be assumed rﬁ)normallz_atlom Just as it WO.UId be the_ case for initially
have real-valued positive wave function8ctually, the en- asymmetric bqre tunqel couplings. That is why the.asy_mrr_]et—
tangled state considered here will be formed only if the elec!!C €ase is uninteresting for our purposes of distinguishing
tron is given barely enough energy to enter the double dot épnl_c;rmallzatlonheftfﬁcts from rea! %eprzjaswg?. to claim that
all (i.e., chemical potential of the left lead infinitesimally owever, whether we are indeed able {o clam tha
larger than the renormalized level positio®therwise, ex- de_zphasmg actually vamsh_es in the limit Of low bias voltages
cited bath states may be created even at this step. The Il depend on the behavior (?f the tunneling rate as a func-
complications will be taken care of in the complete discus-1o" of V-and on the comparison of the cases-0 and¢

sion of the sequential tunneling currei®ec. VI). There, it . ™ Here, the path spectrum, and, above all, 'tS.IOW'
will turn out that the tunneling decay rate derived in theT@duency properties, enter. In order to be able to discuss

following, based on our physically motivated ansét, is I'(V,¢) quantitatively, we will make use of the concepts of

exactly the rate that enters the full master equation. Thus, wi'€ P(E) theory of tunneling in a dissipative environment.
proceed with ansat¢’) for the initial entangled state, in or-
der to calculate the rate for such an electron to tunnel into the
right lead.

The bath measurego some extentwhich dot the elec- The tunneling ratd& will be calculated using the standard
tron resides on, such that the reduced system density matriermi golden rule, i.e., lowest-order perturbation theory in
(for the electron on the two dgtdecomes mixed and its the bare tunneling rat€,, but taking into account exactly
off-diagonal elements get suppressed by the overlap factahe path coupling. In deriving the formula fbr, it turns out
(x+|x-). Put differently, the phase factor between the twoto be useful to assume that the bath oscillatorsndbget
dot states in the wave function of the electfanitially equal  shifted in the tunneling everitinlike the qualitative consid-
to +1) becomes uncertain. Therefore, there is a finite proberations from abovebut it is rather the bath states which get
ability of displacedin the opposite direction Obviously, this amounts

to the same, as long as we are interested only in overlap
Po=(1—(x+Ix- N2 (8 integrals of different bath states after the event. To that end,

to find the electron in the antisymmetriodd) state|o)= we introduce the displacemerlt operator e&mgwhicAh trans-
(|+>_|_>)/\/§_ At o=, where tunneling decay of the fPrms the bath ground state bffg into that ofHg+F. Here
symmetric superpositiohe) is blocked due to destructive ¢ is a suitable Hermitian operator that is linear in the

IV. DECAY RATE AND CONNECTION TO P(E) THEORY
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bosonic variables of the bath. In fact, this amounts to per- +oo

forming the canonical transformation of the independent bo- F:Foj_m dE[1-f(-E+eV)][P(E)+cog¢)P_(E)].

son modef* see Appendix A. In terms of the two dot states (13)

+ and —, we haveF,=F andF_=—F, as well as¢.

=¢ and ¢_=—¢. The transformation eliminates the  The formula given here constitutes the basic expression

system-bath coupling from the Hamiltonian, but gives rise to0r the decay rate as a function of bias voltage and interfer-

modified dot operatord’, =e*'%d. in the transformed tun- ence phase. It represents the appropriate modification of
- - Eq. (6) in presence of a bath.

nel HamiltonianV, [see Eq(AT7)]. Note that for the slightly more general case of arbitrarily

We will assume the tunnel coupling to be sufficiently . L a A
weak, such that we can use lowest-order perturbation theorgorrelgted fluc'tuat|ng.potent|a|75+ anq F: attiiChAed to the
ots (i.e., an interaction of the fornt,n +F_n_), the

to calculate the tunneling decay rate \ _
function P_(E) would contain the cross correlator of the
associated phases, and¢_ , while P(E) would depend on

the autocorrelator of,. or ¢_ (assumed to be the same, for
I N i . the setup to remain symmetyicin contrast to the model
where the initial statei )' is given by the configuration in- yeatad here, such an interaction would also involve fluctua-
volving the electron residing in the symmetric SUperpositionyjqng of the sum of energies of the dot levels. However, they
on the dots, the unperturbed Fermi sea in the lead, and thg, 14 only add to the renormalization effects mentioned pre-
bath in its ground statfig). The bath ground state has be- \ioysly and do not contribute to dephasing by themselves,

come independent of the position of the electron, due 0 thgjnce ‘sych fluctuations cannot distinguish between the two
above-mentioned transformation. At finite temperatures, arihterfering paths.

additional thermal average over the initial bath state and the By using the definitions

initial state of the electrons in the lead has to be performed.

The energies and eigenstates refer to the Hamiltonian with-

out tunnel coupling. Applying the new tunneling Hamil- 7(—)Efof dE[1-f(-E+eV)]P(E), (14
tonian\A/,’? to the initial state, we obtain the following expres-
sion:

=272 [(f|VRli)I?o(Ei—Ep), 9)

we can write
I'=y+code)y-. (15

The strength of the dependencelbbn the phase may
iy e Bl \[2s B B be taken as a signature of phase coherence in our model. We
X(fgle"'?+e've "?|ig)[“0(Ef —Ef+e). (10  define the “visibility” of the interference pattern in the usual
way, by

rzwsz ltd2[1—f(e+eV)]|

Here f(-) is the Fermi function(for chemical potential
equal to zerp andE?i are the energies of the initial and final v=T" nax= Tmin)/ (Cmaxt Tmin) s (16)
bath states. The energy supplied to the bath is equal to the, . . .
energy lost by the electrofgiven by — ¢, since the renor- Which is equal to the ratio
malized dot energy is zeroFollowing the usual derivation
of the P(E) theory??>*3we express the energy-conservifg v=-"—. (17
function as an integral over time and also replace the sum Y
over lead statek by an integral over the energy= — ¢,

supplied to the bath, finally yielding The visibility v will be 1 whenever the destructive inter-

ference is perfect, and it is zero if there is no dependence of

to todt I' on ¢.
F=Fof dE[1-f(—E+eV)] —glft The effects of the bath on the decay rate are encoded in
- 2T the functionsP(E) andP _(E), whose general properties we

1 X i i X will discuss now. In the following section, we will evaluate
x—((e“¢(0+e“¢’e‘ ¢() (el ¢+ ei<pe—i¢)>_ (12) them for different types of bath spectra.

2 As usual, the functionP(E) describes the probability
(density that an electron will emit the enerdyinto the bath
(hile tunneling into the lead. It is real, non-negative, and
normalized to unity>2

At large times|t|—c, the correlation functior ¢(t) )
—(¢? in the exponent of integrak12) will tend to
—(¢?), for a continuous bath spectrum. This means that the

integrand ofP(E) approaches the value af=exp(—(¢?)),
This permits us to write down our final result for the starting from 1 at=0. ThereforeP(E) contains a “quasi-
tunneling decay rate in terms & _(E), particle 6 peak” of strengthz at E=0, if z does not vanish.

For the case of arbitrary temperature, the brackets deno
a thermal average over the initial bath sthig). We intro-
duce the definitions

1 + o0 i ~ ~ ~
P(_)(E)=§f_ dt gEte=(#(09)~(4?), (12)
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It corresponds to the probabiliyof having no energy trans- equal to zero, which makds independent ob. This will be

fer at all from the electron to the batkimilar to the recoil- true for the Ohmic bath, to be discussed in the following

free emission of & ray by a nucleus inside a crystal, i.e., the section.

Mossbauer effegt As explained above, the reduced density matrix of the
The functionP_(E) in front of the cosf) term in Eq. electron on the dots coupled to the bath predicts a finite

(13) is different: The integrand oP _(E) will increase at probability of P,=(1—(x.|x_))/2 to find the electron in

large times, towards the value af starting fromz? at t the antisymmetric state if one starts out from the symmetric

=0. The function P_(E) is real valued[because of superposition before coupling it to the bath. The overlap fac-

(d(t)d)=(pp(1))*], but it can become negative. There- tor of the bath states involved in this probability can be ex-

fore, it cannot be interpreted as a probability density, in conPressed as

trast toP(E). Its normalization is given by

(s lx )= (xol(e 2| xo) =22, (21)

f dEP_(E)=2% (18
Comparing with the resulf’(¢=7)=Tg(1—2%) given
above, it may be observed that the decay rate at sufficiently
If zis nonzero,P_(E) also has a5 peak atE=0, of large bias voltages is indeed determined directly by the prob-
weight z, just asP(E). As a consequence, in the case of ability to find the electron in the state whose decay is not
destructive interference¢(= ), the tunneling ratel’ at forbidden by destructive interferendas has been argued
V—0,T=0 still vanishes even in the presence of thealready at the end of the preceding section, nea®&dg. It is
bath, since thes peaks contained irP(E) and P_(E) only in this limiting case, where an arbitrary amount of
cancel exactly in integrall3). The physical reason for this energy is available for excitation of the bath, that the
coherence has been discussed at the end of the precedisgppression of interference effects in the transport situation
section. is correctly deduced from the electron’s reduced density
In the case of constructive interferencg=0), atT=0  matrix in the presence of the bath. Formally, this holds
and forV—0, the integration oveE will only capture thed  because the sum over final bath stafgsin Eq. (10) is
peaks contained ifP_(E), yielding I'=2zI";. Thus, the not restricted any more and corresponds to the insertion of a
tunneling rate is suppressed by the constant facfoom its ~ complete set of basis states. Thus, one obtains, directly from
noninteracting value. However, this may be interpreted as &q. (10),
mere renormalization of the effective tunnel coupling, since
the visibility v of the interference pattern is still equal to T, _ _
unity. In order to connect this result to the qualitative discus- F=—{(x.+e "x_|x.+e"“x.), (22
sion from above, we note that the overlap of the two different 2

bath ground states that are adapted to the absence or presence
of an electron on dot-, is given by which reduces to Eq.20) when the overlaps are evaluated,

using Eq.(21). Physically, the case of high bias voltage cor-
<id - " responds to a kind of infinitely fast von Neumann projection
(Xolx=)={xole™"’Ixo)=exp(=(¢*)/2)=2"% (19 measurement that determines the state of the electron, reveal-
ing the fluctuations due to the bath. In contrast, at low bias
Therefore, the magnitude squared of this overlap, whictvoltages(low energy supply, a kind of “weak” measure-
determines the probability of tunneling without exciting any ment is carried out that takes a longer amount of time, such
bath mode, is equal ta that only the low-frequency fluctuations of the bath are im-
On the other hand, for sufficiently large bias voltagesportant for dephasing.
(much larger than the cutoff frequency of the bath spectyum

the normalization conditions fdp_(E) yield
V. EVALUATION FOR DIFFERENT BATH SPECTRA

I'=Tg[1+2% cod¢)]. (20 We will restrict the discussion td=0 at first.
The simplest example for the bath is a single harmonic

The visibility is given byv=2z2. In this limiting case, Oscillator of frequencyw. This offers an approximate de-
where the restrictions due to energy conservation and th&cription of the interaction with optical phonon mode&in-
Pauli principle are no longer important, the tunneling fate Stein model). In this case,P(E) and P_(E) can be ob-
at the pointp = of destructive interference does not vanish. tained easily by expanding the exponential in a Taylor series
It takes the valud o(1—z%), which is small if the effects of and using(¢(t) ¢)=(H?)exp(—iwt), before the integration
the bath are weakz(near to 1) and is equal to one half the over time is performed. FOP(E), the resulting series o8
ideal maximum value B, for a bath that is sufficiently peaks at harmonics ob corresponds to all possible pro-
strong to destroy phase coherence completety(), lead- cesses where the electron emits any numberf phonons
ing to an incoherent mixture of symmetric and antisymmetridnto the bath while tunneling into the lead. The expression
states on the two dots. In the latter case, the visibilityfor P_(E) is the same, apart from alternating signs in front
vanishes(even for arbitrary voltagessince thenP_(E) is  of the § functions:
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a b _c_ ,.d., e

P(E)

>

]
!

- < 0

P (E)

(FRXE)

eViw,

o

E FIG. 4. Decay ratd" as a function of bias voltagé for the case

FIG. 3. The bath spectrurtEF)g (bottom and the resulting of constructiveinterference ¢=0), atT=0. Curves correspond to
functionsP(E) (top) andP_(E) (middle), plotted vs energg, for different bath spectra shown in Fig. 3. Dashed lines correspond to

different baths. Energies are measured in units of the “bath cutoff"@PProximation Eq.(28). The initial Coulomb-blockade type sup-
.. Energy axis is the same in all panéfgarting atE=0, hori-  Pression to a value df/2I'y=z (z=0 for the Ohmic bath d, )eis

zontal tick distance: 1); vertical tick distance in all panels is 0.5. a/iftéd with increasing bias voltage, saturating &V2l'o=(1
s=1.5, «=0.25; b, “acoustic phonons8=3, a=1; c, “optical +2%)/2. Inset depicts energy diagram with definition of bias voltage

phonons,” Bath with gap; =1, =0.25; e,5=1, a=0.75(d, e for this situation.
are “Ohmic” baths of different strengttz=0).

o1 (e N
POE)=52 3 o] dteFT=(dnd)"

(=
P \(E)=z>, S(E—nw). (23)
(-) =0 n! % n
= : (=) .. " n
Thus, every process involving the transfer of an even number ZZZO ol (PP)u*x .. x(Db)u)(E).
of quanta to the bath will not ruin the destructive interference "= '
at ¢=1r, since the corresponding contributions frd(E) (24

andP_(E) cancel in Eq.(13). This is because the coupling

between electron and bath is of the tyme, (- n_)F, which
gives a different sign of the interaction amplitude for a pho
non emission process, depending on the dot. Therefore, t
amplitude of emission of aevennumber of phonons will —
not depend on the dot, it is insensitive to the state of the
electron, and the amplitudes of the electron tunneling from 05l
|+) and|—) will still interfere destructively.

In contrast, emission processes involving an odd number
of quanta introduce a negative sign for an electron starting in
state| — ), “detecting” the path(or rather, the initial stajeof o
the electron and interferingonstructivelywith the processes Y03
from |+). This lifts the destructive interference and makes =
I'#0 at ¢o=m. However, below the frequenay of the os-
cillator, destructive interference at= 7 is still perfect since
no quantum can be emitted, while the magnitudd cdt ¢
=0 is renormalized by the fact@ as has been discussed 0.1
above in general for the limiting ca¥—0. The same holds
true for any bath with a finite excitation gap, Bt 0. This is , ) ) , )
shown in Figs. 4 and 5, to be discussed in the following 0 1 2 Vi 3 4 5
section. °

We now pass on to arbitrary bath spectra. At first, we will 1. 5. Decay ratd (V) for the case oflestructiveinterference
cover the casg#0 (‘weak baths”), when we can apply (=), atT=0. Dashed lines refer to E@8). Due to dephasing,
perturbation theory to discuss the behavioPof (E) atlow  the decay rate becomes finite at finite voltages, saturating at
energy transfer& (and, consequently, that f at low volt-  ['/2I'y=(1-2%)/2. For the Ohmic batid, & the dependence is
ages. A Taylor expansion of the exponent in E42) yields  exactly equal to that fop=0 (Fig. 4).

The repeated convolution product contaimgimes the

_correlator($¢),,, for n=0 it is to equal 5(E), and the
H’éegative sign holds foP _(E).

]
!
!
I
i
]
[
i

(1-292 |
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For the following discussion, we prescribe the spectrum—0, even ate=0. This is the well-known Coulomb-
of the fluctuating potentiaf to be a power law in frequency blockade type of behavior for tunneling in presence of
o (at T=0), with exponens: Ohmic dissipatiorf® At higher bias voltages, the blockade is

removed and” grows towardd . The growth at low volt-
w3 ages is determined by the power-law behavior R{fE),
w_c) Owe—w)f(w). (29 which rises agw; 2“E2~, where the exponent is deter-
mined by the bath strength rather than the exposent of

The dimensionless parameter characterizes the bath the bath spectrum. The dimensionless prefactonust be

strength. In order to be able to rely on perturbation theoryfound from the normalization condition fdP(E) and de-

we have to ensure>0. Since(¢ ), =(FF),/w?, the vari- Pends only ona (and the type of cutoff in the bath spec-
ance of the fluctuating phas(a{bz), will be finite only for trum). Therefore, in the case of the Ohmic bath we have, at

s>1 (at T=0, otherwises>2). In that case, we have low V.andT=0,
=eX{ —2a/(s—1)]. This means the perturbative analysis pre-

(IA:IA:>L=0= 2aw,

2a
sented above is restricted to a super-Ohmic bsithl. The I'(V)=T < ﬂ/ (30)
case of the Ohmic bath will be discussed separately further 2a\ w,
below.
After keeping only terms up to second order in the expan-  Finally, we briefly discuss the case of finite temperatures,
sion of P(_(E) given in Eq.(24), we get T>0.

In that case, the variance df is given by

P(E)+P_(E)=2[28(E)+ (¢ )k (dd)u)(E)+ -+ -]
@6 @)= [ ao@in Vol 5] @

for the symmetric combination, which will determine the

prefactor of 1+ cos(p) in the expression faF', Eq.(13), and which yields

P(E)—P_(E)=2Z¢)e+ - - 27
for the antisymmetric combinatiofdetermining the prefac- (A ~(dH =0+ 44
tor of 1—cos()]. Inserting these into Eq(13), using the

-
o

power law for($a),=(FF),/w? given by Eq.(25), and o _ _ o

performing the energy integrals, we find, for sufficiently low ~ The approximation of extending the integral to infinity

s—1 o ysfz
dy. 32
fo e/—1 y- (32

voltages[2a(eV/w,)® 1<s—1], holds for temperatures much smaller than the bath cutoff
This formula gives the temperature dependence of the renor-
Iy a’Cg [eV|2eD malization factorz=exp(—(¢?). The second integral di-
I~ 2° [1+code)] 1+ (s—1) (w_c) verges fors<2, becausa=0 for these cases, in contrast to
o1 T=0 wherez=0 onIy.for s<1. Again, thi; results in com-
+[1—cos(qo)]2—a(i/ ] 28) plete absence of the interference effect in the tunneling rate
s—1\ w, ' I'(V,¢) [because?_(E) vanishe$ It may seem surprising

that an infinitesimally small temperature can vyield such a
The numerical prefactorCs is defined as fé[y(l drastic qualitative changéor 1<s<2), compared to the
—y) 5 2dy. zero-temperature case, since the difference should be observ-
From Eg.(28), we see that the destructive interference atable only at very large times>1/T. However, it must be
¢=1r is perfect atv=0, but gets lifted when increasing the remembered that our analysis is carried out for the lirpjt
bias voltage, with a powevs~ L. In contrast, the decay rate —0, where the average decay time of the given state is
I' at ¢=0 starts out from the constant value ofl2) and inifinitely large. In other words, the limit§—0 and I’
grows asV2¢~1, Therefore, the visibilityv starts out at 1  —0 do not commute for such relatively strong baths. At

for V=0 but decreases as finite I'y, the transition from one to the other case should
turn out to be smooth, but this goes beyond the present
. Aa eVt ,g ~ analysis.
R (29 Apart from the change iz with temperature, there are

two other important differences to the case 0. First of all,

Fors| 1, the range in bias voltagéwhere these approxi- even atv— 0 the electron may emit energy into the bath, due
mate expressions hold shrinks to zd\i constante and  to the thermal smearing of the Fermi surface in the lead
w.). At s=1, i.e., for the Ohmic bath, the probabilizyof  (lifting of Pauli blocking. Second, it may now also absorb
not emitting energy into the bath vanishes completely. Assome energy during the tunneling process. Both facts will, in
discussed above, this means that there igmiependence at general, lead to a finite tunneling decay rategat 7, V
all in I', and, consequently, the visibility is zero at all bias —0 for any bath, where, af=0, the rate had vanished in
voltages. Furthermore, the tunneling rate vanishesefdr any case.
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We can approximate the visibility at V—0 and finiteT
by using expansioii24). Inserting the resulting expressions
for v, (14) into v=y_/vy, we obtain

U(T,v_,0)~1—4f de(pd) f(e). (33

We evaluate the integral for a power-law bath spectrum i
the limit T< we,

. GO
J de(ho). f(f):fo dEW
o s—2
f~v2aw:;_SJ0 dEW (34)
This yields
T\*Y1
1—v(T,VH0)%32a(w—) (5—2 s)I‘(S—l){(s—l),

(39
whereT" is the Euler gamma function, anfithe Riemann

PHYSICAL REVIEW B58, 195305 (2003

bath strengths as they may occur in experimental situations.
In GaAs, the lack of inversion symmetry leads to piezo-
electric fields proportional to the lattice deformation, whose
effect on electrons at low frequencies is much stronger than
that of the usual deformation potenti@here it is only the
potential that is proportional to the deformatipnFor the
IPiezoelectric coupliny to acoustic phonons in GaAs, one
finds (compare Ref. 16 () ==W w/(cs/d)? for w
<c,/d, wherecs~5x 10° m/s is an estimate for the average
velocity of longitudinal sound waves in GaAs, atidenotes
the distance between the quantum dots. We obtin
=const(eh14/47r)2/(ﬁpc§), where eh,=1.4 eV/nm is the
single piezoelectric modulus in the cubig structure of
GaAs andp=5.3x 10° kg/m® the mass density. The numeri-
cal constant is of order 1 and accounts for the details of the
sound wave dispersion relation as well as the orientation of
the crystal axes with respect to the vector separating the
quantum dots. Inserting these valuésis found to be on the
order of 0.01. In order to obtain the renormalization faztor
the spectrum{$¢),, must be integrated over all frequencies
(see abovg i.e., up to the cutoff frequenay,. . The effective
cutoff frequencyw. = cs/dy is determined by the extedt, of

zeta function. Therefore, the decrease of the visibility withthe dot wave functiongfor dy=100 nm one obtainso,

increasing temperaturgé (and V—0) is governed by the
same power law as that for increasing bias voltagat T
=0, see Eq(29).

VI. DISCUSSION OF THE RESULTS

~50 GHz). Given the present values, and assundigrgd,
this leads to estimates g ¢}),, dw on the order of 0.01,
yielding z=exp(—(¢%) near 1. Note that the distancebe-
tween the dots cancels in the estimate Zpas long as the
cutoff frequency is assumed to be given byxcg/d. How-

The following discussion relates to the results obtaineceVer, asw, might be considerably larger than/d (if do

for T=0, which are plotted in the figures. .
In Fig. 3, several different types of bath spectfd ) are

shown. Cases a, b, d, and e are power laws of the form given

in Eq. (25), for a cutoff frequency ofo,=1. The last twad,
e) are of Ohmic type ¢=1, z=0), which corresponds

<d), one could also obtain athat deviates more strongly
from unity.

For the Ohmic bath, we may imagine the quantum dots
placed inside a capacit@ connected to a circuit of resis-

tanceR, such that the potential difference™2between the

physically to gate voltage fluctuations due to Nyquist noisedots would be given by the fluctuating voltage drop across

Case c represents a bath with an excitation @apexample,
optical phonong with a spectrum given by an inverted pa-
rabola. In the limit of infinitely small spectral bandwidth, it
would correspond to the single harmonic oscillaiinstein

the capacitor. This leads to a bath spectrgfF)’=°

= m(RIRg)h%w/[ 1+ (RCw)?], with Ry= h/e? the quantum

of resistance. Therefore, the dimensionless coupling constant
a introduced above would be equal w@=(7/2)R/Ry,

mode discussed above. Case b, with a bath spectrum rising/hich can have values both larger and smaller than 1.

as w°,

corresponds to the experimentally relevant case of Finally, for optical phonons, we use the Rtigh interac-

piezoelectric coupling to acoustic phonons, which was deterion Hamiltonian (Ref. 34 with a dimensionless Fhiich
mined to be the major inelastic mechanism in the expericoupling constant ofx=0.07 (GaAs to obtain the rough

ments of Ref. 12 on double dots in Gafsee Ref. 16 for a
theoretical analysis deriving this spectrum for wavelength

estimate

(FF)I=%=6(0—w o) (1 meV)(100 nmA),
Svith w,.

0~5x 10 Hz. This yields az deviating from unity

larger than the dot distanceThe spectra for the first three by about 10°3.

caseda, b, 9 have been chosen to give the same renormal-

However, in the plots we have chosesn 1/e for illustra-

ization factor,z=1/e. The same figure shows the resulting 4« purposes.
functionsP(E) andP _(E). These have been obtained using The resulting behavior of (¢,V) at T=0, calculated

the integral equation described in Refs. 32 and 36. We recaj}

that the low-energy behavior d?(E) is given by (dd)e
=(FF)g/E? for the cases withz#0, where perturbation

om Eg. (13), is shown in Figs. 4 and 5. In the case of
constructive interferencep=0, Fig. 4), the decay rate for
the “weak baths”(a, b, 9 starts out fromI'/2I'y=2z at V

theory may be applied. In case c, the alternating signs of the=0 and goes td'/2I' o= (1+2%)/2 ateV/w.>1. The initial

different contributions toP _(E) may be observed, whose
physical meaning has been explained above for the limitin
case of the harmonic oscillator.

deviation from the constant value afat low voltages is
given by the power law/?G~1) contained in Eq(28). In
contrast, the decay rate for the Ohmic baéth e starts at

We now briefly mention some numerical estimates for thel'=0, rising with a power law and saturating at a value of
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IN— . T then are able to cancel in the integral over P_(E) that is
proportional to the visibility. However, the physical reason
for a dip in visibility is rather generic: In that energy range,
the decay ratd” for ¢== has already increased due to
dephasing, while the blockade-type suppression of the value
of I' for =0 has not yet been lifted. This is a consequence
of the even-odd effect discussed above.

(V)

VII. SEQUENTIAL TUNNELING THROUGH
THE DOUBLE DOT

Up to now, we have discussed in detail the influence of
the bath on the tunneling decay rate of an electron which has
been placed onto the two dots in the symmetric superposi-
tion. In order to complete the picture, we have to calculate
5 the sequential tunneling current through such a double-dot

eViw, interference setup. This will be done by deriving and solving
— a master equation for the reduced density matrix of the
_FIG. 6. Visibility ”=(P‘PZO_FF”)/(F‘P:O’LF%":?) as a func- double-dot system, taking into account the system-bath cou-
tion of bias voltageV for different bath spectrésee Fig. 3. For the i " hile the t | ling is treated in leadi
Ohmic bath(cases d, ev=0. Dashed lines correspond to Eg9). pling exactly, whil€ the tunnel coupling IS treated in leading

Inset illustrates change in interference pattEfip) upon switching order. We are |hntereste_d spec_lflcatljly In tlh € nohnlllnear r(;e-
on the interaction with the bath. sponse, i.e., in how an increasing bias voltage helps to de-

stroy the phase coherence. The tunneling rates calculated

I'/2I'y=1/2, corresponding to an equal admixture of odd andpreviously will serve as input to the master equation.
even states in the reduced density matrix of the electron However, in order to facilitate the understanding of the
coupled to the bath. For destructive interferenge=(rr, Fig.  results, we first turn to a qualitative description of the situa-
5), the behavior of a and b at low voltages is given\5y *  tion without the bath.
[see Eq(28)], while the decay rate of the Ohmic ba(ith e At o=, tunneling is completely blocked, since the left
remains the same as that fer=0. In the special case ¢ of reservoir only couples to the even stié®, while the right
the gapped bath, we observe perfect destructive interferenceservoir couples to the antisymmetfiedd superposition,
up to the excitation threshold of the bathedf=w., where  |o0). At ¢=0, both reservoirs couple {@), whereago) is
I'(¢=,V) increases in a stepwise manner for the first time,completely decoupled from the leadsompare the discus-
with the next increase a&V=3w.. Note that, on the other sion in Ref. 27. This means that a current may flow d) is
hand,I'(¢=0,V) increases at even multiples of the excita- empty. However, ifo) is filled, the current vanishes, because
tion gap. The difference comes about because it is only thdouble occupancy is forbidden in our model. Since there is
emission of an odd number of phonons into the bath thaho way to change the occupation |ofy, the stationary den-
reveals the location of the electron, as discussed above. Thésty matrix of the double dot ap=0 will be any convex
feature would be absent if the two dots were coupled to twaombination of these two possibilitigat T=0, in the ab-
independent baths, whereas the other qualitative propertiegnce of other relaxation pajh#t any value ofe in be-
would remain the same. tween these extremes, there is always the gtithe=(|+)

From the decay rates ai=0 ande=m, we may calcu- —e~'¢|—))/\/2, whose decay into the right lead is blocked
late the visibility v of the “interference pattern” that is de- by destructive interference. As there is a nonvanishing over-
fined by the dependence bfon ¢. The result is shown in  lap betweer] W) and the statée) which is reached by tun-
Fig. 6. As we have noted before, the visibility is always zeroneling from the left lead, one will observe an accumulation
for the Ohmic bath. On the other hand, for the “weak baths,”of population in|¥), until the current is blocked again. This
it is perfect(equal to 1) aV¥—0, due to the perfect destruc- argument holds af=0, while at finite temperatures the
tive interference, regardless of the suppression fart@p-  electron can decay towards the left lead and make a new
pearing inl'(¢=0). In general, the visibility decreases to- attempt. Therefore, in this simple picture, the stationary cur-
wards higher bias voltages before saturating at the limitingent atT=0 would be zero at any except foro=0, where
value ofz2. However, in contrast to intuitive expectation, the it is undefined.
decrease may be nonmonotonous, i.e., the visibility of the However, one has to take into account that the coupling to
interference effect may actually be enhanced by increasinghe reservoirs does not only lead to decay but also to an
the supply of energy available to the electron, although theffective tunnel coupling betwee-) and |—). Although
decay ratd” always increases monotonously at anyThis  this cannot change the blockade of the current-atr (lead-
is particularly striking in case ¢, where the visibility drops ing only to an energy shift ofe) vs |o)), it does lift the
down to zero in a certain range before rising again. Theylockade at other values af. This is because the blocked
decrease down to the exact value of O is related to the specig{ate|\p> is no longer stationary, such that an electron will
choice of(¢?)=1 (z=1/e), which gives equal strengths of not remain there forever. The degeneracypatO still re-
the peak aE=0 and the first peak arounl=w., which  mains. Therefore, in the ideal case without coupling to a
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bath, we expect the current to vanish@t 7 and to rise  —p.,—p__, po=po,=0 for a#0, andp_ . =p%_).
towards a maximal amplitude near=0. According to the We cannot simply use the standard kind of master equation,
previous argument, af=0 this maximal amplitude will be since we have to deal with two degenerate leyels and
determined by the effective tunnel coupling between the dof—), and it is important that a tunneling event may create a
states. coherent superposition df+) and|—) (for example, the
Introducing the bath will then lead to renormalization ef- even state|e)). Such a master equation—for degenerate
fects and spoil the perfect destructive interference at highelevels—has also been employed in Ref.(Mthout coupling
values of the bias voltageor temperaturg qualitatively in  to the bath, and evaluated in the linear-response regifine
the same way as has been explained above. We will shoequation is different from that employed in the “orthodox”
that the actual visibilityy, of the current interference pattern theory of sequential tunneling, where no coherent superposi-
I(¢) is given by a monotonous function of the visibility  tions are involved. Note that for a finite tunnel coupling the
introduced above for the tunneling rat symmetric bias  levels could be treated as degenerate as long as their ener-
We start with the Hamiltonian that is obtained after apply-getic distance is much smaller than the level broadening due
ing the unitary transformation of the independent bosorto tunneling. However, as we consider the lifi§g—0, we

model (A5) onto our Hamiltonian(1), need to have exactly equal energies. Otherwise, the energy of
R L R, the hole that is created in the left electrode would betray the
H'=€¢'(ny+n_)+U'nn_+Hg+H +Hg+V'". dot state which the electron has entered, thus preventing any

(36)  coherent superposition to form.
H 'is th i f the t tat Given the initial reduced density matri0), andassum-
ere e’ is the (renormalizedl energy of the two states, . e state of the environmethath and reservoirso be

Wh'Ch we will take to beg =0 from now on.U’ is the independent of the electronic state on the dot=ad, we
interaction constant that involves both the Coulomb repul- ) . .~ . .
btain the time evolutiom(t) by tracing over the environ-

sion as well as the effective attractive interaction induced by’ .
the bath. We assume,U’>T,eV, such that double occu- mental degrees of freedohE”),
pancy is forbidden.
i The ter.m_ which we wil! treat as a perturbation_ is given by 'T'ex;{ iy ftds V(S))ﬁ(0)®ﬁE
V', describing the tunneling to the left and the right leads in 0
the presence of the bath. It is the transformed versioW of _ ¢

X'T'exp( i Jods V(s)) }

p(t)=trg

[compare Eqgs(3) and(4) and Appendix A, where the addi-
tional fluctuating phase factors ex*pi(&ﬁ) have been intro-

duced: . t ty - .
50 [ at, [ "at, e V0¥ (1)
V= j.d,+H.c., (37)
ji=hLr a=+,— ~ ~ t t
where 0 0
1. =e*io] (39) Xtrel V' (1) p(0)@peV' (tp) ]+ -. (43

. Lat Physically, by using factorized initial conditions, we ne-
| :Zk teagy., (39  glect correlations between subsequent tunneling events
which could be due to excitations in the electrodes or in the
S g bath. Since the tunneling rate is very small, these excitations
r+=e ", (40 Wil have traveled away from the double dot until the next
~ . event takes place. The entanglement between electron and
r_=e '%eler, (41)  path(discussed in the previous sectipmould preclude fac-
torized initial conditions, if it were not treated indirectly in
f=2 Rt 42) this approacHhvia the unitary transformat_ic)nl\_lote that_ we
ALY do not have to make any secular approximation at this point,
unlike the usual derivation of a master equatirt turns
As usual, the current through the device does not onlyut that all contributions only depend on the time difference
depend on the rates for electrons to tunnel into and out of thg, —t, anyway, because the dot levels are degenerate. There-
dots, but also on the stationary state which the system agere, in the long-time limitt—oo, the integration overtg
sumes in the nonequilibrium situation, i.e., under an appliedtt,)/2 results in a factot, and the endpoints of the integrals
bias voltage. overt,;—t, may be extended te. This yields the desired
We will now derive a master equation for the reducedmaster equation that will determine the stationanas well
density matrixp of the double-dot system, which contains as the current, in the limit of weak tunnel coupling. Some
the populationsp, . ,p__,pgo (“0” denoting “no elec-  details of the derivation are provided in Appendix B. We also
tron”) and the coherencep,_ and p_, (with pgpo=1  point out that it is possible to handle even the case of non-
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degenerate levels correctlgt least for the case without the o n + iny in
bath, by omitting the secular approximation from the po==mp—-nt YR Fpod Lt R
outset®® P

In order to abbreviate the resulting expressions, we intro- (e"¥yr-+7y-)—Hc, (49)
duce the following definitions for the effective in- and out-

tunneling rates as well as the effective tunnel couplings gen-

2

N ip.in in
erated by the electrodes: pr-="pr-(NTYR) T pool € yR-F 7
P+ igmx Tk P—— i -
- ey _+y ) —=(e¥yr_+T vy ).
V(=T | dd1-fu@IP -9, @4 2 (&R )T (TR )
(50)
Vi_n(—)EFLoJ' defL(e)P-)(e), (45) The ingredients of the master equation obtained here may
be interpreted as follows:
Tyo (A P (o) One part of the right-hand side corresponds to the unitary
A=— —J de[l—fL(e)]J’ dw T (46) time evolution generated by the effective tunneling Hamil-
T ere tonian,
n-=n-[PePl=y+ia. (47 ATi=3( At A | +)(~|+He. (5D

Analogous definitions hold f R Furthermore, the in-tunneling contributions in the equa
Equation (44) i ivalent to definition(14 d f _ ' ) . ]
quation (44) is equivalent to definition14) used for tions forp, , andp__ depend orP(E), while that forp, _

v(—y in previous sections. Note that the effective tunnel cou- ; . ) : :
pl(in)g AL depends orP_, because it arises from transi- is determined byP_(E), since it describes the creation of a

tions between the statés-) and|—), via an intermediate coherent superposition of ) and| —) (which is hindered by
lead state. In the expression fdr, ), the energy depen- the bath. This term would be absent in the usual master

P H i in in ; P
dence of the density of states and the tunnel coupling to th§uation- In particular, ity — v, which will be the case
reservoir electrode should be kept in order to have a conveft T=0 for vanishing bias between the dots and the left
gent integral. We will take this into account by introducing electrode, an electron tunneling from the left lead will end up
an effective upper energy cutaff in the integral.

in the coherent superposition where _=p, ., =p__. Tak-
One might wonder why the effective tunnel couplingsi”,g into ac.couny that we are working in a transfor_med basis,
A (r) depend on the occupation of electron states in the redhis describes just the entangled st&f, confirming the
ervoirs. After all, in the noninteracting case, it is possible toStarting point of our earlier discussion. Note that the out-
calculate such a change of the effective single-particidUnneling contribution forp, , also depends op, ., for
Hamiltonian prior to filling in the electron states. Alterna- €x@mple. This reflects the fact that a superposition between

tively, in a calculation that already takes into account occul€ o states may be blocked from decaying into the lead,

pation factors, there would be two contributions which addWhile €ach state can decay separately. _
up to an integral that does not depend on the Fermi function. _ 1€ Stationary density matrix is obtained by demanding
However, we consider the interacting cdse=, such that dp/dt=0 (and using the relationggo=1—p ., —p__ and
(even without the badhone of these contributions is missing p-+=p% ). This will give us the density matrix in zeroth
(since it would involve intermediate states with double occuordeng in the bare tunnel coupling, which we need to cal-
pancy. The resulting logarithm is analogous to that which culate the current in leading ordE%.

appears in the Kondo problem. This effective tunnel coupling  We can obtain the current from the contribution of the left
has also been discussed in Ref. 23, for the case without §actrode to the change, . +p__ in the double-dot occu-

bath. There, the upper cutof was provided by the Cou- paion i.e., keeping only terms that stem from the left elec-

lomb coupling U, since for higher energies double occu- yqge in the master equatiprhis is equal to the right-going
pancy is no longer forbidden and the noninteracting caserrent in the stationary limit:

takes over(where two contributions arise that cancel each
othep. If we take the limitU—c, then A will be set by a | . . _
cutoff in the tunnel matrix element®r the electron reser- EZ(P+++P——)L:2P007LH_ Y(psstp_-)
voir's density of statés

The general master equation for the reduced density ma-
trix of the double dot, derived in the limit of weak tunnel

—2y -Rdp,_]. (52

coupling but arbitrary electron-bath coupling, follows by in-
serting definitiong44)—(47) into Eqgs.(B2) and (B3):

pir=—pr+(VLF YR+ Pod N+ YR)

p—+

5 (e¥yr-+y-)—H.c.,

(48)

An alternative way of deriving the current would be to
start from the general Meir-Wingreen formtflavhich ex-
presses the current in terms of the exact Green’s functions of
the double dot, to be calculated in presence of the tunnel-
coupling and the bath. This has been the approach of Ref. 11
for the case without the bath, and we have checked ).
to give the same result in that case.
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VIIl. EVALUATION OF THE SEQUENTIAL TUNNELING By solving the master equation for the stationary density
CURRENT AND THE VISIBILITY matrix and inserting the result into E¢62), we obtain the
expression for the current through the double dot in terms of
all of the quantities mentioned previously. In gendl ar-
bitrary T), it is found that the current may be written as the
product ofy with a dimensionless function of the phase dif-

In order to evaluate the current as a function of tempera-
ture T, bias voltageV, and phase difference, we will now
specialize to the case of symmetric bias and left-right sym-
metric tunnel couplingsl{zo=1"o=1I). All essential fea-
tures(in particular, the perfect destructive interference in ab- ference ¢ and the ratiosv=y_/y, o r)=ALw/y, and
sence of the bajhare independent of this assumption. We Ko
will find that the current is symmetric undgr— — ¢ even | =eylo[ @, Bu, v, 8, ,5x]. (59
for the nonlinear response considered here, due to the sym-
metry of the mode{compare Ref. 11 for a systematic analy-  The complete expression fog is very cumbersome, al-
sis of phase locking in a variety of interference geomelries though it may be found analytically by straightforward solu-

We find from Eqs(44)—(47), usingf(e)=1—f(—¢), tion of the master equatiofit is listed for T=0 in Appendix

C). Therefore, let us first discuss the situation without cou-

YRy = 7,iLn(_): 7(—)Erof def(e—u)P(_y(e), (53) pling to a bath. In that case, we obtain

A

whereu=eV/2 is the chemical potential of the left reservoir. O =0r=0=— E %f(,u— €) (60)
This is definition(14), with eV replaced byu=eV/2 (since T €
we deal with the symmetric bias casé-urthermore, we ang =+ _=T,f(— ). The current turns out to béwith
use the condition of detailed balanceP_,(—E) \=e Ax)
=exp(—BE)P)(E) (see, for example, Ref. 32which leads
to

| 4(1—)\)(62+)\)co§(§)

¥ —y =e Pry . (54 = ) (61)
L(-)= YR(-)= ) ey 38%+2(1+A+A%)+36% cog¢)

The effective tunnel couplings are still differefitecause

of the different Fermi distributions Several points should be noticed about this expression.

First, the destructive interference at=7 remains perfect
(@) regardless of temperature, because there are no current-
. (59 carrying states at all. At zero temperature<0), the maxi-
mal amplitude of the current iy, /ey=26%(36°+1),
which vanishes when the effective tunnel couplihgoes to
zero. This has been explained above as a consequence of the
possible transition into a current-blocking state, which can
only be undone by the effective tunnel coupling. At finite

s=—2[" deti—(ex 1 [ do

The lower sign belongs to the right electrode.
For the special case df=0, electrons always enter from
the left and go to the right such that we hayg=17y _

A n_ _in __
=YR=7r-=0 andyr()=1()= (), with temperaturesN>0), the maximal current is nonzero even
i for 6—0, where it approaches the value of,../ey
7,(_):r0f de P(_)(e). (56) =2A(1—\)/(1+X+\?). This has a maximum at around
0 T~ . It vanishes for larger temperatures @I, which is

to be expected for tunneling through a localized lefads-
The effective tunnel couplings are, &t=0, creasing derivative of the Fermi functiprin addition, the
shape ofl (¢) depends o and\, with a sharper minimum
(57) at o= in the case of largefs|. In the limit of 5—0, the
current becomes a pure cosine. At finite temperatiess
well as forv# 1) the behavior is similar, except for the finite
Note that, without any bath presem, () will have a  amplitude of the current a§—0.
logarithmic singularity aju— 0, for T=0. The upper cutoff Now we turn to the situation including the bath. The gen-
A will be given by the minimum of the Coulomb repulsion eral expression for the current is very lengthy, and we will
energyU and the bandwidth of the reservoir’s electronic en-omit it here. However, it turns out that the maximal and
ergy band(or by some cutoff in the tunnel matrix elements minimal current are functions merely af and A=e #*,
For the purposes of our discussion, we assurgeu, . while they are independent & .
In the limit of high bias voltages{<<A,u), we obtain The amplitude of the minimal curreat ¢ = 7) is given
effective tunnel couplings whose magnitude goegaand by
decreases logarithmically with increasipg

At w

[u=ol ]

AL(R): fd(l) P_ (w)ln

l(e=m) 2(1+\)(1-\?*)(1-v%)
a0 ey  3(1+N)2+(1-N)22

(62)

r
fdw P (w)=-2 ?In
(58 while the maximal currentat ¢ =0) is
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FIG. 7. The currentl for different values of the visibilityv
=vy_1/y=0.8,0.9,0.99,0.999,0.999%0om top to bottom. The lim-
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-- optical phonons
— acoustic phonons

eVi2o,

FIG. 8. The visibility v, of the patternl(¢), for piezoelectric

its ¢—0 andv—1 do not commute. Other parameters held fixed: COUPIiNg to acoustic phononi) (solid line) and for the optical

N=e P¥=0.2 ands = sz=—1.

1(¢=0)

2
o =3(1-)). (63)

It should be noted that expressiil) for the current in the

ideal case seems to contradict this simple formula. However

that is because the limite—0 andv—1 do not commute.
This is shown in Fig. 7. It means that far=0 and 6, g
—0 the maximal current calculated according to E&g),
which is independent of, r, and the “typical” amplitude

phonon bathc) (dashed ling plotted vsu=eV/2, at different tem-
peraturesT/w.=0.01, 0.05, 0.1, 0.2, 0.4, 0(fop to bottom. Inset
depicts energy diagram for tunneling in this situation.

217
3—2
' The dependence of the visibility, on the bias voltage
eV=2u, the temperaturd, and the bath spectrum is dis-
played in Fig. 8, for bath spectra of type b and c. The de-
crease ofy, at u=0 with increasing temperatuiein case b
is well approximated by Eq35) for v(T,V—0) [employing

(66)

Y|

2 . .
of the current ¢ 67) may deviate strongly. The peculiar be- 1o relation w=v2(2=?) for w=0]. [The functions

havior nearp=0 seems to be connected to the physical deP(_)(E) for finite temperatures have been calculated numeri-
generacy of the case=0, v=1 which has been discussed ¢4)ly using the fast Fourier transform, from the defining Eq.

above.

terms of the current,

_(e=0)—I(¢=m)
 H(e=0)+I(e=m)"

(64)

Y

It can be expressed entirely by the visibility defined
previously in terms of the tunneling rat¢gqgs. (16) and
(17)], as well as the temperature-dependent faktere A
(n=eVi2),

B 2(1+N+2%)2?
3(1+N)2— (1 +4AN+A\D) 2

Y (65)

This is a monotonous mapping eofto the interval[ 0,1],

1
From these formulas, we obtain the visibility, defined in(

Note that for bath spectra with=0 (i.e., exponens<1
atT=0 ands<2 atT>0) the visibility vanishes entirelat

any V), as has been explained in the previous sections. We
have already pointed out that this picture is expected to
change if one treats the tunnel coupling to higher order.
However, we have to leave this analysis for the future. One
possible approach to a nonperturbatig@®it still approxi-
mate treatment of both the tunnel-coupling and the system-
bath coupling at the same time seems to be the numerical
“real-time renormalization group” schenfé.

IX. CONCLUSIONS

We have analyzed dephasing in tunneling through two
parallel single-level qguantum dots with a fluctuating energy
difference between the dots. The disappearance of perfect

with only a weak dependence on The other parameters destructive interference in a symmetric setup has been taken
d, ,0r only modify the amplitude and shape of the currentas a criterion for “genuine” dephasing, as opposed to mere
patternl (¢). Therefore, all the statements about the visibil-renormalization. The coupling to the bath has been taken into
ity made in the previous discussion of the tunneling decayaccount exactly, via the “independent boson model” and the
out of the symmetric superposition continue to hold up toconcepts of the P(E) theory” of tunneling in a dissipative

this monotonous transformatio@nd with eV replaced by
u=eV/2). In particular, aff=0, we have

environment, while the tunnel coupling has been treated in
leading order.
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We have discussed in detail the behavior of the densitysee Ref. 34 for more detailsoncerning the case of at most
matrix of a single electron that has been placed in a super single particle Consider a set of electronic levglghat

position of the two dot levels. The bath measuf@ssome  couple to bath operatofs which are assumed to be linear in
exten} the position of the electron, such that the electron’sthe coordinategand momentgaof a bath of harmonic oscil-

density matrix becomes mixed. However, this allows directIators 0

H “; ” H H H 1 B

conclusions about the “incoherent current” only in the limit
of high bias voltages, corresponding to a fast “projection” .
measurement of the electron’s state. For lower voltages, only H=2> (&;+F)n;+Hs. (A1)
the low-frequency part of the bath spectrum contributes to

the lifting of destructive interference. Thus, for any “weak Here &, is the unperturbed level energy aﬁg= afaj is

bath,” whose spectrum falls off fast towards low frequencies,the number of particles on level The fluctuating fields are
the visibility of the interference effect becomes perfect in the P £ 9

limit of low bias voltagesV and temperature$, when the characterized completely by their power spectrd 0,
energy supplied to the electron is vanishingly small. This is . 1 (+e
the case for a fluctuation spectrunm® with s>1 (s>2) for (FiFj) o %= 2—f dte“YF (HF)T=% (A2
T=0 (T>0). The visibility may show a nonmonotonous T e
behavior as a function O.f blas_voltage. For_ Stronger” Spec-  are we will restrict ourselves to the case where the dif-
tra (smaller exponens), including the Ohmic baths=1), ) A oA
there is the well-known zero-bias anomabuppression of ferent variables commutgF,,F;]=0. As a consequence,
the tunneling current at low voltagesvhich affects equally  the spectrun{F F;)}~° is real valued, but there may still be
both the cases of constructive and destructive interferencé€orrelations.
Therefore, the visibility vanishes exactly at any bias voltage The most straightforward solution proceeds via a unitary
in our approach, where the tunnel coupling has been treatdéansformatior* (essentially a gauge transformatiorone
only in leading order. Although there is always a suppressiolintroduces the fluctuating phasé§, whose time derivatives
of the magnitude of the tunnel current for the case of conyre given by thef:j ,
structive interference, this may be interpreted as a mere
renormalization _of t_he effective _tunnel coupling, since the_ bi=i[Fg,¢1=—F;. (A3)
perfect destructive interference is not affected and since it
occurs even for a bath with an excitation gap. The full de- The exponent generating the unitary transformation is de-
pendence of the sequential tunneling currgfit) on volt-  fined as
age, temperature, bath spectrum, and phase differerime
tween the interfering paths has been derived by setting up a
master equation for the state of the double @shich is
special due to the degeneracy of dot leyels

The major questions that have remained open in our Applying the transformation to the Hamiltonian in Eqg.
analysis are related to the behavior at stronger tunnel colA1l) yields
pling. In particular, the perfect destructive interference may
also be overcome by correlated tunneling of several particles N A i etiX— ~_ e
(with an intermediate “virtual” excitation of the bathand H'=e “He _; ein; % Jimn;+He.  (AS)
this process will therefore contribute to dephasing, although
it is expected to be suppressed strongly at low voltages and The coupling between system and bath has been elimi-
temperatures. Likewise, the visibility for the Ohmic b#&tin ~ nated, resulting in an effective interaction between particles
other strong bathswhich turns out to be zero in the present on the different levels, with
approximation, may be changed at low bias voltages and L
temperatures comparable to the tunneling rate. This will re- o <F|FJ>I,:O
quire other methods to analyze the competition between ‘]Ii:f0 do——"—.
strong tunnel coupling and system-bath coupling.

3(221_: ;ﬁjﬁj- (A4)

(AB)

The J;; are real valued and independent of temperature.
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anddj’*zd;‘e*"/’i. This will affect all Green’s functions and,
therefore, also the time evolution of the single-particle den-
sity matrix. In addition, it becomes important if a tunneling

For reference purposes, we describe here the canonicphrt is added to the Hamiltonian, where the operafiﬁé
transformation employed in the independent boson modehppear, such that they have to be transformed according to

APPENDIX A: INDEPENDENT BOSON MODEL
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Eq. (A7). However, since the phasés and the particle op- (FTT_(s))=€*(e 1%e 14\ (F T (s)). (B4)
eratorsd{" commute(even at different times, when evolved

according toH'), the evaluation of Green’s functions always ~ BY introdRL(JLc)ing the bare tunneling rated'r o

splits into a part referring to the particles and a separate® 2D g (| tk A|2> [compare Eq.5)], we get, using Eq.
average over the bath operators. This is the major simplifi{42) (remember createsa reservoir electron
cation brought about by the “diagonal coupling” between

system and bath. I'ro

(FTF(S»:EJ de[1—fr(e)]e™ . (B5)
APPENDIX B: DETAILS OF THE MASTER
EQUATION DERIVATION Here we have neglected any energy dependence of the
The general expression for the time evolution of the retunnel-coupling and electrode density of states, assuming the

duced density matrix, Eq43), may be evaluated by noting relevant voltages and temperatures to be sufficiently small
that in the expectation values of produt&¥’ only those (but see below The bath correlator in EqB4) evaluates to

~ —{bd {2 i i i-
contributions remain which combiret,j, (tunneling out of e?q{ (¢4(s))—(¢7)], which can be expressed by using def
the dots with Td". (tunneling onto the dofs nition (12) for P_(w). Therg, we have to set= —s because

Jp9s 9 of the reversed order in thé correlator,

Py fwds{a (8)dpp(Ja(s)ip)+H.c b (@ -
dt aB Jo @ P\ a\S)] .C. e (D¢(s)— (%) = j doP_(w)e*s. (B6)
~t N S0t 2
T da(8)dap(la(S)] ) tH-CI Therefore, we obtain
e N ~ N ok el
+ 2 | ds{du(s)pdj(ikTa(s)) 0 Tro -
T f ds(f1_(s))=e*—" | de[1-fr(e)IP*(~e),
~ AN R 0
+d}(8)pd (i I 4(5))}- (B1) (B7)
(Note that there is no minus sign from fermion operator re- ith

ordering in this factorization of dot and reservoir part, as the
reservoir fermion operators are dragged past an even number
of dot operators; compare, e.g., Ref. 41; alternatively, it is
also possible to define them as commuting operators, since
there is no interaction between theriVe get for the indi-

1 x
P_(e)=;f dw P_(w)fo ds d(e-@)s

vidual matrix elementgfor brevity, the summation over =P (e)+ '_f de P—(“’)_ (B8)
=|,r is implied): - T E—w
+ o + o . . . .
o R 2 2t The integral in the second line is understood as a
P++ P++ fﬁm ds(jL(9)] +>+Poo£oc ds(j+]4(s)) principal-value integral. By using definitiortd4)—(47) intro-
duced in the main text, Eq(B7) becomes equal to
_p_+fo ds(jt(s)j_)—H.c., (B2) expl¢)yg_/2. Other terms are evaluated similarly.

APPENDIX C: CURRENT EXPRESSION

py_= ”’**j ds@:(S)L)_pr ds(iTj_(s)) FOR SEQUENTIAL TUNNELING THROUGH
0 0 THE DOUBLE DOT

re s ® L ete At T=0, for the symmetric situation, the currehtis
tg))— t : ’
+p00j700 ds(j -] (s)) P++j0 ds(jij-(s)) given byl =eyl[v,3,,x], with
_pﬁf‘”dqﬁ(sm_ 83  ldvdl.srl=2[~ S+ (P 1)(1+ &)
0

+268, 8r(v*—1)cosp+ 62170 ¢]

The equation fop_ _ follows from that forp, ., by in-
terchanging indices- and —.
Now we have to evaluate environment correlators, such as +2[v2(l+ 5E+ 5§)+ PN v2—3)]COS(p

the prefactor ofp, . in the second equatiofe.g., forj
=r), +8.(8, +26g)1°cogp] L. (C1

X[ =382+ 268, SgvP+(1+ 623)(v2—3)
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